PARTICLE ON A SPHERE

* Particle can move anywhere on the surface of a sphere
* motion on a stack of rings with particle able to move between rings

* Acceptable wave function has to be single valued
* \Rightarrow Wave function of particle has to interfere constructively around the "equator" and around the "poles"
* $\Rightarrow 2$ cyclic boundary conditions
* $\Rightarrow 2$ quantum numbers to describe state of system
* Spherical Polar Coordinates $=$ most efficient way to describe position of particle on sphere

* Particle constrained to sphere, $\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$ on the sphere

$$
\nabla^{2} \psi(\theta, \varphi)+\frac{2 m r^{2} E}{\hbar^{2}} \psi(\theta, \varphi)=0
$$

Use separation of variables:

$$
\psi(\theta, \varphi)=\Theta(\theta) \Phi(\varphi)
$$

\star Solve SE in terms of each direction of rotation

* In case of angle $=\varphi$

$$
\Phi_{m_{l}}=\frac{e^{i m_{l} \varphi}}{\sqrt{2 \pi}} \quad, \quad m_{l}= \pm \frac{\sqrt{2 I E}}{\hbar} \quad,\left(m_{l}=0, \pm 1, \pm 2, \ldots\right)
$$

* = Particle on a ring!
* In case of angle $=\theta$
- Solutions are known as associated Legendre polynomials $\Theta_{m_{l}}$

l	m	$\Theta_{l m}$
0	0	$\sqrt{1 / 2}$
1	0	$\sqrt{3 / 2} \cos \theta$
1	± 1	$\sqrt{3 / 4} \sin \theta$
2	0	$\sqrt{5 / 8}\left(3 \cos ^{2} \theta-1\right)$
2	± 1	$\sqrt{15 / 4} \sin \theta \cos \theta$
2	± 2	$\sqrt{15 / 16} \sin ^{2} \theta$

* Acceptable solutions
for a particle \rightarrow wave functions specified by 2 quantum numbers restricted to values:
- $\mathrm{l}=0,1,2, \ldots=$ angular momentum quantum number
- $m_{l}=\mathrm{l}, \mathrm{l}-1, \ldots-\mathrm{l}=$ magnetic quantum number
* Solution $=$ Spherical Harmonics

$$
\begin{aligned}
& Y_{l, m_{l}}(\theta, \varphi)=\frac{e^{i m_{l} \varphi}}{\sqrt{2 \pi}} \Theta_{m_{l}}(\theta) \\
& \begin{array}{lll}
\hline I \quad m_{1} & Y_{1, m_{1}} \\
\hline
\end{array} \\
& 0 \quad 0 \quad\left(\frac{1}{4 \pi}\right)^{3 / 2} \\
& 10\left(\frac{3}{4 \pi}\right)^{1 / 2} \cos \theta \\
& \pm 1 \quad \mp\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta \mathrm{e}^{ \pm 5 \theta} \\
& 20\left(\frac{5}{16 \pi}\right)^{1 / 2}\left(3 \cos ^{2} \theta-1\right) \\
& \pm 1 \quad \mp\left(\frac{15}{8 \pi}\right)^{20} \cos \theta \sin \theta \mathrm{e}^{ \pm 1 \theta} \\
& \pm 2 \quad\left(\frac{15}{32 \pi}\right)^{1 / 2} \sin ^{2} \theta \mathrm{e}^{ \pm 2 \mathrm{i} \phi} \\
& 30\left(\frac{7}{16 \pi}\right)^{1 / 2}\left(5 \cos ^{3} \theta-3 \cos \theta\right) \\
& \pm 1 \quad=\left(\frac{21}{64 \pi}\right)^{1 / 2}\left(5 \cos ^{2} \theta-1\right) \sin \theta \mathrm{e}^{ \pm i \phi} \\
& \pm 2 \quad\left(\frac{105}{32 \pi}\right)^{1 / 2} \sin ^{2} \theta \cos \theta e^{2 \pi 2}, \\
& \pm 3 \quad \mp\left(\frac{35}{64 \pi}\right)^{1 / 2} \sin ^{3} \theta \mathrm{e}^{-3 i 6}
\end{aligned}
$$

* Energy

$$
E_{l}=\frac{h^{2}}{8 \pi^{2} I} l(l+1) \quad(l=0,1,2, \ldots)
$$

- Energy is quantized
- Energy depends on l
- Energy independent of m_{l}
- Degeneracy $=2 l+1$
* If a wave function is complex (has real and imaginary components)
* to plot take linear combinations
* Fundamental principle:
- Any linear combination of degenerate eigen functions is also an eigen function

SOLVING THE HYDROGEN ATOM

凹 The hydrogen atom can be pictured as a proton fixed at the origin and an electron of reduced mass μ rotating around the proton in a sphere with radius r and the potential energy will be the Coulombic potential

$$
V=\frac{e^{2} Z}{\left(4 \pi \varepsilon_{0}\right) r}
$$

\boxtimes The Schrödinger Equation for the Hydrogen Atom is

$$
\begin{gathered}
\nabla^{2} \psi+\frac{8 \pi^{2} \mu}{h^{2}}(E-V) \psi=0 \\
\widehat{\mathrm{H}} \psi=E \psi \\
\equiv\left[-\frac{h^{2}}{8 \pi^{2} \mu} \nabla^{2}-\frac{e^{2} Z}{\left(4 \pi \varepsilon_{0}\right) r}\right] \psi=E \psi
\end{gathered}
$$

Kinetic Energy	Colombic Potential Energy

® Coulombic potential depends on $r($ not θ or φ ）
\boxed{x} Use spherical－polar coordinates
凹 To solve the SE ，use separation of variables

$$
\begin{gathered}
\psi(r, \theta, \varphi)=R(r) \Theta(\theta) \Phi(\varphi) \\
\psi(r, \theta, \varphi)=R(r) Y(\theta, \varphi)
\end{gathered}
$$

Radial

Angular Part
$=$ Solution to particle on sphere
＝Spherical Harmonics

Solutions to the SE in terms of the radial and angular parameters
区 Angular wave functions：same as particle on a sphere
$\mathbf{\otimes}=$ spherical harmonics $\mathrm{Y}_{l, m_{l}}(\theta, \varphi)$
区 Radial wave functions $=R_{n, l}(r)$
囚 $n=1,2,3 \ldots \& l=0,1,2, \ldots n-1 \& m_{l}=l, l-1, \ldots-l$

® H ATOM RADIAL WAVE FUNCTIONS

- Radial wave function $=R_{n, l}=$ how H atom wave function varies with distance of electron from nucleus
- Defined by 2 quantum numbers: $n \& l$

- Wave function passes through zero at a node
- For ψ with $l>0, \psi=0$ at $r=0$
- But NOT radial node since r can't be negative
- \Rightarrow All nodes at nucleus are angular nodes

® H ATOM QUANTUM NUMBERS

- Principle Quantum Number = n
\checkmark Determines the energy:

$$
E_{n}=-\frac{Z^{2} e^{4} \mu}{2 n^{2} \hbar^{2}\left(4 \pi \varepsilon_{0}\right)^{2}}=-\frac{Z^{2} R}{n^{2}}
$$

\checkmark Same as Bohr atom
$\checkmark \quad n=1,2,3 \ldots$
\checkmark Total wave function has $n-1$ nodes
\checkmark Specifies the size of the orbital

- Azimuthal quantum number $=l$

\checkmark Determines the total orbital angular momentum
$\checkmark l$ restricted to values: $l=0,1,2,3, \ldots n-1$
\checkmark Designated by letters: $s, \quad p, d, f, \ldots$
\checkmark Specifies the shape of an orbital
- \quad Magnetic quantum number $=m_{l}$

\checkmark Determines the z component of orbital angular momentum
$\checkmark \mathrm{Z}$ component $=l_{Z}=m_{l} \hbar$
$\checkmark m_{l}$ restricted to values: $m_{l}=0, \pm 1, \pm 2, \ldots, \pm l$
\checkmark Specifies orientation of orbital in space

$2 p_{x}$

$2 p_{y}$

$2 p_{z}$

- \quad Spin quantum number $=m_{s}$
\checkmark Not predicted by this level of theory
\checkmark Specifies the orientation of spin of electron
\checkmark Takes only $+1 / 2$ (up) or $-1 / 2$ (down)

TOTAL ENERGY OF HYDROGEN ATOM

® The Schrödinger equation was solved exactly for the hydrogen atom giving an energy can be calculated from the following equation

$$
E_{n}=-\frac{Z^{2} e^{4} \mu}{2 n^{2} \hbar^{2}\left(4 \pi \varepsilon_{0}\right)^{2}}
$$

囚 Using the atomic units the total energy of the hydrogen atom will be

$$
\begin{gathered}
E_{\text {Total }}=-\frac{Z^{2} e^{4} \mu}{2 n^{2} \hbar^{2}\left(4 \pi \varepsilon_{0}\right)^{2}}=-E_{h} \frac{Z^{2}}{2} \frac{1}{n^{2}} \\
E_{\text {Total }}=-0.5 E_{h}
\end{gathered}
$$

Where

$$
E_{h}(A . U .)=27.211 \mathrm{eV}
$$

is called a Hartree

