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Abstract
Rockfall is a common phenomenon in mountainous and hilly areas worldwide, including Malaysia. Rockfall source identi-
fication is a challenging task in rockfall hazard assessment. The difficulty rise when the area of interest has other landslide 
types with nearly similar controlling factors. Therefore, this research presented and assessed a hybrid model for rockfall 
source identification based on the stacking ensemble model of random forest (RF), artificial neural network, Naive Bayes 
(NB), and logistic regression in addition to Gaussian mixture model (GMM) using high-resolution airborne laser scanning 
data (LiDAR). GMM was adopted to automatically compute the thresholds of slope angle for various landslide types. Chi 
square was utilised to rank and select the conditioning factors for each landslide type. The best fit ensemble model (RF–NB) 
was then used to produce probability maps, which were used to conduct rockfall source identification in combination with 
the reclassified slope raster based on the thresholds obtained by the GMM. Next, landslide potential area was structured to 
reduce the sensitivity and the noise of the model to the variations in different conditioning factors for improving its computa-
tion performance. The accuracy assessment of the developed model indicates that the model can efficiently identify probable 
rockfall sources with receiver operating characteristic curve accuracies of 0.945 and 0.923 on validation and training datasets, 
respectively. In general, the proposed hybrid model is an effective model for rockfall source identification in the presence of 
other landslide types with a reasonable generalisation performance.
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1 Introduction

Rockfalls are a common natural hazard in many places 
worldwide, including Malaysia with high and steep terrain 
with the presence of discontinuities (Simon et al. 2015). This 
phenomenon affects transportation ways, communication 
and urban areas that are situated near steep mountainous and 
hilly areas. The hazard of rockfall is increasing in mountain-
ous regions due to the growth of population and economic 
activities (Fanos and Pradhan 2018). Rockfall occurs when 
a block detached from a cliff and moving downslope with 
various motion modes including flying, bouncing, rolling, 
or sliding (Varnes 1984; Pradhan and Fanos 2017a). Such 
events can cause serious causalities because they are dif-
ficult to be predicted and can move rapidly depending on 
the geometric and geomorphologic characteristics of the 
moving block.

Considerable research has been performed on rockfall 
hazard around the world including identification of rockfall 
source areas (Fanos and Pradhan 2016; Losasso et al. 2017), 
prediction of rockfall trajectories (Pellicani et al. 2016; 
Fanos et al. 2016), probability assessment (Gigli et al. 2014), 
analysis of rockfall runout distance (Fanos et al. 2016), eval-
uation of rockfall bounce height and velocity (Giacomini 

et al. 2016) and risk analysis (Mitchell and Hungr 2016; 
Pradhan and Fanos 2017b).

In particular, the identification of rockfall source areas 
is necessary in the assessment of rockfall probability and 
risk because it controls the trajectory of rockfall. Rockfall 
sources can be identified through in situ survey or rockfall 
inventory dataset. Nevertheless, such techniques are costly, 
time consuming and require experts in this field. In situ and 
inventory data are also usually unavailable or incomplete in 
space and time for several regions (Kromer et al. 2017). The 
availability of geographic information system (GIS) data and 
accurate 3D surface models has enabled the development 
of many approaches for rockfall source identification (Loye 
et al. 2009; Lan et al. 2010; Massey et al. 2014). Existing 
methods rely on the identification of slope angle threshold. 
For example, a threshold of > 49° was used by Lopez-Saez 
et al. (2016), whereas a slope threshold of > 60° was uti-
lised in Corona et al. (2013). Moreover, recently developed 
approaches rely on slope geometry derived from LiDAR 
point cloud and other conditioning elements, such as slope, 
aspect, curvature, block type and land use, by using statisti-
cal, probabilistic and machine learning methods (Guzzetti 
et al. 2003). In Dickson and Perry (2016), identification of 
unstable rocks was conducted using photogrammetric survey 
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in composite construction regions. Many controlling factors 
of rockfall movement along slope were assessed by Agli-
ardi et al. (2016). The results showed that rockfall source 
areas cannot be easily identified because they are controlled 
by different factors. More recently, Mote et al. (2019) pro-
posed a method for rockfall risk assessment through the 
characterization of rockfall source areas. They considered 
the continuous cliff bands with a slope steeper than 45° as 
rockfall source areas. Their result shows that rockfall sources 
are a key element in rockfall risk assessment and designing 
a mitigation process. However, such method is critical to 
obtain a realistic result as it is restricted to the cliff face, and 
rockfall source areas are controlled by additional condition-
ing factors.

Landslides probabilities are controlled by various con-
ditioning factors including morphological, hydrological, 
geological and anthropogenic factors. However, each factor 
has different relative significance to landslide probability 
and considering a big number of conditioning factors could 
lead to a negative impact on landslide probability modelling, 
thus producing an unrealistic result (Aghdam et al. 2016; 
Mohammady et al. 2012; Pradhan et al. 2014). On the other 
hand, structural and geotechnical, such as the bedrock set-
ting, the spatial frequency and orientation of discontinuities 
(fractures, cracks and joints), also influence the landslide 
probability mapping. However, such information demands 
extensive field geomechanical surveys which are costly and 
time consuming. In addition, such in situ surveys are hard to 
be performed in the regional-scale study (wide area). This 
study focuses on using LiDAR-derived landslide condition-
ing to examine the performance of laser scanning data for 
landslide probability as an alternative of structural and geo-
technical factors.

Machine learning techniques have become common 
approaches for modelling landslide susceptibility over large 
regions. The basic assumption of the empirical approach is 
that future landslides are likely to occur in similar conditions 
of the past (Fanos and Pradhan 2016). Algorithms (Dieu 
et al. 2016; Pradhan and Lee 2010; Zare et al. 2013), such as 
random forest (RF) (Chen et al. 2019), artificial neural net-
work (ANN) (Pradhan et al. 2014; Dou et al. 2018; Truong 
et al. 2018), Naive Bayes (NB) (Pradhan et al. 2014; Pham 
et al. 2016) and logistic regression (LR) (Bui et al. 2016; 
Lombardo and Mai 2018) have been widely employed for 
landslide probability modelling. On the other hand, ensem-
ble methods have been quite exercised in other fields; never-
theless, the application of these techniques in the assessment 
of rockfall issues is still rare (Truong et al. 2018). However, 
the use of ensemble models can improve the result of land-
slide probability mapping (Evans and Hudak 2007; Chen 
et al. 2017, 2019).

Generally, granitic and limestone hills with high and steep 
terrain are highly prone to landslide incidents. Kinta Valley 

is one of the main districts and richest mining area in Malay-
sia and contributes to the economic and tourism sectors. The 
bedrock geology for Kinta Valley and surrounding areas is 
granitic hills and limestone bedrock. The bedrock of limestone 
in Kinta Valley rises over the alluvial plains forming limestone 
hills with vertical to sub-vertical slopes (Simon et al. 2015). In 
addition, it receives a high amount of precipitation throughout 
a year. As a result, a lot of engineering geologic issues have 
been encountered Kinta Valley involving rockfalls, debris flow 
and shallow landslides.

Rockfall varies both spatially and temporally, thus it is dif-
ficult to predict or eliminate such phenomenon. The identi-
fication of rockfall source areas is the most significant and 
challenging step. This is because the rockfall sources control 
the trajectories, hazard and risk, and located at inaccessible 
and/or unstable regions. This challenge rises where other 
landslide types that have similar geo-morphometric charac-
teristics are present in the same area and relying on just the 
probability map which could lead to misclassification. The 
aforementioned studies have made remarkable attempts to pro-
pose approaches that can precisely allocate rockfall sources 
by photogrammetry or with LiDAR data. However, one issue 
still not considered which is where the analysis area includes 
other landslide types with nearly the same controlling condi-
tioning factors and geo-morphometric characteristics such as 
shallow landslide, rockfall and debris flow. Although Fanos 
et al. (2018) tried to identify rockfall source areas using an 
individual machine learning algorithm, ensemble models can 
produce better accuracy. The optimization of the model hyper-
parameters was not performed. In addition, the slope thresh-
olds were determined based on the inventory dataset not on 
the morphological units of the slope. Therefore, the current 
research proposes a hybrid model designed for rockfall source 
identification based on LiDAR dataset in such conditions (the 
presence of other landslide types). The proposed model uses 
three algorithms, namely, Gaussian mixture model (GMM) 
and stacking random forest (RF) coupled with Naive Bayes 
(NB) (RF–NB). The stacking (RF–NB) was employed to pro-
duce the probability maps of different landslide types using 
the inventory dataset and the optimised conditioning factors. 
Whereas, GMM was used to determine the slope thresholds of 
each landslide types automatically based on the slope dataset 
obtained from the generated DTM. Kinta Valley encountered 
several landslide incidents including rockfall, shallow land-
slide and debris flow. Thus, it was selected to evaluate the 
proposed hybrid model.

2  Study Area

The study area is located at Kinta Valley in the West of 
Malaysia (Fig. 1), which is situated approximately 200 km 
north of the capital city, Kuala Lumpur. The study area 
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is located approximately between the northeast cor-
ner (101°5′30″E, 4°34′50″N) and the southwest corner 
(101°10′45″E, 4°30′40″N). The study area consists of 
various land use features, such as urban, grassland, peat 
swamp forest, oil palm forest and shrub. The extension 
of the study area is (5 * 5 km) with a landslide density of 
2.28 event/km2.

The humidity at the study area is relatively high (approxi-
mately 82.3%) throughout the year, and the temperature lies 
between 23 and 33 °C (The Meteorological Service Depart-
ment of Malaysia). The average annual rainfall in Kinta Val-
ley is 323 mm.

The geological setting of the Kinta Valley is completely 
varied with a high percentage of igneous rocks. However, 
sedimentary (limestone) and metamorphic rocks (marble) 
are profusely present in the district. However, the selected 
area contains only limestone. Several faults exist in the 
study area. Limestone hills are prone to landslides inci-
dents because of the presence of extensive fractures and 
joints that can be easily triggered by various factors, such 
as water saturation. The faults can also increase the poten-
tial of landslides occurrences as they trigger earthquakes. 

Consequently, Kinta Valley has encountered many landslide 
events including shallow landslide, rockfall and debris flow.

3  Materials and Methods

3.1  Datasets

The main dataset of this research contained laser scanning 
data. High-resolution LiDAR point clouds were gathered 
using an airborne LiDAR system (RIEGL) in 2015 with a 
flight height of 1000 m. Consequently, high-density point 
clouds were produced with around 10 pts./m2. The collected 
dataset was processed through GIS to perform filtering and 
interpolation processes. Processing must be applied to the 
gathered point clouds to eliminate noises and outliers and 
produce a precise DTM for extracting the conditioning fac-
tors of rockfall.

The inventory dataset of landslide is a fundamental ele-
ment in the assessment of rockfall source areas. This dataset 
was prepared from different sources including field surveys, 
remote sensing and historical records. High-resolution aerial 

Fig. 1  Study area: Kinta Valley, Malaysia
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photos (0.1 m) that were captured during the collection of 
LiDAR data were utilised for the optical observation of pre-
vious landslide events in the study area. Field measurements 
were also performed using a GNSS system to gather the 
locations of landslides that occurred underneath vegetated 
areas or in regions invisible in the aerial photos. This process 
was conducted using a Global Navigation Satellite System 
with real-time corrections. Consequently, 87 landslides (28 
shallow landslides, 39 rockfall and 20 debris flow), as well 
as their correlated attributes, were obtained for the assess-
ment (Fig. 1). The inventory dataset was divided into two 
groups (training and testing) to assess the accuracy of the 
proposed hybrid model. Thus, 70% of the inventory dataset 
was used to build the model, and the remaining data (30%) 
were used for validation. The dataset was divided into two 
groups randomly ensuring the distribution of each group on 
the whole study area and each group contains all landslide 
types.

3.2  Deriving Digital Terrain Model

The collected raw data contained ground and up-ground 
points. Therefore, a filtering algorithm must be used to 
eliminate the up-ground points for obtaining an accurate 
DTM. The LiDAR-based DTM should be constructed accu-
rately to extract accurate conditioning factors (Chen et al. 
2019). Several approaches have been proposed to perform 
this process. The current study used an algorithm proposed 
by Messenzehl et al. (2017) called multi-scale curvature 
algorithm (MCC) executed within GIS environment. This 
algorithm can derive accurate DTM in urban areas with dif-
ferent natural and man-made features (Pham et al. 2016). 
The terrain details (sharply cut terrains) are essential for 
rockfall source identification; thus, the window size number 
should be selected carefully to retain these details (Brenning 
2005). Therefore, a particular algorithm was developed to 
automatically update the number of window sizes for main-
taining the details of the terrain.

The optimal settings of MCC parameters rely on many 
elements, such as point cloud density, terrain characteristic 
and the slope interpolation resolution (Chen et al. 2019). 
Consequently, the MCC parameters of curvature tolerance 
threshold, scale domain number and convergence thresh-
old were set to 0.3, 3 and 0.1, respectively. After the up-
ground points were eliminated through filtering, the inverse 
weighted distance interpolation technique was used to gener-
ate the DTM from the remaining points (Olsen et al. 2015) 
Given that the spacing of points was 0.4 m, the DTM was 
generated with a resolution of 0.5 m. The statistical analy-
sis of the collected point clouds based on root mean square 
error revealed vertical and horizontal accuracies of 0.15 and 
0.3 m, respectively.

3.3  Conditioning Factors

The source areas of rockfall cannot be assessed on the basis 
of a certain factor (Agliardi et al. 2016). Thus, the present 
research used many conditioning factors such as hydrologi-
cal, morphological, soil and anthropogenic factors to iden-
tify the rockfall sources in Kinta Valley. Many factors were 
extracted from LiDAR dataset, aerial photos and the data-
bases of government agencies.

Morphological factors (altitude, slope, aspect and cur-
vature) were extracted from the produced 0.5 m DTM and 
GIS spatial analysis tools. The highest altitude in the current 
research was 375 m, whereas the lowest altitude was 37 m 
(Fig. 2a). Slope, which is a major factor that controls rock-
fall, was utilised (Fig. 2b). The aspect ratios were from 0° to 
360°, which represent the direction of slope from the north 
in a clockwise direction (Fig. 2c). The second derivative of 
the DTM was used to calculate the curvature factor (Fig. 2d). 
The curvature controls the flow divergence and convergence 
across the terrain and the deceleration and acceleration of 
downslope flows. Therefore, this factor affects deposition 
and erosion.

The Topographic Roughness Index (TRI) is a key hydro-
logical factor that affects landslides (Fig. 2e). This factor can 
be calculated using Eq. 1 (Abdulwahid and Pradhan 2017):

where max is the highest cell value in the nine rectangular 
neighbourhoods of altitude and min is the minimum value.

In the meantime, anthropogenic factors involve land use/
land cover (LULC) and distances to the road. Other fac-
tors such as distances to stream (derived from a topographic 
layer) and lineament (derived from an existing map) were 
also considered in this study. The geological factor is not 
considered in this research because the selected study area 
contains only one type (limestone). Thus, this factor has no 
impact on landslide probability mapping. In addition, the 
focus of the current research is on examining the perfor-
mance of LiDAR deriving landslide conditioning factors. 
This can increase the generalisation of the proposed meth-
ods and reduce the model sensitivity to the variation on the 
conditioning factors. The LULC layer was produced using 
classified SPOT 5 satellite images with supervised SVM 
approach (Department of Survey and Mapping Malaysia). 
A field survey was performed to verify the LULC layer. The 
land use map was classified into nine classes: the water body, 
river, transportation, residential building, other buildings, 
cemetery, forest, mixed vegetation and open land (Fig. 2f). 
Euclidean distance method was used to calculate the dis-
tances to the road (Fig. 2g), river (Fig. 2h) and lineament 
(Fig. 2i).

Sparsely vegetated areas are more prone to landslide 
incidents than forests. In the current research, vegetation 

(1)TRI =
√
max2 −min2
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Fig. 2  Landslide conditioning 
factors
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Fig. 2  (continued)
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density was utilised as one of the factors for rockfall source 
identification. This factor was derived from SPOT 5 satel-
lite images. Four classes were produced: dense vegetation, 
moderate vegetation, low vegetation and non-vegetation 
(Fig. 2j). Overall, ten conditioning factors were included in 
the modelling of rockfall source area identification. Soil tex-
ture (Fig. 2k) consists of three different types (rocky loam, 
silt/clay, and loam). This factor is also considered in this 
research.

3.4  The Proposed Hybrid Model

This research presents a hybrid model based on two algo-
rithms, namely, ensemble stacking (RF–NB) and GMM, 
which involved many processing steps, as shown in Fig. 3. 
The major datasets used in this research were landslide 
inventory map, GIS layers and a DTM derived from airborne 
LiDAR point clouds. The landslide inventory dataset was 

utilised to train various ensemble machine learning models 
and validate the hybrid model. GIS layers including LULC, 
vegetation density, soil texture, lineament, river and road 
were adopted to obtain the remaining conditioning factors. 
The high-resolution DTM was produced using LiDAR point 
clouds for extracting many factors such as slope, aspect, alti-
tude curvature and TRI.

The first processing step is to determine the slope angle 
threshold of each landslide type automatically based on slope 
geomorphological units. GMM was run using the slope data 
derived from the generated DTM to identify these thresh-
olds. The second step is to determine the best conditioning 
factors that can identify variance landslide types, including 
rockfall. This process is performed using Chi-square model 
as a factor optimisation approach. Consequently, the relevant 
factors of each landslide type are determined. This process 
aims to reduce the number of factors for decreasing the time 
of computation and improve the generalisation capability of 

Fig. 3  Flowchart of the proposed hybrid model
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the proposed model. The use of only the best factors enables to 
improve the performance by eliminating redundant and noise 
information. Thereafter, stacking (RF–NB) model is trained 
with the inventory data and the selected factors. The stack-
ing (RF–NB) model predicts the landslide probabilities in 
consideration of the landslide types in the study area. On the 
other hand, the landslide potential area was constructed. Con-
sequently, a binary raster is generated to reflect the regions that 
are probable (class 1) and not probable (class 2) to encounter 
rockfall. This raster is produced by integrating two reclassi-
fied elements: slope and land use. Considering that the study 
area has encountered many landslide types, the thresholds of 
slope angle obtained through GMM are used to reclassify the 
slope raster. The slope raster is reclassified accordingly after 
the thresholds are estimated automatically. In the meantime, 
the land use raster is classified into two classes by integrating 
water bodies, stream, cemetery, residential building, transpor-
tation and other buildings in one class, and the other class 
contains the remaining classes (forest, vegetated area and open 
land). The two reclassified elements are integrated to produce 
the landslide potential area. This process is advantageous 
because it reduces the sensitivity of the model to the spatial 
variance in conditioning factors of landslides. In addition, it 
allows to filter off the regions with no possibility of a landslide. 
After the thresholds of slope angles are estimated by the GMM 
method and the likelihood landslide occurrence, the probable 
source regions can be identified through geoprocessing steps 
in ArcGIS. Lastly, the remaining data in the inventory dataset 
are used to validate the obtained results for demonstrating the 
performance of the proposed ensemble model. The stacking 
ensemble models were implemented using Python, whereas 
the GMM was run using Matlab R2016b. The proposed hybrid 
model was performed in ArcGIS 10.5 environment.

3.5  Determining Slope Thresholds

The distribution of slope angle can be represented in many 
Gaussian distributions that can reflect the morphological char-
acteristics, such as rock cliff, steep slope, moderate steep, foot 
slope and plain. A slope is rated as a probable rockfall source 
area where the slope angle lies over a particular threshold of 
slope angle, which can be defined through the Gaussian dis-
tribution of the morphological unit (rock cliff becomes pre-
dominant over the steep slope). GMM comprises k multivari-
ate components normally used as a parametric model for the 
distributions of landslide probability given by the following 
equation (Dieu et al. 2016):

(2)p(x|⋋) =

k∑

i=1

wig

(
x|�i,

∑

i

)
,

where x is d-dimensional features, wi, i = 1,… , k, the mix-
ture weights and g(x��i,

∑
i), i = 1,… , k, are the component 

Gaussian densities. Each component density is a d-variate 
Gaussian function of the form (Reynolds 2015)

with mean vector �i and covariance matrix 
∑

i . The mixture 
weights satisfy the constraint that 

∑k

i=1
wi = 1.

The GMM parameters were computed on the basis of the 
training dataset by using the iterative expectation–maximisa-
tion algorithm.

3.6  Ensemble Machine Learning Models

Machine learning algorithms provide better results for land-
slide identification than other probabilistic methods. In the 
last decades, machine learning algorithms have been used 
effectively in identifying probable landslide areas (Bren-
ning 2005; Evans and Hudak 2007; Scrucca et al. 2016). 
Methods, such as RF (Trigila et al. 2013; Chen et al. 2019; 
Segoni et al. 2018; Fanos et al. 2018), logistic regression 
(LR) (Catani et al. 2005; Pradhan et al. 2014; Bui et al. 
2016), artificial neural network (ANN) (Manzo et al. 2013; 
Pham et al. 2016) and NB (Lombardo and Mai 2018), are 
popular and widely applied machine learning algorithms for 
landslide probability and produce high accuracy. However, 
existing methods for the modelling of landslide probability 
prove that the forecasting of landslide probability can be 
improved using hybrid machine learning algorithms (Fanos 
et al. 2018). Thus, new hybrid machine learning models for 
landslide probability should be developed.

The current research partially fills this gap in the lit-
erature through proposing a new hybrid machine learning 
model for the probability modelling of different landslide 
types. Stacking is a machine learning ensemble approach. 
Contrary to other ensemble models, stacking can create a 
strong learner from weaker ones with better tuning in the 
search for landslide probability modelling processes. In 
comparison with other ensemble models, stacking also 
requires lesser running time and computational resources 
for training, optimisation and validation (Alves 2017). In 
this research, different stacking models, namely, (RF–ANN), 
(RF–NB), (RF–LR), (ANN–NB), (ANN–LR) and (NB–LR), 
were optimised and trained on the basis of the inventory data 
and the obtained conditioning factors. The hyperparameters 
of the used machine algorithms were first optimised using 
the grid search optimisation approach (Kotthoff et al. 2017). 
Then the best-fit stacking ensemble model (RF–NB) was 
utilised to derive the probability maps of different landslide 
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types. The model was run with 174 samples of the inventory 
dataset (87 landslides and 87 non-landslides).

4  Results and Discussion

4.1  Slope Thresholds

The slope angles distribution of various landslide types are 
presented in Fig. 4 based on the inventory data. Various 
landslide types had occurred at various slope angles, which 

indicates the potential to identify and recognise the source 
areas of these types through the GMM. The figure also dem-
onstrates that rockfall incidents had occurred at the highest 
slope angle range (45°–75°). Shallow landslide incidents 
had occurred within the slope angle in the range from 23° 
to 43°. In contrast, debris flows had occurred at the lowest 
slope angle range (15°–25°). The thresholds of the slope 
angle depend on the variation in slope angle distribution in 
a particular region. Thus, the GMM was used to evaluate 
the ability to determine the thresholds, and the slope angles 
were fine tuned in an unsupervised way via the GMM algo-
rithm. Consequently, rockfall could be distinguished from 
other landslide types automatically on the basis of the slope 
angles.

The thresholds of slope angles derived via the GMM are 
illustrated in Fig. 5. They included five components deter-
mined on the basis of the geometric unit of slope terrain. 
Thresholds were calculated without the label (landslide 
type). In other words, it is an unsupervised process. The 
mean values 

(
�i

)
 of the five components were obtained as 

follows: 1.46°, 6.23°, 16.43°, 43.21°, 66.31° and 47.22°. 
Thereafter, the normal values were defined depending on 
the �i values in consideration of the standard deviation and 
mean values of the dataset. The efficient thresholds of slope 
angles could be determined in this way. After the slope 
angles were plotted against the normal values, the effective 
thresholds of slope angles could be identified through the 
intersection of curves (slope terrain type), as illustrated in 
Fig. 5. For example, the efficient threshold for debris flow 
was specified through intersecting the curves of foot slopes 
with moderate slopes and moderate slopes with steep slopes. 

Fig. 4  Distribution of slope angle for various landslide types in the 
training dataset

Fig. 5  Effective thresholds of slope angles determined through GMM
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This procedure resulted in an effective slope angle in the 
range from 9° to 23°. For shallow landslide, the effective 
slope angle threshold was determined by intersecting the 
curves of moderate slopes with steep slopes and steep slopes 
with cliffs. Consequently, the effective slope angle threshold 
ranged from 23° to 57°. In contrast, the efficient threshold of 
rockfall was identified via intersecting of steep slopes with 
cliffs and above. Therefore, the final threshold was chosen 
as > 57°.

4.2  Factor Optimisation

Table 1 shows the estimated ranks of the conditioning fac-
tors accounting for the different types of landslides, par-
ticularly the key factors ( 𝛼 < 0.05 ) (aspect, slope, curvature, 
TRI, land use, distance to lineaments, distance to streams, 
distance to roads and vegetation density). Chi-square model 
accuracies (areas under the curve [AUC]) are shown with 
the best conditioning factors. Regarding rockfall, the best 
five conditioning factors were observed as slope, TRI and 
distances to lineament, road and stream. However, vegeta-
tion density, curvature and aspect were found less significant 
for the prediction of the rockfall occurrence probabilities in 
the study area.

4.3  Landslide Probability

The best conditioning factors were derived for each land-
slide type in the previous section. Consequently, different 
stacking ensemble models were developed on the basis of 
machine learning algorithms (RF, ANN, NB and LR) for the 
prediction of landslide occurrence probability in the study 
area. These models were trained with the best conditioning 
factors and inventory dataset. The success rate curve (ROC) 
and the prediction rate curve (PRC) were used to assess the 
performance of each stacking ensemble model. The best-fit 
stacking ensemble model (RF–NB) was used to derive the 
probability maps of each landslide type. Figure 6 illustrates 

the generated probability maps. The probability map is raster 
with a spatial resolution of 0.5 m which is the same resolu-
tion of the generated DTM. The probability maps reflect that 
shallow landslides could occur in the east of the area. How-
ever, higher probability was observed in the steep terrain 
than in low-slope regions. Some portions in the south and 
northwest could experience shallow landslides. Figure 6a 
shows the highly susceptible regions for shallow landslides, 
which are marked in red colour. In the meantime, the north-
west and northeast regions were predicted as highly prone 
to rockfall. The regions of steep cliffs with high slopes had 
a high probability to encounter rockfall (Fig. 6b). Further-
more, the middle towards eastern portions of the study area 
had a high probability to encounter debris flow, particularly 
the areas with the low slope angle of < 23° (Fig. 6c).

Thereafter, the slope raster was reclassified using the 
effective thresholds of slope angles to create the landslide 
potential area raster. A raster with two classes, namely, high 
potential and less potential of encountering landslides, was 
obtained. The raster considered land use and slope angle. 
The northeast portion, which has steep slopes, was more 
prone to landslides than others. In general, 24% of the study 
area could encounter landslides. The next sections demon-
strate the results of the developed model to classify these 
regions depending on the landslide types and transform the 
probability raster into source areas by utilising the effective 
thresholds of slope angles.

4.4  Accuracy Assessment of the Ensembles Models

The proposed ensemble model was validated using receiver 
operating characteristic (ROC) and precision-recall curve 
(PRC). ROC and PRC explain the known landslide percent-
age that lay on the rank of the probability level and shows 
the graph of cumulative frequency (Evans and Hudak 2007; 
Chen et al. 2019). The ROC was produced using the land-
slide inventory dataset for training, whereas the PRC was 
produced using the validation landslide dataset. Moreover, 
the area under the curve (AUC) was adopted to assess the 
accuracy of the tested ensemble models for producing the 
landslide probability maps; high accuracy is achieved when 
the area is large (Pradhan et al. 2010; Hong et al. 2015; Wen 
et al. 2016; Park et al. 2018).

Amongst the tested stacking ensemble models, stack-
ing (RF–NB) was found as a best-fit model for producing 
landslide probabilities (Table 2). The highest ROC was 
found for rockfall (0.935), followed by that for debris 
flow (0.881). The highest PRC was obtained for rockfall 
(0.913), followed by that for debris flow (0.859). The 
model showed the lowest ROC and PRC of 0.805 and 
0.797, respectively, for shallow landslides. In general, 
the proposed model showed weighted averages of 0.889 
and 0.856 for ROC and PRC, respectively. The lowest 

Table 1  Factor ranking by Chi-square method

Factor Shallow Rockfall Debris flow Overall

Aspect 1 9 4 4
Slope 5 1 8 5
Curvature 8 8 7 8
TRI 6 2 3 2
Land use 4 6 9 7
Distance to lineaments 9 3 6 3
Distance to streams 2 5 5 9
Distance to roads 3 4 1 1
Vegetation density 7 7 2 6
AUC 0.79 0.94 0.88 0.85
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performance accuracy was obtained from the stacking 
(NB–LR) model with three landslide types. In addition, 
the stacking (RF–LR) model also proved to be a good 

ensemble model for predicting landslide probabilities. 
However, the proposed stacking (RF–NB) ensemble model 
could be considered an efficient tool because the accuracy 

Fig. 6  Probabilities of different landslide types
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assessment revealed an excellent performance of the pro-
posed model based on the validation and training data. 
Moreover, the model generalisation was expected to be 
excellent because the PRC of rockfall was higher than that 
of ROC accuracy, especially in areas with nearly the same 
characteristics as the tested area. Nevertheless, the accu-
racy of model performance is also affected by the number 
of landslide inventory samples. Realistic model accuracy 
and result can be achieved with a big number of inventory 
samples for training and testing dataset. On the other hand, 
a small number of inventory dataset can lead to unrealistic 
result even with high accuracy achieved through the train-
ing process. Therefore, the higher accuracy achieved in 
this study is with rockfall dataset due to the big number 
of inventory samples in comparison with other landslide 
types. In addition, the lack of the spatial frequency of dis-
continuities (fractures, cracks and joints) did not affect 
the accuracy of the proposed model as it achieved a high 
accuracy, especially with rockfall.

4.5  Identifying Rockfall Sources

The estimated landslide probabilities could be transformed 
into the source regions by using the efficient thresholds of 
slope angle derived through the GMM. Subsequently, the 
reclassified slope raster based on the obtained threshold 
(> 57°) was intersected with the rockfall probability raster 
within the GIS environment to create the probable rockfall 
source regions. Figure 7 shows the predicted areas of poten-
tial rockfall. These regions had steep cliff with other ana-
lysed elements (slope components). The model prediction 
accuracy could be evaluated by determining locations of the 
recorded rockfall incidents. Most of the historical rockfall 
incidents (91%) were accurately predicted through the devel-
oped hybrid model. The model predicted that 3.5% (around 
0.55 km2) of the area is susceptible to rockfall. The regions 
that were predicted to be susceptible to rockfall were also 
investigated through the in situ survey. Many locations were 
observed to be sensibly predicted as high potential regions 
to rockfall. These regions were mainly formed by steep cliff 
surrounded by vegetated areas (Fig. 7).

5  Conclusions

This research developed an ensemble model using two 
algorithms, namely, GMM and stacking ensemble model 
based on RF and NB, to identify rockfall source regions 
in the presence of other landslide types (shallow landslide 
and debris flow). The GMM model was used to determine 
the effective thresholds of slope angle for different land-
slide types and construct the landslide potential area raster. 
In the meantime, the best landslide conditioning factors 
were selected through the Chi-square method. Various 
ensemble models were developed on the basis of differ-
ent machine learning algorithms (RF, ANN, NB and LR). 
The best-fit ensemble model (stacking RF–NB) was used 
to produce the probability maps. The binary slope raster 
created through GMM was intersected with the rockfall 
probability map.

The developed ensemble model performed well with 
training and validation regions chosen at Kinta Valley. The 
model showed accuracies of 0.935 and 0.913 on training and 
validation datasets. For shallow landslide and debris flow, 
the proposed ensemble model provided accuracies of 0.805 
and 0.881 on the training dataset and 0.797 and 0.859 on the 
validation dataset. Overall, the proposed ensemble model 
showed excellent average accuracy on all the landslide 
types in the inventory dataset. The model achieved weighted 
average accuracies of 0.889 and 0.856 on the training and 
validation datasets, respectively. Since the proposed model 
achieved good accuracy, it proves that the conditioning fac-
tors derived from LiDAR can be used as an alternative to the 
geomechanical factors, such as discontinuity and fractures. 
However, the main limitation of this research is that the tem-
poral factor was not considered due to the limitation in the 
available inventory datasets.

The major contribution of this study is that the develop-
ment of a hybrid model can predict the probable rockfall 
source regions accurately in the presence of other landslide 
types. However, additional assessment can be performed to 
improve the computing performance and accuracy of the 
proposed model for predicting a particular landslide type 
in the existence of other types in complex regions. Moreo-
ver, the proposed model can be improved by considering 

Table 2  Accuracy assessment 
of the proposed model

Stacking model Debris flow Rockfall Shallow landslide

ROC PRC ROC PRC ROC PRC

RF–ANN 0.820 0.753 0.809 0.785 0.735 0.713
RF–NB 0.881 0.859 0.935 0.913 0.805 0.797
ANN–NB 0.795 0.813 0.754 0.739 0.705 0.689
RF–LR 0.857 0.839 0.874 0.853 0.743 0.755
NB–LR 0.703 0.675 0.734 0.715 0.659 0.627
ANN–LR 0.751 0.719 0.795 0.773 0.685 0.667
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the temporal factor using a complete inventory dataset in 
time and space.
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