PHYS 203

Ch. 3

Oscillations

Chapter 3

Chapter Three Oscillations

- Simple Harmonic Motion
- Pendulums, Circular Motion

Simple Harmonic Motion

Simple Harmonic Motion

A particle moving repeatedly back and forth about the origin of an x axis.

One important property of oscillatory motion is its frequency, number of oscillations that are completed each second.

The symbol for frequency is f,
SI unit is the hertz

$$
1 \text { hertz }=1 \mathrm{~Hz}=1 \text { oscillation per second }=1 \mathrm{~s}^{-1}
$$

Simple Harmonic Motion

Related to the frequency is the period T of the motion, which is the time for one complete oscillation

$$
T=\frac{1}{f}
$$

The displacement x of the particle from the origin is given as a function of time by

$$
\begin{array}{r}
x(t)=x_{m} \cos (\omega t+\phi) \\
\omega=\frac{2 \pi}{T}=2 \pi f .
\end{array}
$$

SI unit of angular frequency is the radian per second.

Simple Harmonic Motion

$$
x(t)=x_{m} \cos (\omega t+\phi)
$$

Simple Harmonic Motion

Example 1:

A particle is in simple harmonic motion with period T. At time $t=0$ it is at the equilibrium point. At the times listed below it is at various points in its cycle. Which of them is farthest away from the equilibrium point?

Solution:
(B)
(A) $0.5 T$
(B) 0.7 T
(C) T
(D) $1.4 T$

Simple Harmonic Motion

Example 2:

A particle moves back and forth along the x axis from $x=$ $-x m$ to $x=+x m$, in simple harmonic motion with period T. At time $t=0$ it is at $x=+x m$. When $t=0.75 \mathrm{~T}$:

Solution:

(A)

(A) it is at $x=0$ and is traveling toward $x=+x m$
(B) it is at $x=0$ and is traveling toward $x=-x m$
(C) it is between $x=0$ and $x=+x m$ toward $x=-x m$
(D) it is between $x=0$ and $x=-x m$ toward $x=-x m$

Simple Harmonic Motion

Example 3:

An object attached to one end of a spring makes 20 complete vibrations in 10s. Its period is:

Solution:
(D)
(A) 2 Hz
(B) 0.5 Hz
(C) 2 s
(D) 0.5 s

Simple Harmonic Motion

Example 4:

Referring to Example 3, the frequency of an object is:

Solution:
(A)
(A) 2 Hz
(B) 0.5 Hz
(C) 2 s
(D) 0.5 s

Simple Harmonic Motion

Example 5:

Referring to Example 3, the angular frequency of an object is:

Solution:
(D)
(A) $0.79 \mathrm{rad} / \mathrm{s}$
(B) $2.0 \mathrm{rad} / \mathrm{s}$
(C) $6.3 \mathrm{rad} / \mathrm{s}$
(D) $12.6 \mathrm{rad} / \mathrm{s}$

Simple Harmonic Motion

The Velocity of SHM

$$
v(t)=\frac{d x(t)}{d t}=\frac{d}{d t}\left[x_{m} \cos (\omega t+\phi)\right]
$$

$$
v(t)=-\omega x_{m} \sin (\omega t+\phi)
$$

ωx_{m} is called the velocity amplitude v_{m}.

Simple Harmonic Motion

Example 6:

A particle moves in simple harmonic motion according to x $=2 \cos (50 t)$, where x is in meters and t is in seconds. Its maximum velocity is:
Solution:
(B)
(A) $100 \sin (50 t) \mathrm{m} / \mathrm{s}$
(B) $100 \mathrm{~m} / \mathrm{s}$
(C) $100 \cos (50 t) \mathrm{m} / \mathrm{s}$
(D) $200 \mathrm{~m} / \mathrm{s}$

Simple Harmonic Motion

The Acceleration of SHM

$$
a(t)=\frac{d v(t)}{d t}=\frac{d}{d t}\left[-\omega x_{m} \sin (\omega t+\phi)\right]
$$

$$
a(t)=-\omega^{2} x_{m} \cos (\omega t+\phi)
$$

$\omega^{2} x_{m}$ is called the acceleration amplitude a_{m}

(c)

Simple Harmonic Motion

In SHM, the acceleration a is proportional to the displacement x but opposite in sign, and the two quantities are related by the square of the angular frequency ω.

$$
a(t)=-\omega^{2} x(t)
$$

Simple Harmonic Motion

Example 7:

An oscillatory motion must be simple harmonic if:

Solution:

(D)

(A) the amplitude is small
(B) the potential energy is equal to the kinetic energy
(C) the motion is along the arc of a circle
(D) the acceleration varies sinusoidally with time

Simple Harmonic Motion

Example 8:

The maximum acceleration of a platform that oscillates at amplitude 2.20 cm and frequency 6.60 Hz is:

Solution:

(C)

(A) $19.6 \mathrm{~m} / \mathrm{s}^{2}$
(B) $26.3 \mathrm{~m} / \mathrm{s}^{2}$
(C) $37.8 \mathrm{~m} / \mathrm{s}^{2}$
(D) $46.1 \mathrm{~m} / \mathrm{s}^{2}$

Simple Harmonic Motion

The Force Law for Simple Harmonic Motion

Simple harmonic motion is the motion of a particle when the force acting on it is proportional to the particle's displacement but in the opposite direction.

The angular frequency ω of the simple harmonic motion of the block is related to the spring constant k and the mass m of the block

$$
\omega=\sqrt{\frac{k}{m}}
$$

$$
F=-k x
$$

the period

$$
T=2 \pi \sqrt{\frac{m}{k}}
$$

Simple Harmonic Motion

Example 9:

A block whose mass m is 680 g is fastened to a spring whose spring constant k is $65 \mathrm{~N} / \mathrm{m}$. The block is pulled a distance $x=11 \mathrm{~cm}$ from its equilibrium position at $x=0$ on a frictionless surface and released from rest at $\mathrm{t}=0$. The frequency is:

Solution:

(C)
(A) 3.27 Hz
(B) 2.09 Hz
(C) 1.56 Hz
(D) 0.48 Hz

Simple Harmonic Motion

Example 10:

Referring to Example 9, the period is:
Solution:
(A)
(A) 0.64 s
(B) 1.37 s
(C) 2.90 s
(D) 3.81 s

Simple Harmonic Motion

Example 11:

Referring to Example 9, the amplitude of the oscillation is:

Solution:
(D)
(A) 8 cm
(B) 9 cm
(C) 10 cm
(D) 11 cm

Simple Harmonic Motion

Example 12:

Referring to Example 9, the maximum speed is:

Solution:
(A)
(A) $1.1 \mathrm{~m} / \mathrm{s}$
(B) $2.2 \mathrm{~m} / \mathrm{s}$
(C) $3.3 \mathrm{~m} / \mathrm{s}$
(D) $4.4 \mathrm{~m} / \mathrm{s}$

Simple Harmonic Motion

Example 13:

Referring to Example 9, the maximum acceleration is:

Solution:
(B)
(A) $10 \mathrm{~m} / \mathrm{s}^{2}$
(B) $11 \mathrm{~m} / \mathrm{s}^{2}$
(C) $12 \mathrm{~m} / \mathrm{s}^{2}$
(D) $13 \mathrm{~m} / \mathrm{s}^{2}$

Simple Harmonic Motion

Example 14:

Referring to Example 9, the phase constant for the motion is:

Solution:
(A)
(A) 0 rad
(B) 3.14 rad
(C) 6.28 rad
(D) 9.42 rad

Simple Harmonic Motion

Example 15:

Referring to Example 9, the displacement function $x(t)$ for the spring-block system is:

Solution:
(A) $0.11 \cos (9.8 x)$
(B) $0.11 \cos (9.8 \mathrm{y})$
(C) $0.11 \cos (9.8 \mathrm{t})$
(D) $0.11 \cos (9.8 z)$
(C)

Simple Harmonic Motion

Example 16:

A 0.12 kg body undergoes simple harmonic motion of amplitude 8.5 cm and period of 0.20 s . The magnitude of the maximum force acting on it is

Solution:
(B)
(A) 7.30 N
(B) 10.1 N
(C) 16.3 N
\rightarrow (D $=$ (D) 23.6 N

Simple Harmonic Motion

Example 17:

Referring to Example 16, if the oscillation produced by a spring, the spring constant is:

Solution:
(D)
(A) $205.7 \mathrm{~N} / \mathrm{m}$
(B) $197.8 \mathrm{~N} / \mathrm{m}$
(C) $160.5 \mathrm{~N} / \mathrm{m}$
(D) $118.4 \mathrm{~N} / \mathrm{m}$

Pendulums, Circular Motion

Pendulums

The motion of a simple pendulum swinging through only small angles is approximately SHM.

The period of the pendulum may be written as

$$
T=2 \pi \sqrt{\frac{I}{m g L}}
$$

Pendulums, Circular Motion

where I rotational inertia of the pendulum

$$
\begin{gathered}
I=m L^{2} \\
T=2 \pi \sqrt{\frac{m L^{2}}{m g L}} . \\
T=2 \pi \sqrt{\frac{L}{g}}
\end{gathered}
$$

(simple pendulum,small amplitude).

Pendulums, Circular Motion

Example 18:

A simple pendulum swing about a pivot point at one end, at distance $L_{0}=9.8 \mathrm{~m}$. The period of the oscillation T is:

Solution:
(C)
(A) 2.19 s
(B) 3.46 s
(C) 6.28 s
(D) 9.41 s

