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Abstract
Rainfall-induced landslides have become the biggest threat in the Indian Himalayas and their increasing frequency has led to 
serious calamities. Several models have been built using various rainfall characteristics to determine the minimum rainfall 
amount for landslide occurrences. The utilisation of such models depends on the quality of available landslide and rainfall 
data. However, these models do not consider the effect of local soil, geology, hydrology and topography, which varies 
spatially. This study is to analyse the triggering process for shallow landslides using physical-based models for the Indian 
Himalayan region. This research focuses on the utilisation and dependability of physical models in the Kalimpong area of 
Darjeeling Himalayas, India. The approach utilised the transient rainfall infiltration and grid-based regional slope-stability 
(TRIGRS) model, which is a widely used model in assessing the variations in pore water pressure and determining the change 
in the factor of safety. TRIGRS uses an infinite slope model to calculate the change in the factor of safety for every pixel. 
Moreover, TRIGRS is used to compare historical rainfall scenarios with available landslide database. This study selected 
the rainfall event from 30th June to 1st July 2015 as input for calibration because the amount of rainfall in this period was 
higher than the monthly average and caused 18 landslides. TRIGRS depicted variations in the factor of safety with duration 
before, during and after the heavy rainfall event in 2015. This study further analysed the landslide event and evaluated the 
predictive capability using receiver operating characteristics. The model was able to successfully predict 71.65% of stable 
pixels after the landslide event, however, the availability of more datasets such as hourly rainfall, accurate time of landslide 
event would further improve the results. The results from this study could be replicated and used in other unstable Indian 
Himalayan regions to establish an operational landslide early warning system.
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1 Introduction

Precipitation is the main triggering factor behind the 
majority of landslides in India. Indian Himalayan locales 
have been generally affected because of the increasing 
recurrence of landslides. Approximately 30% of land-
slide occurrences worldwide happen in the Himalayan 
area, whilst 42% of India’s landslide region is located in 
the north-west Himalayas including Darjeeling–Sikkim 

Himalayas (Dikshit and Satyam 2018). The immense 
economic and human life damage caused by landslides 
necessitates the development of methods that will mini-
mise the effects of this type of disaster. The Kalimpong 
region, which is part of Darjeeling Himalayas, receives 
approximately 85% of the annual rainfall during the mon-
soon season. Ghosh et al. (2016) indicated that approxi-
mately 76% of landslide incidents have been triggered by 
rainfall. Therefore, the relations between landslide occur-
rences and rainfall conditions, primarily in the Kalimpong 
area, should be understood. The physical (Baum et al. 
2002, 2008) and empirical (Guzzetti et al. 2007, 2008; 
Althuwaynee et  al. 2015) methods are mainly used to 
understand this relationship. The physical-based methods 
are based on numerical models and are used to study the 
relationship among rainfall, pore water pressure, soil type 
and volumetric water content that can lead to slope insta-
bility. By contrast, empirical methods are used to study 
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landslides caused by rainfall events, particularly heavy 
downpour that triggers instantaneous landslides and low 
but continuous antecedent rain that destabilises the slope 
and triggers landslide. Empirical methods are used to cal-
culate thresholds that, when exceeded, trigger landslides 
(Segoni et al. 2018; Dikshit et al. 2019). The calculation of 
several type of thresholds has been successfully achieved 
for several Indian Himalayan regions (e.g., Sengupta et al. 
2010 for North Sikkim; Kanungo and Sharma 2014 for 
Chamoli, Uttarakhand; Dikshit and Satyam 2018, 2019; 
Teja et al. 2019 for Kalimpong). However, the accuracy 
of these thresholds substantially decreases owing to spa-
tial variations in the soil, hydrological and topographic 
parameters and the availability of data, thereby eventually 
affecting slope failure (Schilirò et al. 2015).

The problems associated with the empirical rainfall 
threshold method led to the development of physical (pro-
cess-based) models (Baum et al. 2002, 2008). Physical 
process-based models depend on physical laws, which con-
trol slope stability and spatially extend using the widely 
accepted stability models. The models use spatial-related 
factor attributes, such as slope gradient, soil depth and 
shear resistance, to predict the amount of rainfall that will 
cause landslides in a particular area and the time of trig-
gering (Baum et al. 2002; Schilirò et al. 2015). Stability 
conditions are assessed using the static stability model, 
which considers the local equilibrium conditions along the 
potential slip surface. Although several physical models 
have been developed and used globally, the current study 
analyses the transient rainfall infiltration and grid-based 
regional slope-stability (TRIGRS) model because of its 
robustness and consistent accuracy (Kim et al. 2010). Only 
a few physical process-based studies have been conducted 
for major landslide zones in the Indian region. Kuriakose 
et al. (2009) determined the feasibility of a physical model 
using the coupled hydrologic and stability model (STAR 
WAR S, PROBSTAB) in Kerala, India. Weidner et  al. 
(2018) studied the relation between critical rainfall and 
antecedent pore pressure using TRIGRS for the hazard 
assessment of regions with limited data availability.

In the context of the Indian Himalayan region, the 
study on rainfall-induced landslides has primarily been 
on threshold estimation. Few studies have also been con-
ducted to understand landslide risk and developing haz-
ard map using GIS techniques (Surendranath et al. 2008; 
Ghosh et al. 2012). However, the applicability of physi-
cal-based models is yet to be tested in this region. This 
study is an attempt to understand and test a physical-based 
approach using TRIGRS model for Kalimpong situated in 
Darjeeling Himalayas. The results show that the model 
could be used as a preliminary technique for a warning 
system and can be further improved upon the availability 
of more extensive data.

2  Study Area and Data

The study area is  Kalimpong (87.47–89.47N, 
26.07–28.07E), which is situated in Darjeeling Hima-
layas, India (see Fig. 1). This area is surrounded by the 
Relli and Teesta rivers in the east and west, respectively. 
The elevation of the region ranges from 400 to 1665 m, 
with 70% of the area having an elevation of over 1000 m. 
Geologically, Darjeeling–Sikkim Himalayas comprises 
intra-thrusted rock slices of the fold-thrust belt (FTB) of 
the eastern Himalayas. This area represents convoluted 
geological and tectonic milieu, in which rocks from the 
Precambrian to the Quaternary ages are compared along a 
specific EW trending tertiary provincial thrust (Mukherjee 
and Mitra 2001; Ghoshal et al. 2008). Along the Hima-
layan foothills in the south, coarse to extremely coarse-
grained clastics (i.e. conglomerate–sandstone–siltstone) 
of the Siwalik group are exposed and separated by a fron-
tal thrust (Himalayan foothill or frontal thrust) from the 
adjoining Quaternary sediments of the foredeep region 
in the further south. The considerably coarse clastics of 
the Siwalik group towards the north are thrusted over by 
the sandstone–shale sequence of the Gondwana along the 
main boundary thrust (Dikshit and Satyam 2018). The 
rocks are fluidly adjusted and generally secured by thin to 
thick heterogeneous debris. The study area has rock types 
comprising banded gneisses, schist, sandstone with shale, 
valley fill sediments and younger alluvium of age varying 
from the Archaean to the Quaternary (West Bengal Water 
Resource Investigation and Development Department) (see 
Fig. 3).

A comprehensive field study was conducted in Octo-
ber 2016 to understand the effects of landslide damage 
on the region. The investigation included measuring the 
changes in distance between crack walls using tapes and 
wire devices and collection of disturbed soil samples. 
This field study showed that apart from receiving a huge 
amount of rainfall, the area is severely drained by numer-
ous natural mountain streams (kholas) and their tributaries 
(jhoras), thereby further escalating the existing landslide 
problem. The water in mountain rivulets is fed from an 
ample number of perennial outflows present around the 
crest of the hill (Rao 2009). These streams have increased 
the sinking areas and played an important part in landslide 
occurrence in the region. Apart from the aforementioned 
factors, lithology, erosion of the Teesta River and its tribu-
taries also contribute to landslides.

Figure 2 represents the rainfall data from 2010 to 2016 
in a box and whisker plot. The top and bottom of the rec-
tangular boxes are the 75th and 25th percentiles, respec-
tively, whilst the red horizontal lines inside the boxes are 
the 50th percentiles. The whiskers depict 1.5 times the 
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Fig. 1  Location map of the study region
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interquartile range (IQR). Monsoon rainfall contributed 
85% of the annual rainfall, with the most rainfall occurring 
in 2015. The majority of the landslides in the area are trig-
gered between June and September, with some prominent 
and major landslide events in between, because of the high 
monsoonal precipitation. The occurrence of such a rainfall 
pattern emphasises that rainfall plays an important role in 
triggering landslides in Kalimpong. The rainfall pattern 
is primarily for a short duration with intermittent intense 
bursts of rain, thereby making the soil loose, which leads 
to particle disintegration and slope instability (Chatterjee 
2010).

The majority of the landslides in Kalimpong are triggered 
by intense rainfall and improper drainage system (Dikshit 
et al. 2018a). The region has suffered from over 100 major 
landslides from 2006 to 2013, approximately 75% of which 
have been triggered by rainfall (Dikshit et al. 2018b). Fig-
ure 3 shows the hydrogeological map of the region over-
layered with landslide occurrences from 2010 to 2016. The 
landslide points are mapped as a single point for multiple 
occurrences on the same day. The field survey also suggested 
that the majority of the landslides are translational which has 
also been identified by Geological Survey of India, GSI. The 
slope-forming material mainly comprises phyllites, quartzite 
or schist. The types of landslides in the region based on the 
distribution of Cruden and Varnes (1996) and identified by 
GSI are rock fall, rock slide, debris flow, debris slide and 
earth slide.

Figure 4a shows the damage alongside the NH-31A road, 
whilst 4b shows the damage of a culvert, which is primar-
ily caused by the presence of rivulets. The damage is the 
result of monsoonal rainfall and aggravated thereafter by 
the jhoras.

3  Description of the TRIGRS Model

The TRIGRS model is used to determine infinite slope sta-
bility for pore-pressure changes concerning rainfall infiltra-
tion (see Fig. 5). The failure of an infinite slope is defined 
as the ratio of the resisting friction to the gravitationally 
triggered downslope stress (Kim et al. 2010). The model 
computes a variety in pore water weight and compares the 
distinction in the factor of safety because of infiltration. The 
factor of safety (Fs) is evaluated by adopting an infinite slope 
model for every cell. The modelling of infiltration caused by 
rainfall considers precipitation varying from few hours to 
days and is carried out by utilising an analytical solution of 
differential equations considering one-dimensional vertical 
flow in homogeneous materials (Schilirò et al. 2015). The 
factor of safety is determined as follows:

where c′ and ψ are the effective cohesion and pore water 
pressure, respectively, at depth Z; � ’ is the friction angle of 
the soil, γw is the unit volume weight of water, γs is the unit 
weight of soil and δ is the slope angle.

The infiltration models in TRIGRS are based on the line-
arised solution in Iverson (2000) and extensions to Richard’s 
equation in Baum et al. (2002). The one-dimensional vertical 
flow of Richards equation is solved using the most recog-
nised numerical model, namely, HYDRUS-1D (Šimunek 
et al. 1998):
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Fig. 2  Box and whisker plots showing the annual variation of 
monthly rainfall measures in Kalimpong (2010–2016)

Fig. 3  Hydrogeological map of the Kalimpong region overlayered 
with the landslide locations
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where K is the unsaturated hydraulic conductivity, which is 
provided as follows:

where Ks and Kr are the saturated hydraulic and residual 
hydraulic conductivities, respectively.

The estimation of soil hydraulic parameters for water flow 
simulation was conducted using the van Genuchten–Mualem 
model. This model utilises four different hydrodynamic 
parameters to linearise Richards’ equation in Gardner 
(1958): saturated (θs) and residual (θr) water content, satu-
rated hydraulic conductivity (Ks) and a parameter associ-
ated with pore size distribution (αG). The hydrodynamic 
properties are predicted through ROSETTA Lite module 

(2)
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[

K(�)

(
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�z
− cos �

)]

− S,

(3)K (� , Z) = Ks(z)Kr(� , Z),

(Schaap et al. 2001) using soil grain size distribution (see 
Table 1). The module uses daily rainfall data as input and 
evapotranspiration is determined using the highest and 
lowest temperature recorded during the study period into 
the Hargreaves equation (Jensen et al. 1997). Apart from 
the hydrodynamic parameters, the model input parameters 
include geotechnical parameters (unit weight γ , cohesion 
c and friction angle φ ), hydraulic diffusivity, initial water 
table depth and rainfall rate. The model simulates the water 
table increment when the percolating water surpasses the 
maximum amount that can be drained by gravity. The infi-
nite slope reaches a limit equilibrium state for the factor of 
safety equal to 1. Similarly, the infinite slope reaches the 
unstable and stable state for factors of safety under and over 
1, respectively. Thus, the depth of landslide initiation will 
be the depth where the factor of safety first reaches 1 (Kim 
et al. 2010). The model utilises a simple surface runoff rout-
ing method for pixels with excessive surface water, which 
can either infiltrate or flow downstream. The summation of 
precipitation and runoff from the upstream pixels is called 
infiltration for every pixel. However, infiltration should not 
exceed the saturated hydraulic conductivity. Excessive water, 

Fig. 4  Landslide damage 
observed during field study in 
October 2016

Fig. 5  Conceptual diagram of the TRIGRS model based on infinite 
slope stability (modified from Baum et al. 2008)

Table 1  Hydrodynamic and geotechnical properties considered for 
the analysis

Parameters Values

Saturated water content (θs) 0.3962
Residual water content (θr) 0.0779
Hydraulic parameter (αG) 2.71 m−1

Saturated hydraulic conductivity (Ks) 1.32 × 10−5 m/s
Cohesion (c) 0.65 kN/m2

Unit weight (γ) 17.24 kN/m3

Friction angle (φ) 30°
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which could not infiltrate at its pixel, should flow towards 
the adjacent downstream pixels within a given period. Baum 
et al. (2002, 2008) described the details of the model.

3.1  Application of TRIGRS

The first part consisted of cataloguing landslides with the 
location and date of triggering based on the records main-
tained by GSI, local newspapers and an NGO (Save The 
Hills). The event on July 1st 2015, which was chosen for 
calibrating the model, triggered 18 landslides in the region 
with a rainfall of 226 mm. The landslide resulted in the death 
of 38 people and the immense destruction of road network, 
infrastructure, and land. Figure 6 shows the landslide loca-
tions and sample of the damage resulting from the landslide.

An extensive survey of the region was conducted in Octo-
ber 2016 and soil samples were collected from the land-
slide locations (see in Fig. 6). Geotechnical parameters (c, 
γ , φ ) were determined using the collected samples from the 
field. Table 1 presents the input value of the hydrodynamic 
and geotechnical parameters considered for this study. The 
soil thickness of the region is assumed to be 1.5 m (Water 
Resource Investigation and Development Department, 
West Bengal). The input parameters were fed into the TRI-
GRS model and the factor of safety for every pixel was 
determined.

The results were applied for the 2015 monsoon season, 
whilst the predictive capability of the model was calcu-
lated using the receiver operating characteristic (ROC) 
method. Back analysis for monsoons between 2010 
and 2014, except 2011 (earthquake-induced landslide 

Fig. 6  Landslide locations and 
the damage pictures for the 1 
July 2015 event
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occurred), was performed and the results were analysed. 
The ROC chart demonstrates the outputs of the classifica-
tion models for binary response (i.e. either unstable or 
stable). The value of lowest factor of safety was found by 
running various iterations of the model (Montrasio et al. 
2011). The cells with Fs < 1.3 were considered unstable, 
compared to cells with Fs > 2.0, which were considered 
stable for ROC analysis. Therefore, the change of Fs over 
a period should be understood in developing a trend line 
for future rainfall events.

4  Results and Discussion

For the 1st July 2015 event, cells recognised with the 
factor of safety Fs = 1.3 steadily expanded as the rainfall 
intensity increased, thereby implying that the majority of 
the landslides were triggered by intense rainfall. After 24 h 
of rainfall, the unstable cells further increased throughout 
the entire region. For the following 24 h, rainfall ceased 
and TRIGRS simulated no variation in stability conditions, 
whilst the Fs values were steady as well. At 96 h after 
the landslide event, the number of stable cells decreased 
while the unstable cells started to increase. Figure 7a–d 
illustrates the variation in a factor of safety at the afore-
mentioned time intervals.

An optimal landslide analysis model accords the known 
and predicted landslide locations and reduces the predic-
tion of unstable areas to provide complete information 
about prediction. To overcome the limitations, ROC was 
used through a confusion matrix to analyse the accuracy of 
the factor of safety maps (Park et al. 2013). Table 2 presents 
the relative percentage of the predicted unstable pixels, cor-
rectly predicted landslide and stable pixels for the time the 
model simulation was carried. Before the landslide event (at 
t = 0 h), the correctly predicted landslide pixels were almost 
nil. For the case of 24 h (i.e. after the landslide event), the 
correctly predicted pixels were 53.9%, whereas the model 
predicted 91.2%. Thereafter, the number of correctly pre-
dicted landslide pixels started to slowly decrease which was 
also observed i.e. no occurrence of a major landslide event 
after the heavy rainfall. After 72 h, there is a significant rise 
in the landslide pixels (15.8%) which can be attributed to 
the preceding rainfall. This can be attributed to the already 
unstable slopes occurred after July 1st rainfall which failed 
latter. The results signify that the model has potential as a 
forecasting tool but should be improved with the availability 
of hourly rainfall data and other attributes, such as time of 
landslide event and soil depth.

Fig. 7  Slope stability conditions in terms of the factor of safety (Fs) 
in the 1 July 2015 event based on the TRIGRS model

▸
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4.1  ROC Analysis

The ROC analysis is a method that is used to assess the 
performance of a classification model (Fawcett 2006). 
ROC is used to analyse the reliability of the factor of 
safety maps (i.e. a comparison of actual and predicted 
landslides using software) (Park et al. 2013; Schilirò et al. 

2015). The preciseness of the model relies on the quan-
tity of the accurately anticipated positive cells (“landslide 
presence”) or negative cells (“landslide absence”) reported 
as positive (Schilirò et al. 2015). Every cell of the factor of 
safety map can be categorised into four possibilities (see 
Fig. 8). (1) True Positive (TP) represents pixels that have 
a factor of safety below 1 and assessed as unstable and 
correctly predicts instability. (2) True Negative (TN) gives 
the correct prediction of stability and determines cells with 
a factor of safety above 1 and is considered stable. (3) 
False Positive (FP) represents the pixels with a factor of 
safety below 1, in which the pixels are assessed as unstable 
and represents false predictions of instability. (4) False 
Negative (FN) are cells that missed predictions of instabil-
ity. Figure 8 depicts the four possible outcomes in a 2 × 2 
contingency matrix. Sensitivity is known as true positive 
ratio (TPR) = TP/(TP + FN) (Zizioli et al. 2013). Specific-
ity is called the true negative rate (TNR) = TN/(TN + FP) 
(Zizioli et al. 2013). The sensitivity of the model is por-
trayed as a function of specificity in the ROC graph. Many 
correct predictions are indicated by high sensitivity, whilst 
high specificity demonstrates only a few false positives 
(Montrasio et al. 2011).

The results of ROC show that TPR is consistently 
greater than FPR and for the event of July 2010, TPR is 
located near the diagonal (TPR = FPR). The events with 
the best output of TRIGRS are July 2010, July 2012, 
August 2013, July 2014 and July 2015. The event of Sep-
tember 2011 was exempted from the analysis because this 
event was caused by an earthquake. In the analysed cases, 
TPR ranges between 0.35 and 0.5, whilst FPR was between 
0.15 and 0.25. Moreover, additional observations can be 
done with the ROC curves (see Fig. 9). The value in the 
lower left part of these figures corresponds to the analysis 

Table 2  Results of the TRIGRS simulation at different times

Time (h) Predicted as 
unstable pixels 
(%)

Correctly predicted 
landslide pixels (%)

Correctly predicted 
stable pixels (%)

0 0.50 0.02 99.66
24 91.20 53.90 71.65
48 58.87 41.54 84.61
72 22.70 16.85 89.65
96 38.30 32.65 89.40

True False 
Positives

False 
Negatives

True 
Negatives

True Positive 
Rate= 
TP/TP+FN

False Positive 
Rate= 
FP/FP+TN

NoReal

Stable

Unstable

Modeled 
Response

Fig. 8  Contingency table for the binary problem and performance 
metrics calculated

Fig. 9  ROC analysis for the dif-
ferent rainfall scenarios
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of the TRIGRS run when the instability is considered for 
Fs < 1.3 and the stability is considered for Fs > 2.0.

5  Conclusions

The increase in the number of landslide incidents in the 
Himalayan region has led researchers to evaluate the appro-
priate models and develop new techniques for landslide dis-
aster mitigation. Several attempts have been made to deter-
mine the thresholds using statistical models. However, such 
models do not consider the spatial variation of soil, geol-
ogy, hydrology and several physical parameters. The current 
study attempts to understand the application of a physical-
based model (i.e. TRIGRS) for Kalimpong, which is a part 
of Darjeeling Himalayas and is the first research of its kind 
to be attempted in the region. Such analysis would help in 
understanding the variations in factor of safety across the 
region on the basis of physical parameters. The model uses 
soil properties, soil depth and hydrodynamic parameters as 
input. The rainfall event selected for calibration was that 
of 1 July 2015, which triggered 18 landslides and rainfall 
was at 226 mm. Thereafter, the quantification between the 
actual and predicted landslides was evaluated using the ROC 
technique. The results showed that the model is capable of 
forecasting landslides from a temporal perspective because 
of its correct prediction of 54% of the pixels during the day 
of the landslide. The validation of the model was performed 
by performing back analysis of the landslide events. The 
back analysis was carried out for 2010–2015, except 2011, 
and showed that the modelling results were coherent with 
the actual incidences with minor errors. This study can be 
improved with the availability of failure time and hourly 
rainfall data thereby facilitating the calibration of the param-
eters. The use of a physical-based approach could further 
help in understanding the landslide scenario in the Indian 
Himalayan region with an aim to set up an operational early 
warning system.
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