

Circuits are the heart of all electronic systems. What have been discussed in the previous chapters were the basics of analyzing and later designing circuits to perform specific tasks. However, this book is not intended for electrical engineers to accomplish this task. Instead, we want to show all engineers an overview of the different applications where circuits of different classifications are used. In the coming sections, we give brief and simple conceptual designs that serve specific functions. The circuits shown are called application-specific circuits, and as said very basic and conceptual. Real world circuits are much more complicated, ensure better performance, and involve solving more detailed real problems.

The style in which we present these circuits is as follows:

- **Function**: a description of the main function of the circuit
- **Circuit**: the schematic diagram of the circuit
- **Utilization**: the possible applications where this design is used
- **Equations**: the simple design equations to modify the design specifications
 - **Example**: a solved example on designing with this circuit
 - **Øscillators**

Oscillators or generators are circuits that produce signals with specific waveforms, amplitudes, and frequencies. Figure (1) shows some examples of different waveforms needed in many applications.

Figure (1): Examples of different waveforms

The following circuits produce different waveforms with specific features as described.

Rpplication Specific Circuits

Square Wave Generator

Function:	generates square wave with certain frequency and amplitude
Use:	transmitters/receivers, digital communications
Design Equations:	$f \approx \frac{1}{2.2 RC}$ Hz $+V_{CC}$ $+V_{EE}$

Example:

A square wave signal is needed with 120 Hz, ±10V peak voltages.

Design:

We assume a capacitor of 0.1μ F. The resistors of the circuit will be:

$$f \approx \frac{1}{2.2RC} \rightarrow R = \frac{1}{2.2Cf} = 37.9k\Omega$$

For the op-amp supplies, use LM741 and supply it with $\pm 12V$ to guarantee $\pm 10V$.

Triangular Wave Generator

Function:	generates triangular wave at certain frequency	
	and amplitude	
Use:	power supplies, in	duction motor controllers
Design Equations:	$f \approx \frac{1}{2.2 RC}$	+V _{CC} 1/f

Example:

Design a triangular wave generator with peak voltage of $\pm 10V$ and a frequency of 120 Hz.

Design:

We first design a square wave generator with the required specifications (same frequency and amplitude), which gives $C=0.1\mu$ F and R=37.9k Ω .

Then, we need to have $C/2=0.05\mu$ F capacitor and 10 R=379k Ω resistor at the second stage of the circuit.

Pulse Generator

Function:	generates digital pulses with specific durations		
Use:	servo motor driver, modulation, control circuits		
Design	t_1		
Equations:	$t_1 = \ln 2 \times (R_1 + R_2) \times C \qquad \qquad$		
	$t_2 = \ln 2 \times R_2 \times C$		
	→_←		
	The frequency t_2		
	f_{1} The duty cycle		
	$J = \frac{t_1}{t_1 + t_2} \qquad \qquad D = \frac{t_1}{t_1 - t_2}$		
	$t_1 + t_2$		

Example:

Design a circuit that generate pulses of 20µs ON and 5µs OFF (or a 40 kHz clock with 80% duty cycle).

Design:

We set: t_1 =20µs, and t_2 =5µs. Hence,

$$R_{1} + R_{2} = \frac{20 \times 10^{-6}}{\ln 2 \times C}$$
$$R_{2} = \frac{5 \times 10^{-6}}{\ln 2 \times C}$$

Now we choose a reasonable value for C in the range 10pF to 10μ F, and check that the resistors values are reasonable too (100Ω to $100k\Omega$).

Setting *C* to 10pF yields R_2 =721k Ω and R_1 =2.16M Ω , which are not suitable resistor values. Thus we should choose a higher *C* value. Let *C* = 1nF, thus:

C = 1 n F $R_2 = 7.21 k \Omega$ $R_1 = 21.6 k \Omega$

Converters

Converters, or sometimes called inverters, are used in many applications. Conversion types include altering between AC and DC power, DC to DC level changes, analog and digital, voltage and current, frequency and voltage, and so on. Books on power electronics cover a wide range of these converters. However, in the coming sections, we will show samples of these converters with basic working designs at comprehension level.

Example:

Design a mobile charger of 5V, 4W fed from a mains power supply of RMS voltage of 115V. The ripples in the DC voltage should not exceed 5%.

Design:

From the power rating, we calculate the maximum load current as: $P = I_L \times v_{dc}$, and the load current is $I_L = 800$ mA. The diode bridge must be able to handle such current. A good distributor of electronic components is <u>www.digikey.com</u>. Search for *bridge rectifiers* and filter the selection to ensure a minimum of 800mA rating (or better 1A), a minimum of 5V rating or higher.

A possible selection could be:

DIODE SCHOTTKY 1A 20V MBS-1 (MB12S-TPMSDKR-ND)

To find out the forward voltage of the diode we must look at the datasheet of the component. For the item we selected (MB12S), V_D =0.5V.

The peak AC voltage is:

$$V_p = \sqrt{2} \times V_{rms}$$

The transformer ratio can then be found as:

$$v_{dc} = V_p \frac{n_2}{n_1} - 2 \cdot V_D$$

And the transformer ratio is about 27:1. Searching for a transformer with the required specs, we found the part number "166J5".

Finally, we choose a capacitor that ensures smooth DC output within the ripples allowed. We need r and R_L in the equation:

$$r = \frac{5}{100} \times 5 = 0.25V$$
$$P_L = \frac{v_{dc}^2}{R_I} \rightarrow R_L = \frac{25}{4} = 6.25\Omega$$

Thus, $C_{min} = 26.6$ mF. Since capacitors have high tolerance values (10% to 25%), we increase the value 25% more and search for the nearest value in market. The capacitor value is 35mF with a voltage rating 5 times the maximum (25V). The item number in Digikey is CGS353U040V5L-ND.

DC-to-DC Converter

Function:	boosts up the DC level of a source
Use:	adopters, multiple DC rating systems
Design Equations:	pulse generator duty cycle: $D = 1 - \frac{V_s}{V_o}$
	$L \geq \frac{D(1-D)^2}{2f} R_L$
	components: $C \geq \frac{V_o}{r \cdot f \cdot R_L}$
	Note that the diode and the inductor must be
	able to handle a peak current of: $I_{peak} = \frac{D \cdot V_s}{f \cdot L}$

Example:

Design a 10W regulator to produce 20V out of 5V DC with ripples below 1%. **Design:**

The duty cycle of the pulse generator must be:

$$D = 1 - \frac{V_s}{V_o} = 1 - \frac{5}{20} = 75\%$$

Let's set the clock frequency to f = 10 kHz as a starting point.

Now since the regulator load will consume 10W at 20V, then the worst load will be:

$$P = \frac{V_o^2}{R_L} \to R_L = 40\Omega$$

The components can then be calculated:

$$L \geq \frac{D(1-D)^2}{2f} R_L = 94\mu H$$
$$C \geq \frac{V_o}{r \cdot f \cdot R_L} = 2500\mu F$$

The components are in the acceptable range; otherwise, we should change the clock frequency.

Voltage-to-Current Converter

Function:	converts voltage signal to current with same
	wavelorm
Use:	actuators drivers, current sources
Design	$L = \frac{2}{V}$
Equations:	$I_o - \overline{R} \cdot V_S$

Current-to-Voltage Converter

Function:	converts generated currents to voltage signal
Use:	current sensors interface and buffer
Design	$v_o = R \cdot I_S$
Equations:	

Protection Circuits

Mistakes happen in many occasions while operating electronic devices: plugging a 110V machine into a 220V power supply, using weak cord extensions to supply high power machines, or reversing a battery poles while charging a car battery. Electronic devices especially the expensive ones need protection against common mistakes. In this section, we present basic and simple interface protection circuits against high voltage, high currents, and reverse polarity in DC supplies.

Example:

Design a clipping protection circuit to limit the input voltage to -3.2V to +5.4V.

Design:

Since we can't know the forward voltage of the other diode before selecting it, we assume 0.7V and select the two diodes, and later we fine adjust them.

- For the upper level, we need a zener diode with $V_z^+ = 5.4 0.7 = 4.7V$
- For the lower level we need a zener diode with $V_z^- = 3.2 0.7 = 2.5V$

Page 9

Current Limiters

fuse protection

circuit breaker protection

Function:	limits the supplied current to a certain ampere					
Use:	house equipm	mains 1ent	supply,	most	of	auxiliary
Design	choose	the suita	ble rating			
Equations:						

Example:

A 1100W vacuum cleaner operating at 220V~ volte needs a circuit breaker protection. What is the current rating of the breaker?

Design:

From the power consumption of the machine and the voltage rating, we estimate the maximum current drawn the supply as:

$$P = I \cdot V \longrightarrow I = \frac{1100}{220} = 5A$$

Choosing an exact 5A circuit breaker might cause a problem of breaking the supply at any change in the voltage from the source. Thus it is recommended to choose a bit higher rating breaker, say 5.5A to prevent frequent interruptions.

Rpplication Specific Circuits

Basic Electrical Engineering

EE 251

Math Circuits

In many applications, mostly in controlling and processing analog signals, manipulations of signals such as amplifications, additions, subtractions, integrations, and differentiations are required. The following basic building blocks use op-amps as the main active components in the design. Beware that op-amps need to be powered correctly by dual DC supplies, which are not shown in the designs below for simplicity.

(1) Inverting Amplifier	
	signal amplification with negative
	gain.
P	gant.
	$V = \frac{R_f}{V}$
	$V_o = -\frac{1}{R}V_S$
	κ_s
(2) Non-inverting Amplifier	signal amplification with positive
R_{f}	signal amplification with positive
	gain:
	(R_{c})
	$V_{c} = 1 + \frac{-r_{f}}{r_{s}} V_{s}$
$\sim V_o$	$(R)^{3}$
V_s +	
(3) Buffer	buffering the source:
	V - V
	$\mathbf{v}_o = \mathbf{v}_S$
	$R_{\cdot} = \infty$
(4) Conoral Mixor	mixing signals with different
(4) General Mixer	weights:
R_{nm}	n m
· nm · ·	$V_o = \sum A_i v_{pi} - \sum B_i v_{ni}$
	i=1 $i=1$
R_{n2}	
	where
	K K
	$A - \frac{K_f}{R} - \frac{K_f}{R}$
\leq^{R_y} \forall -	$A_i = \frac{K_f}{R_i}, B_i = \frac{K_f}{R_i}$
$P_{p} \stackrel{\leq}{=} \stackrel{\sim}{\longrightarrow} V_{o}$	$A_i = \frac{K_f}{R_{pi}}, B_i = \frac{K_f}{R_{ni}}$
	$A_{i} = \frac{R_{f}}{R_{pi}}, B_{i} = \frac{R_{f}}{R_{ni}}$ $A = \sum A_{i}, B = \sum B_{i}$
$v_{pn} \xrightarrow{R_{pn}} + V_{o}$	$A_{i} = \frac{K_{f}}{R_{pi}}, B_{i} = \frac{K_{f}}{R_{ni}}$ $A = \sum_{i} A_{i}, B = \sum_{i} B_{i}$ $C = A - B - 1$
v_{pn}	$A_{i} = \frac{K_{f}}{R_{pi}}, B_{i} = \frac{K_{f}}{R_{ni}}$ $A = \sum A_{i}, B = \sum B_{i}$ $C = A - B - 1$
$v_{pn} \xrightarrow{R_{pn}} + V_{o}$	$A_{i} = \frac{K_{f}}{R_{pi}}, B_{i} = \frac{K_{f}}{R_{ni}}$ $A = \sum A_{i}, B = \sum B_{i}$ $C = A - B - 1$
$v_{pn} \xrightarrow{R_{pn}} v_{pn} \xrightarrow{R_{pn}} v_{p$	$A_{i} = \frac{R_{f}}{R_{pi}}, B_{i} = \frac{R_{f}}{R_{ni}}$ $A = \sum A_{i}, B = \sum B_{i}$ $C = A - B - 1$ R_{f}
$v_{pn} \xrightarrow{R_{pn}} v_{pn} \xrightarrow{R_{pn}} v_{p$	$A_{i} = \frac{R_{f}}{R_{pi}}, B_{i} = \frac{R_{f}}{R_{ni}}$ $A = \sum A_{i}, B = \sum B_{i}$ $C = A - B - 1$ $\left\{ C \ge 0 R_{x} = \infty \qquad R_{y} = \frac{R_{f}}{2} \right\}$
$v_{pn} \xrightarrow{R_{pn}} v_{pn} \xrightarrow{R_{pn}} v_{p$	$A_{i} = \frac{R_{f}}{R_{pi}}, B_{i} = \frac{R_{f}}{R_{ni}}$ $A = \sum A_{i}, B = \sum B_{i}$ $C = A - B - 1$ $\begin{cases} C \ge 0 R_{x} = \infty \qquad R_{y} = \frac{R_{f}}{C} \end{cases}$
$V_{pn} \xrightarrow{R_{pn}} V_{o}$ $V_{pn} \xrightarrow{R_{pn}} V_{o}$ $V_{p1} \xrightarrow{R_{p1}} V_{p1}$	$A_{i} = \frac{R_{f}}{R_{pi}}, B_{i} = \frac{R_{f}}{R_{ni}}$ $A = \sum A_{i}, B = \sum B_{i}$ $C = A - B - 1$ $\begin{cases} C \ge 0 R_{x} = \infty \qquad R_{y} = \frac{R_{f}}{C} \\ C \le 0 R_{z} = \frac{R_{f}}{C} \end{cases}$
$V_{pn} \xrightarrow{R_{pn}} V_{o}$ $V_{pn} \xrightarrow{R_{pn}} V_{o}$ $V_{p2} \xrightarrow{R_{p1}} V_{p1} \xrightarrow{R_{p1}} R_{x}$	$A_{i} = \frac{R_{f}}{R_{pi}}, B_{i} = \frac{R_{f}}{R_{ni}}$ $A = \sum A_{i}, B = \sum B_{i}$ $C = A - B - 1$ $\begin{cases} C \ge 0 R_{x} = \infty \qquad R_{y} = \frac{R_{f}}{C}$ $C < 0 R_{x} = -\frac{R_{f}}{C} \qquad R_{y} = \infty \end{cases}$

Rpplication Specific Circuits

Example:

Design a mixer that implements $8v_a + 6v_b + 3v_c - 7v_1 - v_2 - 5v_3$ and integrate the output signal given that it does not contain frequencies below 10 Hz.

Design:

We have the following positive and negative gains: $A_1=8$, $A_2=6$, $A_3=3$, and $B_1=7$, $B_2=1$, $B_3=5$. From which $C = A-B-1 = (8+6+3)-(7+1+5)-1 = 3 \ge 0$. Let's use $R_f = 120k\Omega$, then we can calculate all the resistors as follows:

$$\begin{cases} R_a = 15k\Omega & R_1 = 17.14k\Omega & R_x = \infty \\ R_b = 20k\Omega & R_2 = 120k\Omega & R_y = 40k\Omega \\ R_c = 40k\Omega & R_3 = 24k\Omega \end{cases}$$

For the integrator, we should have:

$$f_0 = \frac{1}{2\pi RC} = 10 \rightarrow RC = 0.016$$

Choosing $C=1\mu F$ we get $R=16k\Omega$. We might choose the same resistance for $R_S = 16k\Omega$, which will make the integration constant:

$$-\frac{1}{R_sC}\approx-63$$

Finally, the total design of the integrating mixer will be:

$$v_o = -63 \int (8v_a + 6v_b + 3v_c - 7v_1 - v_2 - 5v_3) dt$$

Filters

Analog real signals have certain shapes in the time domain. Human voices can be converted into voltage signals using microphones, which can then be plotted with respect to time. In human voices, we hear different tones; this translates to signals with multiple frequencies. Consider the simple waveform shown in Figure (1).

Figure (1): Waveform decomposition example

The original signal can be *decomposed* into two fundamental sine waves with different frequencies and certain amplitudes. If you happen to have a *filter* that is capable of removing the higher frequency tone, then this filter is called a *low pass filter* meaning it passes only the low frequencies of the signal and blocking the higher ones. Consequently, all signals can be decomposed into multiple fundamental sinusoids, and if you draw the amplitudes of the decomposed signals versus frequency you get the *frequency spectrum* of the signal as shown in Figure (2):

Figure (2): Frequency spectrum of the previous waveform

The filtering operation is better viewed in the frequency domain rather than time. In general, there are four different types of filters depending on what range of frequencies they pass or stop, see Figure (3):

- 1. **Low Pass Filters**: where all the low frequencies from 0 up to certain cut-off frequency f_0 will be passed
- 2. **High Pass Filters**: where all the low frequencies from 0 to f_0 will be stopped and all other frequencies from f_0 and up are passed
- 3. **Band Pass Filters**: where the frequency range from f_1 to f_2 will only be passed
- 4. **Band Stop Filters**: where the frequency range from f_1 to f_2 will be stopped

Page 15

Figure (3): Types of filters

Low Pass Filters

Example:

Design a 2nd order filter to stop frequencies above 10 kHz.

Design:

We need a 2nd order low pass filter with a cutoff frequency of: $\omega_0 = 2\pi f_0 = 62,832 \text{ rad/s}$

Choosing a capacitor of C=1nF gives:

$$\frac{1}{RC} = \omega_0 \to R \approx 16 \mathrm{k}\Omega$$

Thus, we need two capacitors each of 1nF, three resistors each of $16k\Omega$, one $32k\Omega$ resistor, and an op-amp.

Figh Pass Filters

1st order HPF

2nd order HPF

Band Pass Filter

Function:	band pass filter		
Use:	communications for channel selection		
Design	the cutoff frequencies and band widths of the		
Equations:	filters are:		
	passive equations:	active equations:	
	$\omega_0 = \frac{1}{RC\sqrt{\alpha}}$	$\omega_0 = \frac{1}{RC\sqrt{\alpha}}$	
	$BW = \frac{2 + \alpha}{\alpha RC}$	$BW = \frac{2}{\alpha RC}$	
	for design, use:	for design use:	
	$\alpha \approx \frac{\omega_0}{2 \cdot BW - 5 \cdot \omega_0}$	$\alpha = \frac{4 \cdot \omega_0^2}{BW^2}$	
	$RC = \frac{1}{\omega_0 \sqrt{\alpha}}$	$RC = \frac{1}{\omega_0 \sqrt{\alpha}}$	
	with the filter response:		
	0.71		
		BW	

Example:

Design a band pass filter at 10kHz center frequency and a bandwidth of 5kHz.

Design:

We start with the passive design because it is cheaper. We have:

$$\omega_0 = 2\pi \cdot f_0 = 62,832$$

BW = $2\pi \cdot 5,000 = 31,416$

From the design equations of the passive BPF, we find:

$$\alpha \approx \frac{\omega_0}{2 \cdot BW - 5 \cdot \omega_0} = -0.25$$

which is impossible to build. Thus, we must use the active BPF as follows:

$$\alpha \approx \frac{4 \cdot \omega_0^2}{BW^2} = 16$$

RC = $\frac{1}{\omega_0 \sqrt{\alpha}} = 3.98 \times 10^{-6}$

Choosing *C*=1nF gives $R \approx 4k\Omega$, and $\alpha R = 64k\Omega$.

Band Stop Filter

Function:	band stop filter or notch filter
Use:	communications, channel rejection, noise rejection
Design	the same design equations of the 2 nd order BPF
Equations:	with the filter response:
	0.71 BW

Example:

Design a band stop filter at 10kHz center frequency and a bandwidth of 5kHz.

Design:

We design an active band pass filter first, which gives C=1nF and $R\approx 4$ k Ω , and $\alpha R=64$ k Ω . We just need three extra resistors with values of αR and $2R\approx 8$ k Ω as shown:

EE 251 Course Notes

Rpplication Specific Circuits

DC Supplies

Function:	DC sources arrangements	
Use:	more current capacity for large power consuming loads,	
	more voltage potential, dual supply requirements in many op	
	amp circuits	
Design Equations:	a. $I_{total} = n \times I_s$	
	b. $v_{iotal} = \sum_{i=1}^{n} v_i$	
	Battery Capacity is expressed in Ampere-Hours (AH) in terms	
	of maximum current as: $AH = 20 \times I_{max}$	

Example:

Design a ±3V dual supply voltage with a current capability of 0.5A using batteries of 1.5V with 5Ah.

Answer:

- Each battery can supply: $I_{\text{max}} = \frac{5}{20} = 0.25A$
- We need $\frac{0.5A}{0.25A} = 2$ parallel batteries to supply 0.5A
- We need $\frac{3}{1.5} = 2$ cascaded batteries to produce 3V
- We need $2 \times 2 = 4$ batteries to supply 3V with 0.5A current
- We need another 4 batteries for the negative voltage, -3V

References

- 1. freecircuitdiagram.com
- 2. www.discovercircuits.com
- 3. www.allaboutcircuits.com
- 4. www.ladyada.net