EE 251

Basic Electrical
Engineering

Circuits are the heart of all electronic systems. What have been discussed in the previous chapters were the basics of analyzing and later designing circuits to perform specific tasks. However, this book is not intended for electrical engineers to accomplish this task. Instead, we want to show all engineers an overview of the different applications where circuits of different classifications are used. In the coming sections, we give brief and simple conceptual designs that serve specific functions. The circuits shown are called application-specific circuits, and as said very basic and conceptual. Real world circuits are much more complicated, ensure better performance, and involve solving more detailed real problems.

The style in which we present these circuits is as follows:

- Function: a description of the main function of the circuit
- Circuit: the schematic diagram of the circuit
- Utilization: the possible applications where this design is used
- Equations: the simple design equations to modify the design specifications
- Example: a solved example on designing with this circuit

Oscillators

Oscillators or generators are circuits that produce signals with specific waveforms, amplitudes, and frequencies. Figure (1) shows some examples of different waveforms needed in many applications.

Figure (1): Examples of different waveforms

The following circuits produce different waveforms with specific features as described.

EE 251 RTpplication Specifiic Circuils

Square Wave Generator

Function:	generates square wave with certain frequency and amplitude	
Use:	transmitters/receivers, digital communications	
Design Equations:	$f \approx \frac{1}{2.2 R C} \quad \mathrm{~Hz}$	$+V_{C C}$

Example:

A square wave signal is needed with $120 \mathrm{~Hz}, \pm 10 \mathrm{~V}$ peak voltages.

Design:

We assume a capacitor of $0.1 \mu \mathrm{~F}$. The resistors of the circuit will be:

$$
f \approx \frac{1}{2.2 R C} \rightarrow R=\frac{1}{2.2 C f}=37.9 \mathrm{k} \Omega
$$

For the op-amp supplies, use LM741 and supply it with $\pm 12 \mathrm{~V}$ to guarantee $\pm 10 \mathrm{~V}$.

EE 251 Tipplication Specifiic Circuits
 Basic Electrical

Engineering

Triangular Wave Generator

Function:	generates triangular wave at certain frequency and amplitude
Use:	power supplies, induction motor controllers
Design Equations:	$f \approx \frac{1}{2.2 R C} \quad+V_{C C}$

Example:

Design a triangular wave generator with peak voltage of $\pm 10 \mathrm{~V}$ and a frequency of 120 Hz .

Design:

We first design a square wave generator with the required specifications (same frequency and amplitude), which gives $C=0.1 \mu \mathrm{~F}$ and $R=37.9 \mathrm{k} \Omega$.

Then, we need to have $C / 2=0.05 \mu \mathrm{~F}$ capacitor and $10 R=379 \mathrm{k} \Omega$ resistor at the second stage of the circuit.

EE 251 Tipplication Specifiic Circuits

Pulse Generator

Function:	generates digital pulses with specific durations
Use:	servo motor driver, modulation, control circuits
Design Equations:	$\begin{aligned} t_{1} & =\ln 2 \times\left(R_{1}+R_{2}\right) \times C \\ t_{2} & =\ln 2 \times R_{2} \times C \end{aligned}$ The frequency $f=\frac{1}{t_{1}+t_{2}}$ The duty cycle $D=\frac{t_{1}}{t_{1}+t_{2}}$

Example:

Design a circuit that generate pulses of $20 \mu \mathrm{~s}$ ON and $5 \mu \mathrm{~s}$ OFF (or a 40 kHz clock with 80% duty cycle).

Design:

We set: $t_{1}=20 \mu \mathrm{~s}$, and $t_{2}=5 \mu \mathrm{~s}$. Hence,

$$
\begin{aligned}
& R_{1}+R_{2}=\frac{20 \times 10^{-6}}{\ln 2 \times C} \\
& R_{2}=\frac{5 \times 10^{-6}}{\ln 2 \times C}
\end{aligned}
$$

Now we choose a reasonable value for C in the range 10 pF to $10 \mu \mathrm{~F}$, and check that the resistors values are reasonable too $(100 \Omega$ to $100 \mathrm{k} \Omega)$.

Setting C to 10 pF yields $R_{2}=721 \mathrm{k} \Omega$ and $R_{1}=2.16 \mathrm{M} \Omega$, which are not suitable resistor values. Thus we should choose a higher C value. Let $C=1 \mathrm{nF}$, thus:

$$
C=1 \mathrm{nF} \quad R_{2}=7.21 \mathrm{k} \Omega \quad R_{1}=21.6 \mathrm{k} \Omega
$$

EE 251

Basic Electrical
Engineering

TPpplication Speciific Circuilts

Converters

Converters, or sometimes called inverters, are used in many applications. Conversion types include altering between AC and DC power, DC to DC level changes, analog and digital, voltage and current, frequency and voltage, and so on. Books on power electronics cover a wide range of these converters. However, in the coming sections, we will show samples of these converters with basic working designs at comprehension level.

AC-ro-DC Converter

Function:	generates DC power from an AC source
Use:	adopters of most electronic devices (laptops, video games, printers, amplifiers, etc.)
Design Equations:	DC Output: $v_{d c}=V_{p} \frac{n_{2}}{n_{1}}-2 \cdot V_{D}$
Ripples: $\quad r \approx \frac{v_{d c}}{2 \cdot f \cdot C \cdot R_{\text {load }}}$	

EE 251

Basic Electrical
Engineering

Example:

Design a mobile charger of $5 \mathrm{~V}, 4 \mathrm{~W}$ fed from a mains power supply of RMS voltage of 115 V . The ripples in the DC voltage should not exceed 5%.

Design:

From the power rating, we calculate the maximum load current as: $P=I_{L} \times v_{d c}$, and the load current is $I_{L}=800 \mathrm{~mA}$. The diode bridge must be able to handle such current. A good distributor of electronic components is www.digikey.com. Search for bridge rectifiers and filter the selection to ensure a minimum of 800 mA rating (or better 1A), a minimum of 5 V rating or higher.
A possible selection could be:

DIODE SCHOTTKY 1A 20V MBS-1 (MB12S-TPMSDKR-ND)

To find out the forward voltage of the diode we must look at the datasheet of the component. For the item we selected (MB12S), $V_{D}=0.5 \mathrm{~V}$.

The peak AC voltage is:

$$
V_{p}=\sqrt{2} \times V_{r m s}
$$

The transformer ratio can then be found as:

$$
v_{d c}=V_{p} \frac{n_{2}}{n_{1}}-2 \cdot V_{D}
$$

And the transformer ratio is about 27:1. Searching for a transformer with the required specs, we found the part number " 166 J 5 ".

Finally, we choose a capacitor that ensures smooth DC output within the ripples allowed. We need r and R_{L} in the equation:

$$
\begin{gathered}
r=\frac{5}{100} \times 5=0.25 \mathrm{~V} \\
P_{L}=\frac{v_{d c}^{2}}{R_{L}} \rightarrow R_{L}=\frac{25}{4}=6.25 \Omega
\end{gathered}
$$

Thus, $C_{\text {min }}=26.6 \mathrm{mF}$. Since capacitors have high tolerance values (10% to 25%), we increase the value 25% more and search for the nearest value in market. The capacitor value is 35 mF with a voltage rating 5 times the maximum (25V). The item number in Digikey is CGS353U040V5L-ND.

EE 251 Tipplication Specifiic Circuits

DC-ro-DC Converter

Function:	boosts up the DC level of a source
Use:	adopters, multiple DC rating systems
Design Equations:	pulse generator duty cycle: $D=1-\frac{V_{S}}{V_{o}}$
$\qquad L \geq \frac{D(1-D)^{2}}{2 f} R_{L}$	
	$C \geq \frac{V_{o}}{r \cdot f \cdot R_{L}}$
components:	
Note that the diode and the inductor must be	
able to handle a peak current of: $I_{\text {peak }}=\frac{D \cdot V_{S}}{f \cdot L}$	

Example:

Design a 10 W regulator to produce 20 V out of 5 V DC with ripples below 1%.

Design:

The duty cycle of the pulse generator must be:

$$
D=1-\frac{V_{S}}{V_{o}}=1-\frac{5}{20}=75 \%
$$

Let's set the clock frequency to $f=10 \mathrm{kHz}$ as a starting point.
Now since the regulator load will consume 10 W at 20 V , then the worst load will be:

$$
P=\frac{V_{o}^{2}}{R_{L}} \rightarrow R_{L}=40 \Omega
$$

The components can then be calculated:

$$
\begin{aligned}
L \geq \frac{D(1-D)^{2}}{2 f} R_{L} & =94 \mu H \\
C & \geq \frac{V_{o}}{r \cdot f \cdot R_{L}}
\end{aligned}=2500 \mu F
$$

The components are in the acceptable range; otherwise, we should change the clock frequency.

Page 7

EE 251 Tipplication Specifiic Circuils
 Basic Electrical

Engineering

Voltage-ro-Current Converter

Function:	converts voltage signal to current with same waveform
Use:	actuators drivers, current sources
Design Equations:	$I_{o}=\frac{2}{R} \cdot V_{S}$

Current-ro-Voltage Converter

Function:	converts generated currents to voltage signal
Use:	current sensors interface and buffer
Design Equations:	$v_{o}=R \cdot I_{S}$

EE 251

Basic Electrical
Engineering

Application Specific Circuits

Prorection Circuits

Mistakes happen in many occasions while operating electronic devices: plugging a 110 V machine into a 220 V power supply, using weak cord extensions to supply high power machines, or reversing a battery poles while charging a car battery. Electronic devices especially the expensive ones need protection against common mistakes. In this section, we present basic and simple interface protection circuits against high voltage, high currents, and reverse polarity in DC supplies.

Voltage Clipping

Function:	limits the voltage levels to an upper and lower limits
Use:	preventing input channels from over-voltage, electro-static discharge (ESD) protection
Design Equations:	each zener diode has: 1. a forward voltage, $V_{f}($ typically 0.7V) 2. a breakdown voltage, V_{z} such that:
$\qquad$$V_{u}=V_{z}^{+}+V_{f}^{-}$ V_{l}	

Example:

Design a clipping protection circuit to limit the input voltage to -3.2 V to +5.4 V .

Design:

Since we can't know the forward voltage of the other diode before selecting it, we assume 0.7 V and select the two diodes, and later we fine adjust them.

- For the upper level, we need a zener diode with $V_{z}^{+}=5.4-0.7=4.7 \mathrm{~V}$
- For the lower level we need a zener diode with $V_{z}^{-}=3.2-0.7=2.5 \mathrm{~V}$

EE 251 Tipplication Specifiic Circuits

Cuprent Limiters

fuse protection

circuit breaker protection

Function:	limits the supplied current to a certain ampere
Use:	house mains supply, most of auxiliary equipment
Design Equations:	choose the suitable rating

Example:

A 1100 W vacuum cleaner operating at $220 \mathrm{~V} \sim$ volte needs a circuit breaker protection. What is the current rating of the breaker?

Design:

From the power consumption of the machine and the voltage rating, we estimate the maximum current drawn the supply as:

$$
P=I \cdot V \rightarrow I=\frac{1100}{220}=5 A
$$

Choosing an exact 5A circuit breaker might cause a problem of breaking the supply at any change in the voltage from the source. Thus it is recommended to choose a bit higher rating breaker, say 5.5 A to prevent frequent interruptions.

EE 251 Tipplication Specifiic Circuits

Reverse Polarity Prorection

(a) diode protection

(c) relay protection

(b) MOSFET protection

(d) optional indicators

Function:	discontinues power when incorrectly installed batteries
Use:	powering circuits with op amps, transistors, ICs, alternators
Design Equations:components must be able to handle the voltage v_{B}, and the maximum load current:	
\qquadin configurations (a) and (b), a voltage R_{L}	
drop will be introduced, thus the load might nave the full power	
optional indicators can be installed for	
more protection at the front stage	

EE 251
 Basic Electrical
 Rpplication Specific Circuits

Engineering

Tlath Circuits

In many applications, mostly in controlling and processing analog signals, manipulations of signals such as amplifications, additions, subtractions, integrations, and differentiations are required. The following basic building blocks use op-amps as the main active components in the design. Beware that op-amps need to be powered correctly by dual DC supplies, which are not shown in the designs below for simplicity.

(1) Inverting Amplifier	signal amplification with negative gain: $V_{o}=-\frac{R_{f}}{R_{S}} V_{S}$
(2) Non-inverting Amplifier	signal amplification with positive gain: $V_{o}=\left(1+\frac{R_{f}}{R}\right) V_{S}$
(3) Buffer	buffering the source: $\begin{aligned} & V_{o}=V_{S} \\ & R_{i n}=\infty \end{aligned}$
(4) General Mixer	mixing signals with different weights: $V_{o}=\sum_{i=1}^{n} A_{i} v_{p i}-\sum_{i=1}^{m} B_{i} v_{n i}$ where,

EE 251

Basic Electrical

(5) Integrator	Can't Integrate Low Frequencies:
$v_{o}=\left\{\begin{array}{ll}-\frac{R}{R_{s}} & f \leq f_{0} \\ -\frac{1}{R_{s} C} \int & v_{s}(t) d t\end{array} \quad f>f_{0}\right.$	

Example:

Design a mixer that implements $8 v_{a}+6 v_{b}+3 v_{c}-7 v_{1}-v_{2}-5 v_{3}$ and integrate the output signal given that it does not contain frequencies below 10 Hz .

Design:

We have the following positive and negative gains: $A_{1}=8, A_{2}=6, A_{3}=3$, and $B_{1}=7, B_{2}=1$, $B_{3}=5$. From which $C=A-B-1=(8+6+3)-(7+1+5)-1=3 \geq 0$. Let's use $R_{f}=120 \mathrm{k} \Omega$, then we can calculate all the resistors as follows:

$$
\left\{\begin{array}{lll}
R_{a}=15 k \Omega & R_{1}=17.14 k \Omega & R_{x}=\infty \\
R_{b}=20 k \Omega & R_{2}=120 k \Omega & R_{y}=40 k \Omega \\
R_{c}=40 k \Omega & R_{3}=24 k \Omega &
\end{array}\right.
$$

For the integrator, we should have:

$$
f_{0}=\frac{1}{2 \pi R C}=10 \rightarrow R C=0.016
$$

Choosing $C=1 \mu \mathrm{~F}$ we get $R=16 \mathrm{k} \Omega$. We might choose the same resistance for $R_{S}=$ $16 \mathrm{k} \Omega$, which will make the integration constant:

$$
-\frac{1}{R_{S} C} \approx-63
$$

EE 251 RTpplication Specific Circuits
 Basic Electrical

Engineering

Finally, the total design of the integrating mixer will be:

$$
v_{o}=-63 \int\left(8 v_{a}+6 v_{b}+3 v_{c}-7 v_{1}-v_{2}-5 v_{3}\right) d t
$$

EE 251

Basic Electrical
Engineering

Rpplication Specific Circuits

Filters

Analog real signals have certain shapes in the time domain. Human voices can be converted into voltage signals using microphones, which can then be plotted with respect to time. In human voices, we hear different tones; this translates to signals with multiple frequencies. Consider the simple waveform shown in Figure (1).

Figure (1): Waveform decomposition example

The original signal can be decomposed into two fundamental sine waves with different frequencies and certain amplitudes. If you happen to have a filter that is capable of removing the higher frequency tone, then this filter is called a low pass filter meaning it passes only the low frequencies of the signal and blocking the higher ones. Consequently, all signals can be decomposed into multiple fundamental sinusoids, and if you draw the amplitudes of the decomposed signals versus frequency you get the frequency spectrum of the signal as shown in Figure (2):

Figure (2): Frequency spectrum of the previous waveform

The filtering operation is better viewed in the frequency domain rather than time. In general, there are four different types of filters depending on what range of frequencies they pass or stop, see Figure (3):

1. Low Pass Filters: where all the low frequencies from 0 up to certain cut-off frequency f_{0} will be passed
2. High Pass Filters: where all the low frequencies from 0 to f_{0} will be stopped and all other frequencies from f_{0} and up are passed
3. Band Pass Filters: where the frequency range from f_{1} to f_{2} will only be passed
4. Band Stop Filters: where the frequency range from f_{1} to f_{2} will be stopped

$\underset{\text { Basic Electrical }}{\text { EE } 251}$ Tpplication Specifiic Circuilts

Engineering

Figure (3): Types of filters

EE 251 Tipplication Specifiic Circuits

Low Pass Filters

$1^{\text {st }}$ order LPF

$2^{\text {nd }}$ order LPF

Function:	low pass filter
Use:	communications, sensors interfaces
Design	the cutoff frequency of the filter is at:
Equations:	with the filter response:

Example:

Design a $2^{\text {nd }}$ order filter to stop frequencies above 10 kHz .

Design:
We need a $2^{\text {nd }}$ order low pass filter with a cutoff frequency of:

$$
\omega_{0}=2 \pi f_{0}=62,832 \mathrm{rad} / \mathrm{s}
$$

Choosing a capacitor of $\mathrm{C}=1 \mathrm{nF}$ gives:

$$
\frac{1}{R C}=\omega_{0} \rightarrow R \approx 16 \mathrm{k} \Omega
$$

Thus, we need two capacitors each of 1 nF , three resistors each of $16 \mathrm{k} \Omega$, one $32 \mathrm{k} \Omega$ resistor, and an op-amp.

Page 17

EE 251 Ripplication Specific Circuits

Tigh Pass Filters

$1^{\text {st }}$ order HPF

$2^{\text {nd }}$ order HPF

Function:	high pass filter
Use:	communications, DC blocks, offset nulling
Design	the cutoff frequency of the filter is at:
Equations:	$\omega_{0}=\frac{1}{R C}$

EE 251 R̉pplication Specific Circuits

Band Pass Filter

Function:	band pass filter
Use:	communications for channel selection
Design Equations:	the cutoff frequencies and band widths of the filters are:
	passive equations: active equations: $\omega_{0}=\frac{1}{R C \sqrt{\alpha}}$ $\omega_{0}=\frac{1}{R C \sqrt{\alpha}}$ $B W=\frac{2+\alpha}{\alpha R C}$ $B W=\frac{2}{\alpha R C}$ for design, use: for design use: $\alpha \approx \frac{\omega_{0}}{2 \cdot B W-5 \cdot \omega_{0}}$ $\alpha=\frac{4 \cdot \omega_{0}^{2}}{B W^{2}}$ $R C=\frac{1}{\omega_{0} \sqrt{\alpha}}$ $R C=\frac{1}{\omega_{0} \sqrt{\alpha}}$
	with the filter response:

EE 251 TTpplication Specifiic Circuits
 Basic Electrical

Engineering

Example:

Design a band pass filter at 10 kHz center frequency and a bandwidth of 5 kHz .

Design:

We start with the passive design because it is cheaper. We have:

$$
\begin{array}{lll}
\omega_{0} & =2 \pi \cdot f_{0} & =62,832 \\
B W & =2 \pi \cdot 5,000 & =31,416
\end{array}
$$

From the design equations of the passive BPF, we find:

$$
\alpha \approx \frac{\omega_{0}}{2 \cdot B W-5 \cdot \omega_{0}}=-0.25
$$

which is impossible to build. Thus, we must use the active BPF as follows:

$$
\begin{aligned}
& \alpha=\frac{4 \cdot \omega_{0}^{2}}{B W^{2}}=16 \\
& R C=\frac{1}{\omega_{0} \sqrt{\alpha}}=3.98 \times 10^{-6}
\end{aligned}
$$

Choosing $C=1 \mathrm{nF}$ gives $R \approx 4 \mathrm{k} \Omega$, and $\alpha R=64 \mathrm{k} \Omega$.

EE 251 Tipplication Specifiic Circuits

Band Stop Filter

Function:	band stop filter or notch filter
Use:	communications, channel rejection, noise rejection
Design Equations: the same design equations of the 2 wid with the filter response:	

Example:

Design a band stop filter at 10 kHz center frequency and a bandwidth of 5 kHz .

Design:

We design an active band pass filter first, which gives $C=1 \mathrm{nF}$ and $R \approx 4 \mathrm{k} \Omega$, and $\alpha R=64 \mathrm{k} \Omega$. We just need three extra resistors with values of αR and $2 R \approx 8 \mathrm{k} \Omega$ as shown:

Page 21

EE 251
 Basic Electrical
 ITpplication Specific Circuits

Engineering

DC Supplies

Function:	DC sources arrangements
Use:	more current capacity for large power consuming loads, more voltage potential, dual supply requirements in many op amp circuits
Design Equations:	a. $I_{\text {total }}=n \times I_{s}$ b. $v_{\text {total }}=\sum_{i=1}^{n} v_{i}$ Battery Capacity is expressed in Ampere-Hours (AH) in terms of maximum current as: $A H=20 \times I_{\max }$

Example:

Design a $\pm 3 \mathrm{~V}$ dual supply voltage with a current capability of 0.5 A using batteries of 1.5 V with 5 Ah .

Answer:

- Each battery can supply: $I_{\max }=\frac{5}{20}=0.25 \mathrm{~A}$
- We need $\frac{0.5 A}{0.25 A}=2$ parallel batteries to supply 0.5 A
- We need $\frac{3}{1.5}=2$ cascaded batteries to produce 3 V
- We need $2 \times 2=4$ batteries to supply 3 V with 0.5 A current
- We need another 4 batteries for the negative voltage, -3 V

$\underset{\text { Basic Electrical }}{\text { EE } 251}$ Tpplication Specifiic Circuilts

Engineering

References

1. freecircuitdiagram.com
2. www.discovercircuits.com
3. www.allaboutcircuits.com
4. www.ladyada.net
