## Circuit Analysis

Section 04


## Internal Resistance

- If you short a 1.5 V battery, how much current will pass?



## Overloading



## Question

- What is the total current drawn from the source?





## Multiple Loads



## Multiple Loads



$$
I_{2}=I_{4} \frac{R_{3}}{R_{2}+R_{3}} \quad I_{3}=I_{4} \frac{R_{2}}{R_{2}+R_{3}}
$$

## Current Divider



$$
\begin{aligned}
& R_{p}=R_{1} / / R_{2} / / \cdots / / R_{n} \\
& I_{k}=I_{T} \frac{R_{p}}{R_{k}}
\end{aligned}
$$

## Process Check

- Calculate all currents in the circuit..
- What is your plan?!



## Aultiple Sources

- What if more than one source in the circuit?
- How to solve for all currents?



## Nodes and Loops

- A Node
- a point in a circuit where 3 or more elements meet



## Nodes and Loops

- How many nodes in the circuits?





## Vottage Drop

- A current passing through a load generates a voltage drop

$$
\begin{aligned}
& \xrightarrow[+]{i}{\underset{v}{-}}_{R}^{W_{-}} \quad v=i \cdot R \\
& \xrightarrow[+v_{-}-]{i} \quad v=i \cdot \mathrm{Z}
\end{aligned}
$$

## KVL and KCL

- (nodes, loops, planner circuit, voltage drop) then what?
- To solve for all currents and volts in a circuit:
- KVL: Kirchhoff's Voltage Law
- the algebraic sum of voltages in a loop is zero
- KCL: Kirchhoff's Current Law
- the algebraic sum of currents into a node is zero


## Circuit Analysis

1. count nodes minus one (possible ground)
2. mark a current for each branch

- name and direction

3. write KCL equations for each node
4. count the loops
5. write the KVL equations for each loop
6. solve for all unknowns

## Example



Example


$$
\begin{aligned}
& \text { KCL: } \quad I_{1}=I_{2}+I_{3} \\
& K V L: \begin{array}{ll}
-1.5+6 I_{1}+5 I_{3} & =0 \\
-5 I_{3}+4 I_{2}+12 I_{2} & =0
\end{array}
\end{aligned}
$$

## Example



8 branches $\rightarrow 8$ currents $I_{1} . . I_{8} \rightarrow 8$ equations

$$
\begin{array}{ll}
4 \text { nodes } & \rightarrow 4 \text { eqs } \\
4 \text { loops } & \rightarrow 4 \text { eqs }
\end{array}
$$



