Document Details

Document Type : Article In Journal 
Document Title :
Understanding the decomposition reaction mechanism of chrysanthemic acid: A computational study
Understanding the decomposition reaction mechanism of chrysanthemic acid: A computational study
 
Subject : Chemistry 
Document Language : English 
Abstract : Background: Chrysanthemic acid (CHA) is a major product from the photodecomposition of pyrethrin which is an important class of pesticide compounds.In the following paper, Hybrid density functional theory (DFT) calculations of the potential energy surface (PES) for three possible channels decomposition of chrysanthemic acid (cis-trans isomerization, rearrangement and fragmentation) have been carried at the B3LYP/6-311+G** level of theory. DFT was employed to optimize the geometry parameters of the reactants, transition states, intermediates and products based on detailed potential energy surfaces (PES).Results: Our results suggest that all three pathways of CHA are endothermic. DFT calculations revealed that the activation barriers for cis-trans isomerization are low, leading to a thermodynamically favorable process than other two pathways. We also investigated the solvent effect on the PES using the polarizable continuum model (PCM). In addition, time-dependent density functional theory (TDDFT) calculations showed that these reactions occur in the ground state rather than in an excited state.Conclusion: The rearrangement process seems to be more favorable than the decomposition of CHA to carbene formation. The solvent effect calculations indicated no changes in the shape of the PES with three continua (water, ethanol and cyclohexane), although the solvents tend to stabilize all of the species. 
ISSN : 1752-153X 
Journal Name : Chemistry Central Journal 
Volume : 5 
Issue Number : 1 
Publishing Year : 1432 AH
2011 AD
 
Article Type : Article 
Added Date : Saturday, April 14, 2012 

Researchers

Researcher Name (Arabic)Researcher Name (English)Researcher TypeDr GradeEmail
شعبان علي كامل الربعيElroby, Shabaan Ali KamelResearcherDoctorateskamel@kau.edu.sa
سعدالله قاري عزيزAziz, Saadullah GResearcherDoctoratesaziz@kau.edu.sa

Files

File NameTypeDescription
 32813.pdf pdfAbstract

Back To Researches Page