

PHYS 203

Ch. 1

Equilibrium and Elasticity

Chapter 1

Chapter One **Equilibrium and Elasticity**

Elasticity

2

Elasticity

stress produces a strain

tensile stress shearing stress hydraulic stress

stress and strain are proportional to each other.

 $stress = modulus \times strain.$

3

The constant of proportionality is called a modulus of elasticity

Tension and Compression

$$\frac{F}{A} = E \frac{\Delta L}{L}$$

The stress on the object is defined as F/A

where F is the magnitude of the force applied perpendicularly A is the area

The strain dimensionless quantity $\Delta L/L$, the fractional change in a length

E is the modulus for tensile and compressive stresses is called the **Young's modulus**

Example 1:

One end of a steel rod of radius 9.5 mm and length 81 cm is held. A force of 62 kN applied perpendicularly to the end face. If Young's modulus of steel is 2×10^{11} N/m², the stress on the rod is:

Solution:

```
(A) 1.4 \times 10^8 \text{ N/m}^2

(B) 2.2 \times 10^8 \text{ N/m}^2

(C) 3.5 \times 10^8 \text{ N/m}^2

(D) 4.7 \times 10^8 \text{ N/m}^2
```

(B)

Example 2:

Referring to Example 1, the elongation of the steel rod is:

Solution:

(C)

(A) 0.33 mm
(B) 0.53 mm
(C) 0.89 mm
(D) 1.02 mm

6

Example 3:

Referring to Example 1, the strain on the steel rod is:

Solution:

7

(A**)**

(A) $1.1 \times 10^{-3} \text{ N/m}^2$ (B) $2.4 \times 10^{-3} \text{ N/m}^2$ (C) $3.5 \times 10^{-3} \text{ N/m}^2$ (D) $4.8 \times 10^{-3} \text{ N/m}^2$

Example 4:

A vertical 4 m long iron rod stretches 1 mm when a mass of 225 kg is hung from its lower end. If Young's modulus of iron is 1.764×10^{11} N/m², the cross-sectional area of the rod is:

(B)

Physics Department

Solution:

```
(A) 6 \times 10^5 \text{ m}^2

(B) 5 \times 10^5 \text{ m}^2

(C) 4 \times 10^5 \text{ m}^2

(D) 3 \times 10^5 \text{ m}^2
```

In a steel test specimen

Some Elastic Properties of Selected Materials of Engineering Interest

Material	Density p (kg/m ³)	Young's Modulus E (10 ⁹ N/m ²)	Ultimate Strength S_u (10^6 N/m^2)	Yield Strength S _y (10 ⁶ N/m ²)
Steel ^a	7860	200	400	250
Aluminum	2710	70	110	95
Glass	2190	65	50 ^b	_
Concrete ^c	2320	30	40^{b}	_
Wood ^d	525	13	50 ^b	_
Bone	1900	9^b	170^{b}	_
Polystyrene	1050	3	48	_

Example 5:

In the given graph if s is equal to 300, then Young's modulus is:

Solution:

10

(A) $25 \times 10^9 \text{ N/m}^2$ (B) $50 \times 10^9 \text{ N/m}^2$ (C) $75 \times 10^9 \text{ N/m}^2$ (D) $90 \times 10^9 \text{ N/m}^2$

Example 6:

Referring to Example 5, the Yield strength for the material is:

(D)

Solution:

11

(A) $3 \times 10^5 \text{ N/m}^2$ (B) $3 \times 10^6 \text{ N/m}^2$ (C) $3 \times 10^7 \text{ N/m}^2$ (D) $3 \times 10^8 \text{ N/m}^2$

Shearing

The strain is the dimensionless ratio $\Delta x/L$

The corresponding modulus, which is given the symbol G, is called the **shear modulus**.

$$\frac{F}{A} = G \frac{\Delta x}{L},$$

Example 7:

A horizontal aluminum rod 4.8 cm in diameter projects 5.3 cm from a wall. A 1200 kg object is suspended from the end of the rod. Neglecting the rod's mass, the shear stress on the rod is:

Solution:

13

(A) 6.5021 × 10⁶ N/m² (B) 4.1899 × 10⁶ N/m² (C) 3.8500 × 10⁶ N/m² (D) 2.6870 × 10⁶ N/m²

(A)

Example 8:

Referring to Example 7, if the shear modulus of aluminum is 3.0×10^{10} N/m², the vertical deflection of the end of the rod is:

(B)

Solution:

14

(A) 0.36×10^{-5} m (B) 1.15×10^{-5} m (C) 2.67×10^{-5} m (D) 3.35×10^{-5} m

Hydraulic Stress

The stress is the fluid pressure p on the object, pressure is a force per unit area.

The strain is $\Delta V/V$, where V is the original volume of the specimen and ΔV is the absolute value of the change in volume.

The corresponding modulus, with symbol *B*, is called the **bulk modulus** of the material.

$$p = B \frac{\Delta V}{V}.$$

Example 9:

The Bulk modulus of sea-water is 2.2×10^9 Pa and its density is 1.025×10^3 kg/m³. If the pressure of a sea-water with mass of 1.025×10^3 kg at a depth of 5 km is 5.0×10^7 Pa, then the change in its volume is:

Solution:

(A) 0.096 m³ (B) 0.062 m³ (C) 0.023 m³ (D) 0.002 m³

(C)