PHYS 203

Ch. 1

Equilibrium and Elasticity

Chapter 1

Chapter One

Equilibrium and Elasticity

- Elasticity

Elasticity

Elasticity

stress produces a strain

$$
\begin{aligned}
& \text { tensile stress } \\
& \text { shearing stress } \\
& \text { hydraulic stress }
\end{aligned}
$$

stress and strain are proportional to each other.

$$
\text { stress }=\text { modulus } \times \text { strain } .
$$

The constant of proportionality is called a modulus of elasticity:

Elasticity

Tension and Compression

$$
\frac{F}{A}=E \frac{\Delta L}{L} .
$$

The stress on the object is defined as F / A

where F is the magnitude of the force applied perpendicularly A is the area

The straindimensionless quantity $\Delta L / L$, the fractional change in a length
E is the modulus for tensile and compressive stresses is called the Young's modulus

Elasticity

Example 1:

One end of a steel rod of radius 9.5 mm and length 81 cm is held. A force of 62 kN applied perpendicularly to the end face. If Young's modulus of steel is $2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$, the stress on the rod is:

Solution:

(B)
(A) $1.4 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$
(B) $2.2 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$
(C) $3.5 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$
(D) $4.7 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$

Elasticity

Example 2:

Referring to Example 1, the elongation of the steel rod is:

Solution:

(C)
(A) 0.33 mm
(B) 0.53 mm
(C) 0.89 mm
(D) 1.02 mm

Elasticity

Example 3:

Referring to Example 1, the strain on the steel rod is:

Solution:

(A)
(A) $1.1 \times 10^{-3} \mathrm{~N} / \mathrm{m}^{2}$
(B) $2.4 \times 10^{-3} \mathrm{~N} / \mathrm{m}^{2}$
(C) $3.5 \times 10^{-3} \mathrm{~N} / \mathrm{m}^{2}$
(D) $4.8 \times 10^{-3} \mathrm{~N} / \mathrm{m}^{2}$

Elasticity

Example 4:

A vertical 4 m long iron rod stretches 1 mm when a mass of 225 kg is hung from its lower end. If Young's modulus of iron is $1.764 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$, the cross-sectional area of the rod is:

Solution:

(B)
(A) $6 \times 10^{5} \mathrm{~m}^{2}$
(B) $5 \times 10^{5} \mathrm{~m}^{2}$
(C) $4 \times 10^{5} \mathrm{~m}^{2}$
(D) $3 \times 10^{5} \mathrm{~m}^{2}$

Elasticity

In a steel test specimen

Some Elastic Properties of Selected Materials of Engineering Interest

	Density ρ $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	Young's Modulus E $\left(10^{9} \mathrm{~N} / \mathrm{m}^{2}\right)$	Ultimate Strength S_{u} $\left(10^{6} \mathrm{~N} / \mathrm{m}^{2}\right)$	Yield Strength S_{y} $\left(10^{6} \mathrm{~N} / \mathrm{m}^{2}\right)$
Material	7860	200	400	250
Steel a	2710	70	110	95
Aluminum $_{\text {Glass }^{\text {Concrete }}{ }^{c}}$	2190	65	50^{b}	-
Wood d	2320	30	40^{b}	-
Bone $^{\text {Polystyrene }}$	525	13	50^{b}	-

Elasticity

Example 5:

In the given graph if s is equal to 300, then Young's modulus is:

Solution:
(C)
(A) $25 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
(B) $50 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
(C) $75 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
(D) $90 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$

Elasticity

Example 6:

Referring to Example 5, the Yield strength for the material is:

Solution:

(D)
(A) $3 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
(B) $3 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$
(C) $3 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$
(D) $3 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$

Elasticity

Shearing

The strain is the dimensionless ratio $\Delta x / L$
The corresponding modulus, which is given the symbol G, is called the shear modulus.

$$
\frac{F}{A}=G \frac{\Delta x}{L} .
$$

Elasticity

Example 7:

A horizontal aluminum rod 4.8 cm in diameter projects 5.3 cm from a wall. A 1200 kg object is suspended from the end of the rod. Neglecting the rod's mass, the shear stress on the rod is:

Solution:

(A)
(A) $6.5021 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$
(B) $4.1899 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$
(C) $3.8500 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$
(D) $2.6870 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$

Elasticity

Example 8:

Referring to Example 7, if the shear modulus of aluminum is $3.0 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$, the vertical deflection of the end of the rod is:

Solution:
(B)
(A) $0.36 \times 10^{-5} \mathrm{~m}$
(B) $1.15 \times 10^{-5} \mathrm{~m}$
(C) $2.67 \times 10^{-5} \mathrm{~m}$
(D) $3.35 \times 10^{-5} \mathrm{~m}$

Elasticity

Hydraulic Stress

The stress is the fluid pressure p on the object, pressure is a force per unit area.

The strain is $\Delta V / V$, where V is the original volume of the specimen and ΔV is the absolute value of the change in volume.

The corresponding modulus, with symbol B, is called the bulk modulus of the material.

$$
p=B \frac{\Delta V}{V}
$$

Elasticity

Example 9:

The Bulk modulus of sea-water is $2.2 \times 10^{9} \mathrm{~Pa}$ and its density is $1.025 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$. If the pressure of a sea-water with mass of $1.025 \times 10^{3} \mathrm{~kg}$ at a depth of 5 km is 5.0×10^{7} Pa , then the change in its volume is:

Solution:

(C)
(A) $0.096 \mathrm{~m}^{3}$
(B) $0.062 \mathrm{~m}^{3}$
(C) $0.023 \mathrm{~m}^{3}$
(D) $0.002 \mathrm{~m}^{3}$

