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Abstract
This work proposes a new approach by integrating statistical, machine learning, and multi-criteria decision analysis, includ-
ing artificial neural network (ANN), logistic regression (LR), frequency ratio (FR), and analytical hierarchy process (AHP). 
Dependent (flood inventory) and independent variables (flood causative factors) were prepared using remote sensing data and 
the Mike-11 hydrological model and secondary data from different sources. The flood inventory map was randomly divided 
into training and testing datasets, where 334 flood locations (70%) were used for training and the remaining 141 locations 
(30%) were employed for testing. Using the area under the receiver operating curve (AUROC), predictive power of the model 
was tested. The results revealed that LR model had the highest success rate (81.60%) and prediction rate (86.80%), among 
others. Furthermore, different combinations of the models were evaluated for flood susceptibility mapping and the best 
combination (11C) was used for generating a new flood hazard map for Bangladesh. The performance of the 11C integrated 
models was also evaluated using the AUROC and found that integrated LR-FR model had the highest predictive power with 
an AUROC value of 88.10%. This study offers a new opportunity to the relevant authority for planning and designing flood 
control measures.
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1 Introduction

Bangladesh is one of the most disaster-prone countries in 
the world. Flat topography, shallow riverbed, severe mon-
soonal rainfall, and huge discharge of sediments are major 
factors responsible for floods in Bangladesh (Hossain 2015; 

Rahman et al. 2007; Sinha 2007). Therefore, identifying 
areas prone to floods is very important to reduce the loss 
of lives and properties. The flood event of 2017 (includ-
ing floods in 1954, 1955, 1974, 1987, 1988, 1995, 1998, 
2004, 2007, and 2014) caused enormous damage to prop-
erty and considerable loss of lives. The heavy rainfall from 
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upper-basin (upper and lower Brahmaputra, Kyaichinang, 
Barak, and so on) and lower-basin (the Ganges–Brahma-
putra–Meghna basin) was accountable for severe flood-
ing in Bangladesh in 2017. Because it turns into runoffs, 
due to the rough terrain and the vegetation situation in the 
area and such runoffs soon flow as floodwater. More than 
30% areas were affected by the flood in 2017 (Uddin et al. 
2019). It disrupted daily life, causing at least 134 deaths and 
nearly affected six million people across the country (Uddin 
et al. 2019). Cumulative discharge in the Brahmaputra and 
the Jamuna rivers within the country was increasing due 
to excessive rainfall in China, Nepal, and India, and as a 
result, water could not be drained out properly into the Bay 
of Bengal as reported by Bangladesh Water Development 
Board (BWDB).

Flood susceptibility mapping can be defined as a quan-
titative or qualitative assessment of the classification, area, 
and spatial distribution of flood, which exists or potentially 
may occur in an area. Therefore, flood susceptibility map-
ping can help policymakers and relevant authorities to create 
emergency plans. It was stated that the occurrence of flood 
hazards cannot be stopped, but damages from flood could be 
avoided or substantially reduced if flood-affected areas were 
identified accurately (Sahoo and Sreeja 2015). Therefore, 
flood susceptibility assessment is very crucial for disasters 
alleviation. A broad range of model has been suggested by 
researchers to assess flood hazards. Most of the recent mod-
els were mainly focused on hydrological models, hydrody-
namic models, multi-criteria decision analysis (MCDA), 
statistical models (SM), and machine learning (ML) tech-
niques incorporated into geographical information system 
(GIS) (Danumah et al. 2016; de Brito and Evers 2016; Elsafi 
2014; Fernández and Lutz 2010; Lee et al. 2012; Luu et al. 
2018; Rahmati et al. 2016c; Rao 2017; Shafapour Tehrany 
et al. 2017; Tehrany et al. 2014a; Yang et al. 2014). GIS and 
remote sensing are also important tools, which have been 
used extensively for hazard assessment (Ashley et al. 2014; 
Barua et al. 2016; Fernández and Lutz 2010; Islam and Sado 
2000a; Kia et al. 2012; Luu et al. 2018; Shafapour Tehrany 
et al. 2017; Tehrany et al. 2014b). Studies have revealed 
that MCDA models are better for flood assessment. AHP is 
a popular model in the field of MCDA, because it can solve 
complex decision problem without any data (Danumah et al. 
2016; Fernández and Lutz 2010; Luu et al. 2018). Besides, 
the most popular machine learning and statistical models in 
natural hazards analysis are artificial neural networks (ANN) 
(Elsafi 2014; Kia et al. 2012), logistic regression (LR) (Ara-
bameri et al. 2018; Hong et al. 2015; Shafapour Tehrany 
et al. 2017; Tehrany et al. 2014a), frequency ratio (FR) 
(Pradhan and Lee 2010; Samanta et al. 2018b; Tehrany et al. 
2019), weight-of-evidence (WoE) (Shafapour Tehrany et al. 
2017; Tehrany et al. 2014b), and support vector machine 
(SVM) (Chen et al. 2018; Hong et al. 2015; Tehrany et al. 

2015b). These models have perfect and consistent predic-
tion capability for flood hazard occurrences (Bui et al. 2018; 
Chapi et al. 2017; Tehrany et al. 2014a), while hydrological 
and hydrodynamic models have some limitations, including 
time-consuming, requires careful and accurate calibration to 
yield accurate estimates of flood affected areas (Asare-Kyei 
et al. 2015; Fenicia et al. 2014).

Although many researchers have conducted flood studies 
in various locations worldwide (Chapi et al. 2017; Dewan 
et al. 2007; Khosravi et al. 2016a; Masood and Takeuchi 
2012; Seejata et al. 2018; Tingsanchali and Karim 2005), to 
the best of our knowledge, none of them integrated ML, SM 
models, and MCDA models for the development of flood 
susceptibility mapping, particularly for Bangladesh. Moreo-
ver, the traditional method for flood susceptibility mapping 
in Bangladesh is the hydrological and hydrodynamic mod-
els, which require input data and parameters from meteorol-
ogy, river cross-sections, and discharge from both upstream 
and downstream (Khosravi et al. 2016b, 2018). These data 
are mostly unavailable for many areas, due to inadequate 
hydro-meteorological stations. At present, flood inundation 
area map is produced by the Flood Forecasting and Warn-
ing Centre (FFWC) by comparing river water level with a 
coarse resolution (cf. 500 m) digital elevation model (DEM). 
Unfortunately, a high-resolution DEM and infrastructures 
data are not available (Bates 2004). Flood susceptibility 
assessment based on water level observation is not effective 
in providing spatially distributed flooding areas for timely 
monitoring of flooding event (Lin et al. 2019; Uddin et al. 
2019). Therefore, the techniques used in the present study 
proved to be the best opportunity for relatively large and 
complex areas.

The main objective of this research is to derive the extent 
of flood susceptibility areas in Bangladesh using four mod-
els: artificial neural network (ANN), analytical hierarchy 
process (AHP), logistic regression (LR), and frequency 
ration (FR). The flood hazard map for Bangladesh was 
developed previously by considering flood frequency, flood 
duration with digital elevation data (Islam and Sado 2000b, 
2002; Masood and Takeuchi 2012; Tingsanchali and Karim 
2005), while in this study we have proposed nine causa-
tive factors for flooding, i.e. rainfall, elevation, slope, flood 
depth, soil tract, geology, drainage area, flood duration, and 
land cover and land use (LULC). Besides, applying only one 
model will not be adequate to predict the susceptible areas 
in a study. Because, these models are mostly site specific 
and some research has confirmed that each model has its 
advantages and disadvantages. Therefore, the second objec-
tive is to derive an integrated model, considering the best 
performing models, to develop a unique flood hazard map of 
Bangladesh, because model integration is expected to allow 
more precise assessment (Chapi et al. 2017; Costache and 
Zaharia 2017; Khosravi et al. 2016a; Mojaddadi et al. 2017; 
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Shafapour Tehrany et al. 2017). The key contributions of this 
research are: (i) to generate relevant models for the determi-
nation of flood susceptible areas; and (ii) produce new flood 
hazard map for Bangladesh, using an integrated model.

2  Materials and Methods

2.1  Study Area

The climatic condition makes Bangladesh the most vul-
nerable country in the world to multiple hazards. This is a 
nation of over 162.7 million people (Bangladesh Bureau of 
Statistics B 2019) with a geographical area of 1, 47,570 sq.
km located between 20º34′N and 88º01′E to 26º38′N and 
92º41′E (Hasan et al. 2017). An annual growth rate of the 
population of Bangladesh is 1.37%, and therefore, is one 
of the most densely populated countries in the world hav-
ing a population density of 1062.5 per sq.km (Hasan et al. 
2017). A location map of Bangladesh is shown in Fig. 1. 
The country has 492 sub-districts and it is divided into five 
main physiographic regions, namely north Bengal region, 
northeastern region, Tippera-Comilla region, southwestern 
region, and Chittagong region, with various subdivisions 
(Islam and Sado 2000b). It is crisscrossed by three mighty 
rivers: the Ganges, Brahmaputra, and Meghna, popularly 
known as GBM. The alluvial soil deposited by these rivers 

has created highly fertile lands. It has three distinctive fea-
tures: (i) a broad alluvial plain subject to frequent flooding, 
(ii) a slightly elevated relatively older plain, and (iii) a small 
hilly region drained by flashy rivers. The alluvial plain is a 
part of the larger plain of the Bengal, which is sometimes 
called the Lower Gangetic Plain. Elevations of the plains are 
less than 10 m above sea level. The hilly areas of the south-
eastern region of Chittagong, the northeastern hills of Sylhet 
and highlands in the north and northwest are of low height. 
The Chittagong Hills constitute the only significant hilly 
system in the country. The climate of the country is tropi-
cal and humid. The annual average rainfall varies between 
2200 mm and 2500 mm, whereas extreme rainfall varies 
from 1200 mm to 6500 mm. The average temperature varies 
from 25 to 35 °C, during a year.

2.2  Data Preparation

Rainfall data were collected from Bangladesh Water Devel-
opment Board (BWDB) and NOAA satellite images gener-
ated by NASA’s global precipitation measurement (GPM) 
mission. The digital elevation model (DEM) data with a 
spatial resolution of 300 m were obtained from Institute 
of Water Modeling (IWM) (Islam and Sado 2000b). The 
slope layer was extracted from DEM. A LULC map was 
obtained from the existing map produced by Space Research 
and Remote Sensing Organization (SPARRSO) (Islam and 
Sado 2000a) and updated by the Forest Department of Bang-
ladesh in 2016 (Department 2016). The geological map of 
Bangladesh was obtained from Geological Survey of Bang-
ladesh. The soil tract map with 1:100,000 scale for the 
study area was acquired from the Bangladesh Agricultural 
Research Council (BARC) and Soil Resource Development 
Institute (SRDI). The drainage areas’ data were collected 
from Bangladesh Agricultural Research Council (BARC). 
The flood depth in the study area was calculated by sub-
tracting the land elevation from the computed flood water 
level (Tingsanchali and Karim 2005). The flood duration was 
determined using satellite images having spatial resolution 
of 12.5 m developed by International Centre for Integrated 
Mountain Development (ICIMOD) from Advanced Land 
Observing Satellite-2 (ALOS-2), Phased Array L-band Syn-
thetic Aperture Radar (PALSAR) and Sentinel-1) of June 24, 
July 17, August 15, and August 24 of 2017. The 2017 flood 
inundated most of the floodplain areas and lasted for more 
than 24 days according to field investigation done by flood 
forecasting department and observed hydrological data.

2.3  Computing Flood Inundation Area

Flood inundation areas were calculated through remote sens-
ing data analysis, Mike-11 hydrological model outputs, and 
three severe historical flood events of 1988, 1995, and 1998. Fig. 1  Location of the study area
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The details of calculations are as follows: (i) first, we con-
sidered four flood inundation maps of June 24, 2017, July 
17, 2017, August 15, 2017, and August 24, 2017, which 
were prepared by ICIMOD considering the remote sensing 
imageries from ALOS-2, PALSAR, and Sentinel-1 imagery 
(ICIMOD 2017). The images were transformed into coordi-
nate system (WGS 1984/UTM45N) based on an administra-
tive map of Bangladesh. (ii) Second, Mike-11 hydrodynamic 
model output maps of Bangladesh Water Development 
Board were used to calculate flood inundation area consid-
ering the same dates of June 24, 2017, July 17, 2017, August 
15, 2017, and August 24, 2017. The Mike-11 model solves 
the unsteady free surface flow equations of continuity and 
momentum (Tingsanchali and Karim 2005). The DEM hav-
ing 300 m spatial resolution was used with Mike-11. Finally, 
remote sensing imageries and Mike-11 model output maps 
were compared to estimate flood inundation areas. To cre-
ate the final flood inventory map, National Oceanic and 
Atmospheric Administration (NOAA) advanced very high-
resolution radiometer (AVHRR) data for the flood events of 
1988, 1995, and 1998 were incorporated with flood inunda-
tion areas (the inundated areas that did not appear in any 
of the images mentioned in this study were considered to 
be non-flooding areas, while the inundated areas appeared 
in all images were considered to be flooding areas), which 
were used to analyze the correlation between flood and flood 
conditioning factors. A flood inventory is a detailed register 
of the distribution and characteristics of past flood events. 
In the present study, the presence of flood was consigned a 
value of 1, while the absence of flood was consigned a value 
of 0 for preparing flood inventory map from flood inundation 
areas (Bui et al. 2018; Darabi et al. 2019). Finally, the values 
of all the flood conditioning factors were extracted to flood-
ing and non-flooding points to form training and validation 
datasets. We identified 475 flood locations from where 70% 
of the locations were randomly selected for training and the 
rest were considered for validation.

2.4  Factors Affecting Flood Susceptibility

To prepare flood susceptibility maps, various thematic lay-
ers were used as conditioning factors. Rainfall is the main 
triggering factor that causes underground hydrostatic level 
and water pressure to increase. Mostly, heavy rainfall from 
upstream point (India) is the major reason for occurrence 
of flood in Bangladesh. The recorded rainfall amount dur-
ing the monsoon period of 2017 varies from 120.10 mm 
to 898.62 mm (BWDB 2017). Land elevation is another 
factor in the assessment of flood susceptibility (Rizeei 
et al. 2019). Runoff flows from high to low lands, there-
fore the probability of flood occurrence in low-elevated 
areas increases. Sometimes, lowland areas did not flood, 
while some high land elevation areas were flooded, due to 

flash floods in the northeastern part of the country. The 
elevation of the study area ranges from 0 to above 80 m 
of mean sea level. The likelihood of a flood increases, 
as the slope of a location decreases, making it a reliable 
indicator for flood susceptibility. Therefore, slope plays 
a major role in flooding and it also affects the direction 
of water flow. Land use and land cover map is one of the 
most important factors affecting floods, because vegetated 
areas are less susceptible for flooding due to the nega-
tive correlation between a flooding event and vegetation 
density (Mojaddadi et al. 2017). However, urban areas are 
typically composed of impermeable surfaces and increased 
surface runoff, therefore it can be concluded that runoff 
conditions vary under different LULC patterns. Besides, 
LULC has a direct impact on a number of parameters in 
the hydrologic cycle, including interception, infiltration, 
and concentration, and therefore indirectly on flooding. 
Together, these characteristics yield information about 
the hydrological response and the degree of flood hazard 
(Islam and Sado 2000b). The geological factor of the study 
area is covered with various types of units, which directly 
or indirectly influence infiltration and runoff generation, 
depending on the porosity and permeability of soil and 
rock (Rahmati et al. 2016b). Moreover, geology signifi-
cantly affects the formation of the drainage pattern that 
relates to the generation of floodplain (Bui et al. 2019). 
Islam and Sado (2000a) reported that largely impermeable 
surface geology areas are more susceptible to flooding. 
Therefore, geological units play an important role. The 
water infiltration initially depends upon soil properties 
(Rahmati et al. 2016b); therefore, soil group is another 
important conditioning factor. Todini et al. (2004) and 
Nyarko (2002) mentioned that the soil type plays a role in 
determining the water holding characteristics of an area, 
and hence affects flood susceptibility. Moreover, flood 
depth and flood duration directly contribute to flood occur-
rence. The classification methods of flood conditioning 
factors are shown in Table 1 and thematic maps for flood 
conditioning factors are shown in Fig. 2.

Furthermore, multicollinearity among all the factors 
was checked using the tolerance (TOL) and variance 
inflation factor (VIF), since linear collinearity between 
the conditioning factors will decrease the model prediction 
accuracy (Rahmati et al. 2016a). The coefficient values of 
TOL and VIF were below 0.10 and above 10.0, respec-
tively, indicating the existence of collinearity between 
conditioning factors (Arabameri et al. 2019; Chen et al. 
2018). The coefficient values for TOL < 0.10 and VIF > 10 
indicated high multicollinearity between factors being 
considered. The results of the multicollinearity showed 
that no multicollinearity was present, among the nine fac-
tors used (Table 2).
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2.5  Modeling Approaches

2.5.1  Artificial Neural Network (ANN)

ANN is a mathematical model of human perception that 
can be trained for performing a particular task on the basis 
of available dataset, especially to explore the relationship 
between inputs and outputs (Rauter and Winkler 2018; 
Valencia and Graña 2018). The most common type of ANN 
consists of three interconnected layers: (i) input layer, (ii) 
hidden layer, and (iii) output layer. The input layer receives 
data from different sources. The number of hidden layers and 
their neurons is often defined by trial and error (Elsafi 2014; 
Jain et al. 1996; Karsoliya 2012). The number of neurons in 
output layers is fixed by the application and is represented 
by the class being processed. In this study, one of the most 
commonly used neural network methods, i.e.; multilayer 
perceptron (MLP) neural network was adopted (Kia et al. 
2012). To apply the MLP neural network, the back propaga-
tion (BP) algorithm with the sigmoid transfer functions was 

used in the hidden and output layers. Then, all observations 
were presented to the network, the weights were determined 
from the model by considering nine input layers, five hidden 
layers, and one output layer to produce a flood susceptibility 
map. The neurons in the input layer denoted different condi-
tioning factors. The numbers of the hidden layers were con-
firmed by running the MLP neural networks several times to 
gain compatible training and testing accuracies (Arora et al. 
2004). The ANN model was trained with a maximum of 500 
iterations and 10 tours with fivefold cross-validation. The 
convergence criterion was 0.00001. The probability of flood 
susceptibility (output layer) falls in the range between 0 and 
1. When the percentage of the incorrect predictions in the 
neural network analysis decreased then the weights (wi) were 
stored to calculate flood susceptibility scores (FS). The Gra-
dient Descent was used to estimate weights, where the initial 
learning rate, lower level learning rate, and the momentum 
were 0.4, 0.001, and 0.9, respectively. Moreover, the inter-
val centre and interval offset were 0 and ± 0.5, respectively. 
Basically, the weights were calculated by normalizing and 

Table 1  Flood conditioning factors and classification scheme for flood susceptibility assessment

Flood conditioning factors Classes Method and reference

Rainfall (mm) (i) Above 600; (ii) 401 to 600; (iii) 201 to 400; and (iv) 0 to 
200.

Equal interval [(Pham et al. 2017)]

Elevation (m) (i) 0 to 4; (ii) 4 to 8; (iii) 8 to 12; (iv) 12 to 16; (v) 16 to 20; (vi) 
20 to 40; (vii) 40 to 60; (viii) 60 to 80; and (ix) above 80.

Manual [(Islam and Sado 2000a)]

Slope (°) (i)  0° to  10°; (ii)  10° to  20°; (iii)  20° to  30°; (iv)  30° to  40°; (v) 
 40° to  50°; (vi)  50° to  60°; (vii)  60° to  70°; and (viii)  70° to  80°.

Equal interval [(Ouma and Tateishi 2014; Rahmati 
et al. 2016c; Seejata et al. 2018)]

LULC (i) Cultivated land; (ii) boro rice field; (iii) cultivated lowland; 
(iv) dry fallows; (v) mixed cropped areas; (vi) mangrove area; 
(vi) highland with mixed forest; (viii) highland with settle-
ments; (ix) saline area; and (x) watercourse/river.

Supervised classification [(Islam and Sado 2000a)]

Geology (i) Coastal deposits: beach and dune sand; (ii) deltaic deposits: 
silt, sand, tidal mud, and so on; (iii) alluvial deposits: alluvial 
sand, silt, clay, Chandina alluvium, valley alluvium, and 
so on; (iv) alluvial fan deposits: gravelly sand; (v) residual 
deposits; (vi) bedrock: Pleistocene and Pliocene; (vii) Tipam 
group: Pleistocene, Neogene, Tipam sand and stone; (viii) 
Surma group: Neogene, Miocene, and Oligocene; and (ix) 
major river.

Supervised classification [(Islam and Sado 2000a)]

Soil tract (i) River and water body; (ii) hill tract: red clay soil, fine sand, 
and the mixture of two; (iii) Barind Tract: deep reddish 
brown terrace soils, gray, and silty and poorly drained; (iv) 
coastal saline tract: saline and alkaline; (v) Madhupur tract or 
red soil tract: well to moderately well-drained, reddish brown 
to yellow–brown, strongly to extremely acidic, friable clay 
soils over deeply weathered, red-mottled, and Madhupur clay; 
(vi) Gangetic alluvial: clay loam, sandy loam, calcareous and 
non acidic; (vii) Tista silt: weekly acidic; and (viii) Brahma-
putra alluvial: loamy soil.

Supervised classification [(Islam et al. 2017; 
Shafapour Tehrany et al. 2017)]

Drainage area (%) (i) 0 to 25; (ii) 25 to 50; (iii) 50 to 75; and (iv) Above 75. Manual
Flood depth (m) (i) 0 to 0.50 m; (ii) 0.51 to 1.00 m; (iii) 1.01 to 1.50 m; (iv) 

1.51 to 2.00 m; and (v) 2.01 to 2.50 m.
Manual [(Tingsanchali and Karim 2005)]

Flood duration (i) Very long; (ii) Long; (iii) Medium; (iv) Short; and (v) No 
flooding.

Manual [(Islam and Sado 2000a)]
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Fig. 2  Thematic maps used in this work
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considering the variation of the maximum and minimum 
connection weights. The normalized values fall between 0 
and 1. The mathematical expression for determining flood 
susceptibility scores is given as: (Kia et al. 2012).

where n is the number of flood conditioning factors, wi 
is the weight coefficient of the flood conditioning factor 

(1)FS =

n
∑

i=1

wixi = w1x1 + w2x2 +…+ wnxn = w
T
x,

Fig. 2  (continued)

Table 2  Multicollinearity test using tolerance (TOL) and variance 
inflation factor (VIF)

Conditioning 
factors

Collinearity Conditioning 
factors

Collinearity

TOL VIF TOL VIF

Rainfall 0.769 1.301 Soil tract 0.388 2.574
Elevation 0.486 2.057 Drainage area 0.902 1.108
Slope 0.772 1.296 Flood depth 0.460 2.172
LULC 0.545 1.834 Flood duration 0.500 2.000
Geology 0.412 2.428
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determined by ANN, xi is the input value from each class of 
each conditioning factor. Here, T is the transpose of a matrix, 
and, in its simplest case, the output value FS is computed as:

where � is the threshold level and this type of node is called 
as a linear threshold unit.

2.5.2  Analytical Hierarchy Process (AHP)

The AHP was used to determine the weighting factors (wi), 
which indicates the importance of each factor to the occur-
rence of floods. AHP refers to a structured tool to analyze 
difficult decisions, based on mathematics and psychology 
(Cho et al. 2015; Nguyen et al. 2015; Saaty 2000; Zhang 
et al. 2016). The pairwise comparison method was used to 
produce weighting factors by applying Saaty’s ranking scale 
(Luu et al. 2018; Saaty 2008) for each indicator, which was 
calculated and examined by the random consistency index 
(RI) (Luu et al. 2018; Saaty 2001). Saaty (1980) developed 
an average random consistency index (RI) for different 
matrix orders and defined the consistency ratio (CR), which 
is shown in Eq. (3), where the ratio of the consistency index 
(CI) is shown in Eq. (4) and the random consistency index 
(RI) (Luu et al. 2018; Rahmati et al. 2016c; Saaty 1980, 
2008). If CR is greater than 0.1, the comparison matrix is 
inconsistent and should be revised. The score for each indi-
cator was considered based on the experts’ opinion from the 
relevant field (academics, hydrologist, engineer), the litera-
ture review, and authors’ judgments. Furthermore, ranks for 
the calculation of normalized rank (Nr) were assigned to 
each class of flood conditioning factors on the basis of the 
degree of damage, their influence, and contribution to flood 
hazard susceptibility. The higher the rank, the higher the 
influence is. The base point 0 is considered for the class with 
no probability of damages or influences and the increment 
of 1 indicates increased influence on flood (NOAA 2007). 
The Nr was calculated on the basis of the sum of the ranks 
assigned to each conditioning factor (Rahmati et al. 2016c). 
Finally, flood susceptibility map was produced using: (Rah-
mati et al. 2016c).

where CI represents the consistency index and RI is the aver-
age random consistency index of the judgment matrix.

(2)FS =

{

1 if wTx ≥ �

0 if otherwise
,

(3)CR =
CI

RI
,

(4)CI =
�max − n

n
,

where λmax is the largest eigenvalue derived from the paired 
comparison matrix, n is the number of the conditioning 
factor.

where n is number of the conditioning factor, wi is the 
weighting factor, and Nri is the normalized rank.

2.5.3  Logistic Regression (LR)

LR is a multivariate statistical model for flood susceptibil-
ity mapping (Shafapour Tehrany et al. 2017; Tehrany et al. 
2014a). The benefit of this model is that data do not require 
to be normally distributed and the factors can either be 
categorical, continuous, or any combination of both (Teh-
rany et al. 2019). In this model, flood susceptibility map 
developed from flood inundation area was considered as the 
dependent variable, where 1 is for flooding area and 0 is for 
non-flooding area. The mathematical expression of the LR 
model is given by: (Arabameri et al. 2018; Shafapour Teh-
rany et al. 2017; Tehrany et al. 2014a):

where P is the probability of occurrence of flood or non-
flood, z is the linear combination, n is the number of flood 
conditioning factors, xi (i = 1, 2, 3…n) is the flood condi-
tioning factors, b0 is the intercept of the model, bi (i =0, 1, 
2, …,n) is the regression coefficients for the independent 
variables of the logistic regression model.

2.5.4  Frequency Ratio (FR)

FR model is based on the observed relationships between 
the distribution of the floods and flood conditioning factor 
(Samanta et al. 2018b; Tehrany et al. 2019). The frequency 
ratio for the class of each conditioning factor was calculated 
by dividing the flood occurrence ratio by the area ratio. Each 
factor frequency ratio was calculated using Eq. (7) and flood 
susceptibility map was developed from Eq. (8) (Samanta 
et al. 2018b; Tehrany et al. 2019).

where FR is the ranking of each conditioning factors, n is the 
number of total factors for flood susceptibility (FS).

(5)FS =

n
∑

i=1

wi × Nri,

(6)

P=
1

1 + e−z
=

1

[1+e
{

-
(

b0+b1x1+b2x2+b3x3+…+bnxn
)}

]
,

(7)

FR =
Percentage of flood

Percentage of the class of each conditioning factor
,

(8)FS = FR1 + FR2 + FR3 +…+ FRn,
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2.5.5  Integrated Model

There were few weak points observed in individual mod-
els, as they do not generally yield desired result, therefore 
many researchers proposed integrated models to overcome 
weaknesses. For instance, this study proposed integrated 
models to develop flood susceptibility mapping in Bang-
ladesh through the integration of two or more models to 
overcome the weakness and improve the prediction capa-
bility of the individual model. The following mathematical 
expression was considered to determine the best possible 
combination of the integrated models in assessing flood 
hazard. Then, the results from the individual models were 
considered to develop an integrated model using the fol-
lowing: (Arabameri et al. 2017; Pourghasemi et al. 2017).

where n is number of the model and r is number of a set of 
the n model

(9)nCr=
n!

r!(n - r)!
=
n(n - 1)(n - 2)… (n - r+1)

r!
,

(10)IMnCr =

∑n

i=1

�

AUROCi ×Mi

�

∑n

i=1
AUROCi

,

where IM is the integrated model,  AUROCi is the AUROC 
value from the validation test of the single model, and Mi is 
the result of the single model (Fig. 3).

3  Results and Discussion

3.1  Application of the ANN Model

Determining the importance of flood conditioning factors 
using the ANN model showed that amongst nine factors, 
soil tract (19.30%), geology (17.20%), LULC (12.70%), 
elevation (11.40%), and flood depth (10.10%) had the high-
est impact on the occurrence of flood (Table 3). In con-
trast, flood duration (9.70%), drainage area (8.10%), slope 
(7.20%), and rainfall (4.30%) had the least contribution. Kia 
et al. (2012) noted that soil groups are the most important 
conditioning factors in flood susceptibility mapping using 
the ANN model; this is in accordance to this study. In other 
studies, slope, elevation, and LULC were the most important 
factors observed by ANN model in flood susceptibility map-
ping, which is consistent with the results our work (Chapi 

Fig. 3  Schematic diagram, showing overall methodology of the work
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Table 3  Flood conditioning 
factors used in susceptibility 
mapping

Flood conditioning factors FR Normal-
ized rank 
(Nri)

AHP weight (wi) ANN weight (wi) LR coefficients (bi)

Rainfall (mm) 1.04 0.40 0.22 0.043 0.225
0.90 0.30
0.94 0.20
1.05 0.10

Elevation (m) 1.06 0.20 0.142 0.114 − 0.227
1.23 0.18
1.22 0.16
1.00 0.13
1.10 0.11
0.47 0.09
0.25 0.07
0.37 0.04
0.64 0.02

Slope (°) 1.69 0.22 0.145 0.072 − 0.086
1.23 0.19
0.99 0.17
0.91 0.14
0.89 0.11
0.90 0.08
0.89 0.06
0.93 0.03

LULC 1.04 0.15 0.081 0.127 0.006
1.27 0.16
1.35 0.18
0.69 0.11
0.94 0.13
0.50 0.02
0.30 0.04
0.78 0.05
1.77 0.07
0.64 0.09

Geology 0.79 0.13 0.080 0.172 0.348
0.81 0.16
1.50 0.20
0.44 0.09
0.65 0.11
0.40 0.07
0.35 0.04
0.06 0.02
1.08 0.18

Soil tract 0.28 0.06 0.040 0.193 0.272
0.16 0.03
0.59 0.08
1.07 0.11
1.48 0.19
1.17 0.17
1.08 0.14
1.79 0.22
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et al. 2017; Falah et al. 2019; Mosavi et al. 2018). Finally, 
the resultant by ANN model was classified into four classes 
(low to very high) using the equal interval method (Fig. 4) 
(Samanta et al. 2018b; Tehrany et al. 2019). The output 
showed that 18.31% of study area belong to very high class, 
whereas 7.68% belong to low flood susceptibility (Table 3).

3.2  Application of the AHP Model

The degree of influence of rainfall to flood susceptibility 
is the highest, as evidenced by the weight of 0.220 through 
AHP method, while the slope factor was 0.145. The results 
of the optimized factor weights for flood conditioning fac-
tors are listed in Table 3. The elevation factor was con-
sidered less influencing compared with rainfall and slope 
(weight of 0.142). The weight factor for drainage area (%) 
was 0.130 also proved its importance in flood susceptibility 
analysis. The weight for both geology and flood duration 
was equal with 0.080. Flood depth, Land use/land cover, and 
soil tract were considered the least important as weights are 
0.082, 0.081, and 0.040, respectively. Furthermore, normal-
ized ranks for each condition factor were also calculated 
(Table 3). Then, the scores for flood susceptibility were esti-
mated using Eq. (5) and prepared in the form of GIS data. 
Finally, the scores were classified into four categories as low 
(4.33%), medium (36.94%), high (51.98%), and very high 
(6.75%) (Fig. 4).

3.3  Application of the LR Model

The results of LR model showed that elevation, geology, 
soil tract, and flood duration factors were the most effec-
tive variables on flood susceptibility mapping, because 

the significant (Sig, p) values were less than 0.05. The rest 
of the conditioning factors have the Sig (p) value of more 
than 0.05, suggesting statistically insignificant in the model 
development (Shafapour Tehrany et al. 2017, 2019; Tehrany 
et al. 2014a). Moreover, the positive and negative values of 
the output indicate their contribution to the occurrence of 
floods. Based on the derived logistic coefficients, probability 
of flood occurrence was calculated using Eq. (6) to develop 
flood susceptibility map, where the z values were calculated 
using the following:

In Eq. (11), the probability values varied from 0 to 0.97. 
A flood susceptibility map was derived from LR model, 
which was then divided into four categories: low (22.38%), 
medium (24.90%), high (29.09%), and very high (23.62%) 
(Fig. 4).

3.4  Application of the FR Model

The results of FR model indicated that soil tract, rainfall, 
slope, elevation, and LULC are the most significant factors. 
This finding is in line with previous studies (Khosravi et al. 
2016a; Samanta et al. 2018b; Shafapour Tehrany et al. 2017; 
Tehrany et al. 2019). The range of FR values varies from 
0 to 1.79. The higher the value the higher the susceptibil-
ity to flood is. The results of the FR model are shown in 

(11)

z = −2.230 + (0.225 × rainfall) + (−0.227 × elevation)

+ (−0.086 × slope) + (0.006 × LULC)

+ (0.348 × geology) + (0.272 × soil)

+ (−0.574 × drainage) + (0.042 × flood depth)

+ (0.656 × flood duration).

Table 3  (continued) Flood conditioning factors FR Normal-
ized rank 
(Nri)

AHP weight (wi) ANN weight (wi) LR coefficients (bi)

Drainage area (%) 1.13 0.40 0.130 0.081 − 0.574

0.67 0.30

0.09 0.20

0.00 0.10
Flood depth (m) 1.27 0.27 0.082 0.101 0.042

1.10 0.20
1.31 0.33
0.83 0.13
0.63 0.07

Flood duration 1.16 0.20 0.080 0.097 0.656
0.84 0.10
1.32 0.30
1.35 0.40
0.55 0.00
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Fig. 4  Flood susceptibility maps for Bangladesh with different models
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Table 3, which confirmed that rainfall above 600 mm has 
a substantial impact on the occurrence of flood (with an 
FR value of 1.05). The relationship between elevation and 
flood susceptibility showed that low elevation category is 
more susceptible to flood, which is not surprising given that 
water tends to flow from highland to lowland. On the other 
hand, lower slope areas showed a greater correlation with 
flood occurrence compared with the higher slope. LULC 
factor supports that saline area (FR = 1.77) and cultivated 
lowland (FR = 1.35) have the greatest impact. Alluvial 
deposits class (FR = 1.50) of geological unit has a strong 
correlation with flood occurrence. The Brahmaputra alluvial 
soil tract has the highest FR value of 1.79. Therefore, sus-
ceptibility to flood occurrence is high in this class. The FR 
in drainage area indicates that flood occurrence decreased 
with the upper boundary of drainage area. The value of the 
highest FR = 1.13 lies in the drainage area of 0 to 25%. As 
far as the flood depth is concerned, depth of 1.01 to 1.50 m 
has the maximum FR (1.31). The results confirmed that this 
class plays a vital role in the occurrence of flood hazard in 
Bangladesh. In case of flood duration, long and very long 
duration with FR = 1.32 and FR = 1.35, are highly suscepti-
ble to flood. After determining FR of all classes, flood sus-
ceptibility map was developed using Eq. (7), whose values 
vary between 4.92 and 12.13. Finally, derived product was 
categorized into four classes from low to very high (Fig. 4).

3.5  Application of the Integrated Model

In this work, a total of eleven combinations of integrated 
models (e.g. 4C2, 4C3, and 4C4) were produced using 
Eqs. (9), (10) to develop a reasonable flood hazard map. 

In general, maps developed from the integrated models 
represented the better prediction accuracy than standalone 
models and can be used for the spatial prediction of flood 
hazard analysis in the study area. The outputs of the mod-
els were classified as low, medium, high, and very high 
susceptible, which showed that most of the flood-affected 
areas are located in high and very high categories. The 
combination which shows the maximum total of flood 
areas under high and very high susceptibility classes is 
considered as the best integrated model. The susceptibility 
map developed from 11C combination (LR-FR) indicated 
that 66.38% of the study area ranked high to very high, 
which is almost 91.49% of total flooding areas (Table 4). 
But, the 09C combination (AHP-LR) and 10C combination 
(AHP-FR) had the lowest result (Table 4). Therefore, flood 
susceptibility map developed from the 11C combination 
was considered as a new flood hazard map for Bangladesh, 
as it is predicted highest among all single and integrated 
models. Studies elsewhere also identified that integrated 
models are useful for hazard assessment (Choubin et al. 
2019; Gazendam et al. 2016; Hong et al. 2018; Khosravi 
et al. 2016a; Mojaddadi et al. 2017; Shafapour Tehrany 
et al. 2019; Tehrany et al. 2015a). We, therefore, believe 
that the integrated models could be used for hazard analy-
sis in other areas of similar environment.

Furthermore, the proposed maps developed from the 
models would be helpful for relevant authorities to take 
flood countermeasures that are valuable in reducing dam-
ages to economy. The results of this study can serve as the 
basis for prioritizing efforts, emergency response meas-
ures, channelizing funds, saving lives and properties, and 
policy interventions at the sub-district level. As for the 

Table 4  The best combination of thematic maps developed from ANN, AHP, LR, and FR models for flood hazard assessment in Bangladesh

Combination Model Area (%) Flood area (%) under high and 
very high susceptibility classes

ANN AHP LR FR Low Medium High Very high

– ■ 7.68 17.38 56.63 18.31 89.18
– ■ 4.33 36.94 51.98 6.75 70.97
– ■ 22.38 24.90 29.09 23.62 89.27
– ■ 8.41 26.10 46.95 18.54 86.62

01C ■ ■ ■ ■ 9.12 24.89 47.39 18.60 87.20

02C ■ ■ ■ 12.89 21.23 48.17 17.71 86.64

03C ■ ■ ■ 13.27 21.59 48.15 16.99 87.84

04C ■ ■ ■ 9.12 24.89 47.39 18.60 87.20

05C ■ ■ ■ 8.41 25.90 46.74 18.94 87.11

06C ■ ■ 10.12 23.64 44.64 21.60 90.50

07C ■ ■ 12.89 21.23 48.17 17.71 86.64

08C ■ ■ 11.14 22.67 48.97 17.22 87.98

09C ■ ■ 11.50 33.86 35.77 18.87 73.00

10C ■ ■ 11.71 33.78 35.69 18.82 72.94

11C ■ ■ 8.22 25.41 45.54 20.84 91.49
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local society, communities should recognize and conform 
to early warnings, follow evacuation plans, and stay away 
from areas with high flood susceptibility.

3.6  Importance of Conditioning Factors In Mapping 
Flood Susceptibility

Determining the importance of conditioning factors in flood 
susceptibility mapping is essential in flood hazard assess-
ment. However, different influencing factors contribute 
differently to flood hazard. Moreover, not all factors would 
have an equal effect on floods; thus, the selection of appro-
priate flood is a crucial step. The results showed that the 
most important conditioning factors according to the lambda 
and uncertainty coefficients were geology, soil tract, ele-
vation, flood duration, LULC, and flood depth, because a 
value close to or equal to 1 means that the flood condition-
ing factors perfectly predict flood-susceptible areas, while 
a value of 0 shows that they do not have influence on floods 
(Table 5). In other works, researchers concluded that rainfall, 
soil, and geology have high importance (Ouma and Tateishi 
2014; Seejata et al. 2018), consistent with our results. In 
another research, elevation and LULC were found to be the 
most influencing factors (Kourgialas and Karatzas 2011). 
Rahmati et al. (2016a) reported that slope has importance in 
the occurrence of floods, which is also in line with this study.

3.7  Models Validation and Performance 
for the Flood Susceptibility Maps

Derived flood susceptibility maps were validated with the 
AUROC. The AUROC of ANN, AHP, LR, and FR mod-
els for the validating datasets are shown in Fig. 5a. They 
showed that the AUROC value for the LR was 86.80%, 
while in the FR, ANN, and AHP models, the AUROC val-
ues were 85.60%, 82.10%, and 64.00%, respectively. Simi-
larly, to evaluate the performance of these models training 
datasets were used to plot the AUROC. The results showed 
that AUROC values for flood susceptibility maps gener-
ated by LR, FR, ANN, and AHP models were 81.60%, 
74.20%, 73.40%, and 70.60% (Fig. 5b). In other studies, 
FR model was compared with WoE and found that the FR 
model (AUROC = 76.47%) had higher prediction accuracy 

than WoE (AUROC = 74.74%), which is in accordance 
with current study (Rahmati et al. 2016b). Likewise, the 
AUROC success and prediction rate was estimated to 
be 84.80% and 81.20% in flood susceptibility mapping 
in India using frequency ratio technique (Samanta et al. 
2018a). Bui et al. (2018) applied logistic regression (LR) 
model for flood prediction mapping in the Haraz watershed 
in northern province of Mazandaran, Iran, and stated that 
LR with AUROC = 88.5% was suitable for flood suscep-
tibility as a standalone model. Our results are in line with 
Bui et al. (2018), as individual LR model had high accu-
racy and was suitable for delineating flood susceptibility. 
Therefore, the results of this study showed that the flood 
susceptibility map prepared by the LR model had higher 
predictive capacity compare with other three models. It is, 
therefore, reasonable to conclude that the LR model is the 
best choice, among the four individual models which can 
be useful for mapping hazard potential of similar settings.

Table 5  Importance of 
conditioning factors in mapping 
flood susceptibility

Flood condition-
ing factors

Lambda Uncertainty 
coefficient

Flood conditioning factors Lambda Uncertainty 
coefficient

Rainfall 0.090 0.008 Soil tract 0.503 0.300
Elevation 0.389 0.166 Drainage area 0.042 0.008
Slope 0.246 0.067 Flood depth 0.341 0.125
LULC 0.323 0.165 Flood duration 0.365 0.155
Geology 0.511 0.302

Fig. 5  The area under the receiver operating curves (AUROC) show-
ing a validation and b performance of the proposed models
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3.8  Validating Integrated Models

The results of integrated models showed that the AUROC 
was varying from 82.80 to 88.10% (Fig. 6a, b). In general, 
flood susceptibility maps developed from the integrated 
model (i.e. 01C, 02C, 03C, 04C, 05C, 06C, 07C, 08C, 09C, 10C 
and 11C) presented better prediction accuracy than the 
individual models (i.e. ANN and AHP) for Bangladesh. 
The result of the integrated model (11C) of LR and FR 
indicated that the accuracy for success (AUROC = 88.10%) 
is more from the individual model and the best among all 
integrated models; meanwhile, the accuracy of the ANN 
and AHP-integrated model (06C), the AUROC = 82.80% 
was less than among all integrated models. In another 
research, it was stated that combination of adaptive neuro-
fuzzy inference system (ANFIS) and imperialistic com-
petitive algorithm (ICA) models with AUROC = 94.70% 
has high ability to identify susceptible areas to floods 
(Bui et al. 2018). Tehrany et al. (2019) used standalone 
frequency ratio, logistic regression, the WoE, and their 
ensemble techniques for spatially predicting flood-prone 
areas in Jiangxi Province, China. Their study indicated 
that integration of LR and FR models increased accuracy 
of AUROC (81.47%). The ANN-SVM integrated model 
showed highest predictive ability with AUROC of 87.90% 
for gully erosion mapping in Golestan Province, Iran. This 
underscores the efficacy of integrated models (Pourgha-
semi et al. 2017).

4  Conclusions

The conventional (hydraulic and hydrological) methods for 
flood susceptibility assessment require many parameters, 
which are usually lacking in Bangladesh. To overcome such 
a problem, we therefore, developed a method by integrating 
AHP, ANN, LR, and FR models. A total of eleven combina-
tions of flood models (e.g. 01C to 11C) were implemented for 
comparison purpose to determine the best model. Based on 
the results, following conclusions can be made:

(i) The prediction rate of the LR model (AUROC is 
86.80%) is better than other models. Besides, the success 
rate showed that the LR model had the highest AUROC 
(81.60%), followed by the FR model (74.20%), ANN model 
(73.40%), and the AHP model (70.60%).

(ii) The accuracy of the integrated flood hazard map (11C) 
was evaluated and it was found that 91.49% of the flood-
ing areas were under high and very high susceptible cat-
egories, which rely on existing flood data. Besides, success 
and performance rate of integrated model was checked and 
the result showed that 11C had the highest AUROC value of 
88.10%, among other models tested here.

Overall, the models described in this study have the abil-
ity to elucidate better identification of flood hazard area. In 
addition, the results of this work have considerable man-
agement implications for disaster management of a highly 
populous country, which is at severe risk of climate-induced 
adversities such as flooding.
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