Acta Crystallographica Section E

Structure Reports
Online
ISSN 1600-5368

(2E)-3-(3,4-Dimethoxyphenyl)-1-(2,5-dimethylthiophen-3-yl)prop-2-en-1-one

Abdullah M. Asiri, ${ }^{\text {a,b }}$ Salman A. Khan ${ }^{\text {b }}$ and M. Nawaz Tahir ${ }^{\text {c* }}$

${ }^{\text {a }}$ The Center of Excellence for Advanced Materials Research, King Abdul Aziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, ${ }^{\text {b }}$ Department of Chemistry, Faculty of Science, King Abdul Aziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, and ${ }^{\mathbf{c}}$ Department of Physics, University of Sargodha, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 18 July 2010; accepted 22 July 2010

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.036 ; w R$ factor $=0.106 ;$ data-to-parameter ratio $=14.6$.

The molecule of the title compound, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}$, is essentially planar: the phenyl and thiophene rings form a dihedral angle of $2.79(10)^{\circ}$ and they are inclined to the central propenone unit by $6.20(15)$ and $4.78(15)^{\circ}$, respectively. In the crystal, molecules are connected into dimers via pairs of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, generating $R_{2}^{2}(14)$ motifs. $\pi-\pi$ stacking interactions between the thiophene rings also occur, with a centroid-centroid distance of 3.8062 (12) \AA.

Related literature

For background to chalcones, their activity and applications, see: Bandgar et al. (2010); Deng et al. (2007); Liu et al. (2003); Verma et al. (2007). For graph-set notation, see: Bernstein et al. (1995).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S} \\
& M_{r}=302.37 \\
& \text { Monoclinic, } P 2_{\downarrow} / n \\
& a=9.1821(6) \mathrm{A}
\end{aligned}
$$

$Z=4$ $T=296 \mathrm{~K}$
Mo K α radiation
$\mu=0.22 \mathrm{~mm}^{-1}$

Data collection

Bruker Kappa APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.868, T_{\text {max }}=0.965$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036 \quad 191$ parameters
$w R\left(F^{2}\right)=0.106$
$S=1.07$
2791 reflections
$0.30 \times 0.24 \times 0.22 \mathrm{~mm}$

11371 measured reflections 2791 independent reflections 2182 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.025$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.41	$3.175(2)$	139

Symmetry code: (i) $-x+1,-y,-z$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors would like to thank the Chemistry Department, King Abdul Aziz University, Jeddah, Saudi Arabia for providing research facilities and for financial support of this work via grant No. 3-045/430.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2297).

References

Bandgar, B. P., Patil, S. A., Korbad, B. L., Biradar, S. C., Nile, S. N. \& Khobragade, C. N. (2010). Eur. J. Med. Chem. 45, 3223-3227.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Deng, J., Sanchez, T., Al-Mawsawi, L. Q., Dayam, R., Yunes, R. A., Garofalo, A., Bolger, M. B. \& Neamati, N. (2007). Bioorg. Med. Chem. 15, 4985-5002. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Liu, M., Wilairat, P., Croft, S. L., Tan, A. L. C. \& Go, M. (2003). Bioorg. Med. Chem. 11, 2729-2738.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Verma, A. K., Koul, S., Pannu, A. P. S. \& Razdan, T. K. (2007). Tetrahedron, 63, 8715-8722.

