Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Amino-4-phenyl-5,6-dihydrobenzo-[h]quinoline-3-carbonitrile-3-amino-1-phenyl-9,10-dihydrophenanthrene-2,4dicarbonitrile (5/3)

Abdullah M. Asiri, ${ }^{\text {a,b }}$ Abdulrahman O. AI-Youbi, ${ }^{\text {a }}$
Hassan M. Faidallah ${ }^{\mathrm{a}}$ and Seik Weng $\mathbf{N g}^{\mathrm{c}, \mathrm{a}_{*}}$

${ }^{\text {a }}$ Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, ${ }^{\mathbf{b}}$ Center of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and ${ }^{\text {c }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
Correspondence e-mail: seikweng@um.edu.my

Received 11 September 2011; accepted 3 October 2011

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; disorder in main residue; R factor $=0.040 ; w R$ factor $=0.119$; data-to-parameter ratio $=7.5$.

The asymmetric unit of the 5:3 title co-crystal of 2 -amino-4-phenyl-5,6-dihydrobenzo $[h]$ quinoline-3-carbonitrile and 3-amino-1-phenyl-9,10-dihydrophenanthrene-2,4-dicarbonitrile, $0.625 \mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3} .0 .375 \mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{3}$, has the atoms of the fused-ring system and those of the amino, cyano and phenyl substitutents overlapped. The fused-ring system is buckled owing to the ethylene linkage in the central ring, the two flanking aromatic rings being twisted by 20.1 (1) ${ }^{\circ}$. This ethylene portion is disordered over two positions in a 1:1 ratio. The phenyl ring is twisted by 69.5 (1) ${ }^{\circ}$ relative to the amino- and cyano-bearing aromatic ring. In the crystal, two molecules are linked by an $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond, generating a a helical chain along [010].

Related literature

For the synthesis, see: Aly et al. (1991); Paul et al. (1998). For related structures, see: Asiri et al. (2011a,b).

Experimental

Crystal data
$0.625 \mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3} \cdot 0.375 \mathrm{C}_{22} \mathrm{H}_{15} \mathrm{~N}_{3}$
$M_{r}=306.36$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.9611$ (2) \AA
$V=1535.47(6) \AA^{3}$
$\mathrm{Cu} K \alpha$ radiation
$b=12.6093$ (2) \AA
$c=17.4933$ (3) A
$\mu=0.62 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.30 \times 0.20 \times 0.02 \mathrm{~mm}$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) $T_{\text {min }}=0.835, T_{\text {max }}=0.988$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.119$
$S=1.05$
1794 reflections
240 parameters
24 restraints

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.19 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.23$ e \AA^{-3}

6293 measured reflections 1794 independent reflections 1707 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.018$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 1 \cdots \mathrm{~N} 3^{\mathrm{i}}$	$0.88(1)$	$2.37(2)$	$3.175(2)$	$152(3)$

Symmetry code: (i) $-x+2, y+\frac{1}{2},-z+\frac{5}{2}$.
Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank King Abdulaziz University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2145).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Aly, A. S., El-Ezabawy, S. R. \& Abdel-Fattah, A. M. (1991). Egypt. J. Pharm. Sci. 32, 827-834.
Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. \& Tiekink, E. R. T. (2011a). Acta Cryst. E67, o2438.
Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. \& Tiekink, E. R. T. (2011b). Acta Cryst. E67, o2449.
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Paul, S., Gupta, R. \& Loupy, A. (1998). J. Chem. Res. (S), pp. 330-331.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

