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Abstract
This paper bypasses the mathematical technicalities of baroclinic instability and tries to provide a more conceptual, mecha-
nistic explanation for a phenomenon that is fundamentally important to the dynamics of the earth’s atmosphere and oceans. 
The standard conceptual picture of baroclinic instability is reviewed and stripped down to identify the most essential features. 
These are: (a) Regions with both positive and negative potential vorticity (PV) gradients, (b) separate Rossby wave pertur-
bations in each region where PV gradients are of different signs, and (c) cooperative phase locking between Rossby waves 
in regions of opposite PV gradient, which renders them stationary, and allows them to amplify to reduce the background 
temperature gradient (or baroclinicity) while still conserving total PV. These three factors constitute the “counterpropagating 
Rossby wave” perspective, and suggest the heuristic picture of a “PV seesaw”, which remains balanced as the instabilities 
(i.e., the phase-locked PV wave perturbations) grow out along opposite limbs. After reviewing the key characteristics of PV 
and Rossby waves, the process is illustrated by the spontaneous onset of baroclinic instability during spin-up of the Held–
Suarez dynamical core atmospheric model.
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1  Introduction

Since the earth is both differentially heated and rapidly rotat-
ing, there is a tension between the thermodynamic impera-
tive to reduce the meridional temperature gradient, and the 
dynamic inhibition against displacing fluid meridionally—at 
least outside the tropics. Poleward heat transport by mean 
meridional circulations is not a viable option poleward of 
30° or so (see e.g., Held and Hou 1980; Held 2000; and Fri-
erson et al. 2007). The mechanism that resolves this tension 
is that of baroclinic instability.

It is relatively easy to explain how convective instability 
works, because the model of individual “parcels” moving 
buoyantly in one dimension is perfectly adequate. However, 

trying to explain baroclinic instability is trickier because, as 
outlined below and in standard textbooks like Holton (2004), 
the parcel concept is inadequate by itself and really should 
be supplemented with that of a wave, or a vortex tube. The 
relevant waves are Rossby waves, which only occur in the 
context of flows that have non-uniform potential vorticity 
(PV). So both PV and Rossby waves require explanations 
of their own if baroclinic instability is to be properly under-
stood. Moreover, baroclinic instability is fundamentally a 
three-dimensional process.

Most large-scale mid-latitude weather systems and oce-
anic mesoscale eddies originate from some form of baro-
clinic instability. It is the process that generates the main 
features of interest on synoptic weather charts. This paper 
attempts to bypass the mathematical technicalities of baro-
clinic instability and provide a more conceptual, mechanistic 
explanation for an important phenomenon in the dynam-
ics of the earth’s atmosphere and oceans. Perhaps trying to 
explain baroclinic instability without using mathematics is 
like describing a spiral staircase without using your hands: 
it is just not natural. But baroclinic instability is a physical 
process acting under relatively well-understood physical 
constraints, so the mathematical details need not be essential 
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to our understanding, and an exercise like this should thus 
be worthwhile. Persson (1998) and Phillips (2000) took a 
similar approach in exploring the Coriolis force, and many 
of the processes and constraints explained in those articles 
are relevant here too.

2 � Mathematical History

Our theoretical understanding of baroclinic instability 
derives mainly from idealized mathematical models, such 
as those of Eady (1949) and Charney (1947), or discretized 
layer models—especially the two-layer model (Phillips 
1954; Pedlosky 1979). In those models, a necessary con-
dition for baroclinic instability to occur is that the back-
ground potential vorticity gradient (∇Q) change sign some-
where in the domain. Indeed, this is a robust and general 
condition, known from its mathematical derivation as the 
Charney–Stern–Pedlosky theorem (Charney and Stern 1962; 
Pierrehumbert and Swanson 1995). As this paper tries to 
show, it may be understood from a purely physical perspec-
tive as well. If it is not satisfied, small disturbances that “tilt 
against the shear” may still grow transiently for a while as 
they are “stood up” by the shear (the “Orr effect”: Orr, 1907, 
Farrell 1982, Farrell 1984), but as time goes on the shear 
tilts them over in the opposite sense, and they ultimately 
decay without significantly changing the original flow.

The standard approach to the Eady, Charney and multi-
layer models mentioned above, is to linearize the govern-
ing equations about a relatively simple basic state flow, and 
look for normal mode solutions. Normal modes are typi-
cally waves with fixed horizontal wavelengths, and vertical 
structures that are eigenfunctions of the system. All normal 
modes preserve their fixed shape as they grow, decay, or 
just propagate, over time. Normal mode solutions typically 
involve the appearance of “critical layers”, where the phase 
speed of the wave equals the speed of the background flow, 
and careful mathematics are sometimes needed to avoid 
the singularities associated with them. Some theories of 
baroclinic instability invoke the concept of over-reflection 
at critical layers (Lindzen and Tung 1978; Lindzen 1988). 
Farrell (1984) and O’Brien (1992) describe more general 
non-modal baroclinic wave solutions that can change their 
shape over time. Such flexibility allows some of these waves 
to grow faster than normal modes—or even grow temporar-
ily where normal modes cannot grow at all.

The Eady, Charney, and multi-layer model solutions to 
the quasigeostrophic potential vorticity equation all provide 
key insights into the mechanism of baroclinic instability. 
Along with the requirement that the basic state PV gradient 
change sign somewhere within the domain, these models 
illustrate how solutions consisting of pairs of neutral Rossby 
waves propagating in opposite directions can connect and 

become phase locked as they evolve into two stationary 
waves, one growing over time, the other decaying. The 
growing waves, i.e., the unstable ones, have characteristic 
geopotential structures that tilt with height to “lean against” 
the basic state shear, and have wind and temperature fields 
that are out of phase so that warm air is advected poleward 
and cold air advected equatorward, leading to net poleward 
heat transport, which is the real thermodynamic function of 
such waves. As baroclinically unstable waves grow to finite 
size, they tap into the available potential energy stored in 
the baroclinicity of the background flow, converting it into 
kinetic energy of the wave itself, and thereby reducing the 
overall “baroclinicity” of the flow. A cascade of energy con-
versions may transfer energy into other waves or ultimately 
back into the zonal flow—but a zonal flow that has been 
modified by the instability, with overall less baroclinicity, 
less vertical shear and a weaker meridional temperature gra-
dient than the original one.

All these insights may be gleaned even from simple 
quasigeostrophic two-layer beta-plane models. They are well 
presented in standard textbooks (e.g., Holton 2004; Pedlosky 
1979; Vallis 2006), and in comprehensive reviews such as 
Pierrehumbert and Swanson (1995). Essentially the same 
processes, but in more realistic earth-like settings, occur in 
the baroclinic wave “life cycle” experiments of Simmons 
and Hoskins (1978), or Jablonowski and Williamson (2006), 
using the full nonlinear equations of motion on a rotating 
sphere.

Insofar as this paper tries to distil and explain the essen-
tial physics of baroclinic instability, it is not necessary to 
invoke normal modes or indeed any explicitly linear theory 
at all. There is no need to consider critical levels, or over-
reflection, or find solutions to partial differential equations. 
The two main challenges that must be met to reach a satis-
fying intuitive understanding of baroclinic instability are: 
an appreciation of potential vorticity (and its conservation), 
and of Rossby waves. In the terminology of Harnik and 
Heifetz (2007), the perspective here is essentially that of 
the “counterpropagating Rossby waves”, in contrast to over-
reflection—although their paper goes a long way to unifying 
the two. Hoskins et al. (1985) presented a very clear exposi-
tion of baroclinic instability in terms of counterpropagating 
Rossby waves and in many ways this article is a synopsis of 
their one, albeit from a slightly different perspective.

3 � The Context: Differential Heating 
on a Rotating Sphere

Differential heating by the sun builds up large meridional 
temperature gradients between the tropics and the poles on 
the earth’s surface and in the atmosphere. Mean meridi-
onal circulations (e.g., the Hadley cell) arise in response 
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to these, and try to reduce them. If the earth did not rotate, 
there would be nothing to stop colder, denser air at high 
latitudes from slipping downwards and equatorward under 
gravity, with warm air aloft moving poleward to preserve 
mass continuity, in a single hemisphere-spanning circulation 
cell. This is essentially what happens in baroclinic situations 
where the earth’s rotation is immaterial, such as sea-breeze 
circulations.

At another extreme, if there were no meridional tempera-
ture gradient at all, the earth’s rotation and sphericity would 
still establish meridional pressure gradients in balance with 
the centrifugal force. Perturbations of this balance would 
generate either inertial waves or Rossby waves, both of 
which consist of air parcels oscillating about their base lati-
tude. Inertial waves arise from the interplay between equa-
torward centrifugal force and poleward gravitational force on 
an ellipsoidal earth (Phillips 2000). Rossby waves arise in a 
context where absolute (or potential) vorticity is conserved 
even as planetary vorticity changes with latitude. Parcels (or 
vortex tubes) perturbed from their base latitude must then 
develop either positive or negative relative vorticity so that 
the absolute vorticity conservation constraint is satisfied. In 
either case, as the planet rotates faster, the restoring forces 
in the waves become stronger, and meridional displacements 
of fluid parcels from their base latitudes are restricted to an 
ever narrower range.

The earth’s rotation and sphericity means that the upper 
branch of the Hadley cell acquires an increasing westerly 
velocity (by conservation of angular momentum) as it moves 
poleward and closer to the axis of rotation. By 30° latitude 
or so, that westerly velocity (and associated vertical shear), 
now essentially the subtropical jet, is large enough to make 
poleward heat transport by the mean meridional circulation 
relatively inefficient. At a certain point (as explained below), 

the subtropical jet breaks down into a series of baroclinically 
unstable waves, which provide a more efficient alternative 
means of transporting heat poleward and reducing the merid-
ional temperature gradients. Figure 1 shows a highly simpli-
fied schematic of this process. Levine and Schneider (2015) 
explore the relationship between the Hadley circulation and 
baroclinic instabilities quite thoroughly. The efficiency of 
baroclinic heat transport, the turbulence of the unstable 
waves, and how all those processes might be parameterized 
are subjects of quite a large literature. The focus here is just 
on the onset of baroclinic instability and the conditions that 
trigger it.

4 � The Baroclinic Wedge of Instability

Figure 2 shows a standard view of the “wedge of instability”, 
which is a staple of dynamics textbooks (Pedlosky 1979; 
Vallis 2006). Heifetz et al. (1998) explored this in detail in 
the context of the Eady model. See also Thorpe et al. (1989). 
A situation where density (or isentropic) surfaces are not 
parallel to isobaric surfaces (as in Fig. 2) is what makes a 
fluid baroclinic, and amounts to a definition of baroclinicity. 
The angle between the isentropes and isobars is proportional 
to the available potential energy (APE) built up in the fluid, 
at least some of which is tapped by any baroclinic instability 
and converted to kinetic energy of the growing waves. Note 
that the flow in Fig. 2 is hydrostatically stable, so parcels 
perturbed directly upwards will be denser than their envi-
ronment and so sink back down, while parcels perturbed 
directly downwards will be less dense than their environment 
and so rise back up—returning to their original position in 
either case (as shown by the green arrows).

Fig. 1   Schematic of mean 
meridional circulation cells, in 
the case of (a) slow rotation or 
none at all, where the Hadley 
cell extends almost to the poles, 
and (b) fast rotation, as on the 
earth, where the Hadley cell 
generates a strong subtropical 
jet at its high-latitude limit. 
As the jet exceeds a thresh-
old speed (or vertical shear), 
it breaks down into unstable 
baroclinic waves. In (b), the 
upper branch of the Hadley 
cell acquires a strong westerly 
component, shown by the wind 
vectors exiting to the east and 
re-entering from the west
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Parcels perturbed along the paths of the purple arrows 
in Fig. 2, however, will not tend to return to their original 
position, but rather return vertically to their original isen-
trope (or density surface) at a different horizontal location. 
In principle, this is a manifestation of baroclinic instability, 
and sure enough, as shown by Heifetz et al. (1998), parcel 
displacements in the Eady model of baroclinic instability do 
indeed occur at various angles within that unstable wedge 
between the isentropes and the isobars.

Nevertheless, the model of fluid parcels moving within 
the baroclinic “wedge of instability” is unsatisfying for at 
least two reasons. First, the “instability” appears to be very 
tightly bounded. The description above provides no mecha-
nism for parcels perturbed within the wedge of instability 
to continue any further north or south than their initial dis-
placement. This instability appears to be nothing more than 
a limited horizontal perturbation followed by vertical hydro-
static equilibration.

Second, and perhaps more subtly, should any localized 
perturbation grow to an instability that achieves localized 
baroclinic adjustment (i.e., pulls the local isentropes and 
isobars back into parallel), this must inevitably lead to gen-
eration of even more baroclinicity in the regions north and 
south of the adjusted region, as shown schematically in 
Fig. 3. Local baroclinic adjustment (as in Fig. 3) certainly 

reduces the overall APE of the original baroclinic state 
(as measured, e.g., by the total area between the pressure 
and density curves in Fig. 3 over a finite latitude span), but 
increases the local APE (or baroclinicity), as measured by 
the local angle between the adjusted density and adjusted 
pressure curves. There is nothing unphysical about this: 
as long as overall APE is reduced, local gradients may be 
enhanced as part of the process—as happens, e.g., during the 
formation of cold fronts. Similar effects may be seen in the 
baroclinic life cycle simulations of Simmons and Hoskins 
(1978) or Mak et al. (2016). Nevertheless, those are primar-
ily macro-scale effects that occur towards the end of the life 
cycles of mature baroclinic cyclones. How plausible is it 
that small, growing instabilities will narrow the wedge of 
instability in one local region while widening it in neighbor-
ing regions? What determines which local regions become 
stabilized, and which ones destabilized? Once stabilized, 
can a local region be destabilized again by adjustment of 
neighboring regions to the north or south? I think those are 
fair questions, but the standard “wedge of instability” picture 
(as in Figs. 2 and 3) is really inadequate to answer them.

Part of the answer, which only really becomes clear in 
the PV context, is that the sloping isentropes or density sur-
faces become baroclinically unstable much more readily if 
they curve downwards, as shown by the red “initial density” 

Fig. 2   Schematic of baroclinic 
or “slant-wise” instability. 
Parcels of air following the 
green arrows will tend to return 
exactly to their origin point, so 
those perturbations are stable. 
Parcels following the purple 
arrows will also tend to return 
to their original density (or 
isentropic) surface, but at a 
different pressure level; those 
perturbations may be “unsta-
ble”, provided other conditions 
are satisfied

Fig. 3   Schematic of initial (a) 
and (potentially) adjusted (b) 
baroclinic states, before and 
after the putative operation of 
local baroclinic adjustment
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curve in Fig. 4, instead of being linear (as in Fig. 3) or curv-
ing in the opposite sense. Linear profiles that intersect the 
lower boundary may support instabilities too, but the math-
ematical formalities that handle the surface discontinuity 
essentially introduce a local infinitesimal curvature right 
at the surface (Bretherton 1966; Lindzen and Tung 1978). 
Vertically discretized models with standard surface bound-
ary conditions all avoid this discontinuity problem quite 
naturally by virtue of their vertical discretization. Whether 
the isentropic curvature shown in Fig. 4 is localized at the 
bottom of the atmosphere just above the surface, or whether 
it extends deep into the troposphere, such curvature is inti-
mately connected to the necessary conditions for baroclinic 
instability to occur.

Given the initial baroclinic situation shown in Fig. 4 (i.e., 
the purple curve), it is easy to see how the “wedge of insta-
bility” can be reduced from the surface upwards (following 
the orange adjusted curve) without requiring the destabi-
lization of any neighboring regions at all (as in Fig. 3b). 
Baroclinicity and associated APE have been reduced every-
where; there are no counter-gradient artifacts (as in Fig. 3) 
to complicate matters.

5 � Conservation of Potential Vorticity

The easiest way to understand baroclinic instability is to 
view it from a potential vorticity (or “PV”) perspective, since 
the essential features of the instability are all determined by 
the need to conserve PV. The PV conservation constraint is 
particularly strong in that it holds not just globally, but also 
in a Lagrangian sense, following any material part of the 
fluid. Some dramatic examples of conservation of PV are 
provided by tornados and water spouts. The “potential” vor-
ticity in weak and shallow rotation is converted into strong 
actual vorticity as the funnel is stretched vertically until it 
reaches the ground. The vortex itself can move horizontally 

and undulate like a snake but, due to the conservation of 
PV, can retain its coherence over very long times (relative 
to the period of rotation), until friction or other external 
forces intervene.

Even air with no local motion—i.e., in solid body rotation 
with the earth—has planetary vorticity as a component of its 
PV. At scales large enough to sense the earth’s rotation, PV 
must be conserved as air moves about in the environment 
of a strong positive meridional planetary vorticity gradient, 
which is due to the earth’s sphericity. Rossby waves may 
arise and propagate on that gradient, as discussed below.

Formally, vorticity is the curl of the wind vector. Meteor-
ology is mostly concerned with the local vertical component 
of vorticity. More informally, vorticity is the rotational or 
shear component of the horizontal flow at each point, or the 
propensity of the flow to “turn” at each point. In principle, 
a vorticity meter is one of the simplest of all meteorological 
instruments, something like an anemometer, but with flat 
vertical paddles instead of cups distributed symmetrically 
about a central axis. If a vorticity meter immersed in a flow 
was to turn about its axis, the flow has vorticity at that point, 
either positive or negative, depending on the direction of 
rotation. Of course, such vorticity meters are too small to 
be sensitive to synoptic-scale vorticity, and so are of little 
practical use in meteorology. Nevertheless, some interesting 
applications of a vorticity meter (along with explanations of 
vorticity itself), as recorded by Dr. Ascher Shapiro of MIT, 
in 1961, may be viewed online at https​://www.youtu​be.com/
watch​?v=wbMUB​7usKP​Q. When trying to conceptualize 
vorticity, it can be helpful to imagine how a “virtual vorticity 
meter” would behave at any given point.

Consider a small parcel of fluid circulating at radius 
r about a central axis, with angular velocity Ω. Its linear 
momentum (per unit mass) is rΩ, its angular momentum (per 
unit mass) is r2Ω, while its vorticity (parallel to the axis of 
rotation) is 2Ω. Vorticity is a purely local quantity: it makes 
no reference to any axis of rotation or to distance from it. 

Fig. 4   Schematic of baroclinic 
adjustment as it operates by heat 
flux at the bottom boundary. 
The baroclinicity (or “wedge of 
instability”) is not completely 
removed, only reduced enough 
to remove the change in sign of 
potential vorticity gradient

https://www.youtube.com/watch?v=wbMUB7usKPQ
https://www.youtube.com/watch?v=wbMUB7usKPQ
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It can be helpful to think of vorticity as the limit, as a sur-
face area becomes infinitesimally small, of the tangent flow 
integrated around the edge of the surface (“circulation”), 
divided by the surface area. Thus, integrating tangential 
velocity rΩ about a circle centered on the axis of rotation 
yields 2πr × rΩ. Dividing this by the area of the circle πr2 
yields the vorticity 2Ω.

Planetary vorticity exists because of the rotation of the 
earth, regardless of the reference frame. The planetary vor-
ticity gradient (the “beta-term” in quasigeostrophic vorti-
city) then arises from the sphericity of the earth. A virtual 
vorticity meter planted vertically on the surface of the earth 
would rotate (in the external, inertial frame) along with the 
earth itself. At the equator, however, the vorticity meter 
would not turn about its own axis (i.e., the local vertical 
direction) at all, since it is perpendicular to the earth’s axis 
there. At progressively higher latitudes, the component of 
the vorticity meter axis parallel to the earth’s axis increases, 
the component of its surface projection perpendicular to the 
earth’s axis increases, and so does planetary vorticity itself 
(in proportion to sine of latitude). At any latitude, planetary 
vorticity is twice the earth’s angular rotation rate multiplied 
by sine of latitude: f = 2� Sin�.

Along with the planetary vorticity due to the “solid body” 
rotation of the atmosphere, atmospheric flow may also 
have relative vorticity within the local, non-inertial rotat-
ing frame—as commonly represented on synoptic weather 
charts. A virtual vorticity meter, embedded somewhere in a 
cyclone or anti-cyclone, or at the edge of a jet, would then 
rotate by virtue of that local flow, along with the planetary 
component. Absolute vorticity is the sum of planetary and 
relative vorticity.

The vorticity vector may be viewed as the infinitesimal 
limit of circulation about a closed loop divided by the area 
enclosed by the loop, with the vector direction perpendicular 
to the enclosed surface area. If the surface chosen is one on 
which a quantity that is conserved following the flow (e.g., 
potential temperature) is constant, then the circulation about 
any closed loop on such a surface is also constant. This idea 
may be extended into a third dimension, parallel to the vor-
ticity direction, by taking the dot product of vorticity with a 
stratification vector perpendicular to the (isentropic) surface 
on which the circulation is calculated. This produces a scalar 
quantity called Ertel’s potential vorticity (Ertel 1942), which 
is essentially an infinitesimal vortex tube whose top and bot-
tom surfaces are isentropes. Therefore, the PV bounded by 
them is also conserved following the flow, at least in the 
absence of heating or other external forces. Symbolically, 
Ertel’s PV is defined as:

Here ξθ is relative vorticity (on an isentropic surface); f  = 2Ω 
Sinϕ is planetary vorticity at latitude ϕ, g is gravity, and 

PV =
(

�� + f
)

). (−g��∕�p)

∂θ/∂p is the vertical potential temperature gradient or strati-
fication. This is generally negative, so the negative sign is 
used to make this factor positive.

At macro-scales, PV is proportional to the pressure thick-
ness of the layers between constant isentropes. As the tube 
shortens or contracts, it must broaden out, and the circu-
lation around the perimeter must decrease to compensate; 
conversely, as the tube stretches, it narrows, and the circu-
lation around the perimeter must speed up to conserve the 
overall potential vorticity—much as conservation of angular 
momentum requires spinning ice skaters to spin faster as 
they pull in their arms. Conservation of PV is related to, 
but different from, conservation of angular momentum. If 
anything it is more general, since PV is conserved within 
any arbitrarily enclosed region, and does not refer to any 
central axis of rotation.

Note that PV consists of three distinct components: rela-
tive vorticity, planetary vorticity, and fluid stratification. In 
the case of an initial weak and broad zonal flow in the atmos-
phere, relative vorticity is negligibly small relative to plan-
etary vorticity. Note that planetary vorticity in the northern 
hemisphere is positive away from the equator, and increases 
towards the pole. So where the isentropes are relatively flat 
or just gently sloping, stratification is almost constant, and 
the meridional PV gradient is dominated by the positive 
planetary vorticity gradient. This is typically the situation 
at and below jet-stream level within the troposphere.

Nevertheless, polar regions are typically colder than trop-
ical ones, especially at the surface, so isentropes do slope 
upwards with latitude, with the largest isentropic slopes near 
the surface. Over much of the troposphere, the thickness 
between isentropes decreases towards higher latitudes, or 
equivalently, the stratification increases. Consequently, the 
stratification component of PV also contributes to a positive 
PV gradient over most of the troposphere.

If it is possible for the meridional PV gradient to become 
negative, where and how is that most likely to occur? The 
only possibility is for the stratification term to decrease with 
latitude somewhere. Away from the surface, this would 
require the thickness between isentropes to increase even 
as temperatures decrease (towards higher latitudes). Such 
physically inconsistent situations do not occur.

However, the concept of material potential vorticity 
tubes mentioned above needs to be modified at the earth’s 
surface, since that boundary does not generally correspond 
to an isentropic surface. Think of a PV tube whose lower 
isentrope is initially coincident with the earth’s surface (as 
in the schematic diagram on the left side of Fig. 5). As the 
high-latitude end of the tube is cooled at the surface, and the 
low-latitude end warmed, the bottom isentrope tilts so that 
the high-latitude end is raised above the surface, while the 
low-latitude end sinks somewhere beneath the surface (right 
diagram of Fig. 5). At the high-latitude end, the stratification 
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is increased (as is PV), while at the low-latitude end, stratifi-
cation and PV are both decreased. So this process also pro-
motes a positive meridional PV gradient.

But we are forgetting the bit of the original tube that got 
pulled below the surface. That now has “infinite” strati-
fication, since we may conceive of all the isentropes that 
intersect the earth’s surface to continue horizontally under-
ground with infinitesimally small thicknesses between them. 
We may formally multiply everything by that infinitesimally 
small thickness to obtain a physical value for PV at the 
boundary itself rather than within a layer. In practice there 
is nothing fishy here: the concept of infinitesimally thin lay-
ers of PV just below the surface is just a technical way of 
relating a perfectly sensible boundary condition to the fluid 
interior. See Bretherton (1966) or Lindzen and Tung (1978) 
for formal justification.

In any case, PV in that part of the original tube that is 
pulled down to the surface completely dominates the remain-
ing part. What discriminates between the various vortex 
tubes pulled below the surface by differential heating is not 
their thickness, but their isentropic values, and those values 
decrease towards higher latitudes. Since PV at the surface 
is now effectively proportional to fθ, the meridional PV gra-
dient at the surface becomes negative once the meridional 
temperature gradient is large enough to overcome the plan-
etary vorticity gradient (the “beta effect”). Thus, for broad, 
smooth, zonal flows in the atmosphere, only at the surface 
are the PV gradient likely to become negative.

Based on the idealized Eady, Charney, and Phillips mod-
els mentioned above, we expect baroclinic instabilities to 
grow by transporting PV down the gradient, both where that 
gradient is positive and where it is negative. In the process, 
total, domain-averaged PV transport is zero, so PV itself is 
materially conserved, as it is constrained to be. The mecha-
nism that effects such transport is the Rossby wave.

6 � Rossby Wave Propagation

While it is often said, following Aristotle, that nature abhors 
a vacuum, it could be said more generally that nature abhors 
a gradient, especially in temperature, and, by the second law 

of thermodynamics, will spontaneously try to reduce it. If 
the earth did not rotate, but radiation built up a temperature 
gradient from tropics to poles, a mean meridional circulation 
could reduce that gradient by simple convection and continu-
ity. If the earth did rotate, but had no meridional temperature 
gradient, there would be a meridional PV gradient (entirely 
due to planetary vorticity) but no need for any local fluid 
motion—only solid body rotation. Any flow perturbation 
on a scale large enough to sense the earth’s rotation would 
ultimately take the form of Rossby waves.

In the context of a positive meridional PV gradient (or 
simply a planetary vorticity gradient), parcels of air that are 
perturbed poleward acquire increased planetary vorticity 
just by virtue of the latitude change, and so must develop 
negative relative vorticity to compensate and conserve total 
PV. This induces an anticyclonic local perturbation, bring-
ing parcels poleward from the west side, and sending them 
equatorward on the east side. Similarly, parcels that are dis-
placed equatorward where planetary vorticity is lower must 
develop positive relative vorticity to conserve PV. This pulls 
other parcels equatorward on the west side, and pushes them 
back poleward on the east. These induced circulations are 
illustrated schematically in Fig. 6 (synthesized from a pres-
entation by Shane Keating of the Univ. of New South Wales, 
available at https​://www.clima​tesci​ence.org.au/sites​/defau​lt/
files​/Baroc​linic​%20Ins​tabil​ity%20Kea​ting%20.pdf). Much 
the same idea is illustrated by Figs. 17 and 18 of Hoskins 
et al. (1985). The meridional extent of the fluid displace-
ments in these Rossby waves is limited by the size of the 
initial displacement. Fluid parcels will not spontaneously 
go any further, since the horizontal pressure gradient forces 
acting on the perturbed fluid tend to restore it to its original 
latitude.

7 � Baroclinic Instability: Phase Locking 
of Upper and Lower Waves

The schematic picture shown in Fig. 6 corresponds closely 
to analytic mathematical solutions for perturbations in sim-
ple quasigeostrophic configurations consisting of uniform 
vertical shear in a background zonal flow (equivalent, via 

Fig. 5   Schematic of how heat-
ing can lower the isentropic 
surface (θ) end of a PV tube 
at the earth surface, formally 
reducing θ1 to infinitesimal 
distance δ below the surface; 
cooling can lift θ1 above the 
surface. The resulting surface 
PV is proportional to surface 
potential temperature rather 
than its vertical gradient

https://www.climatescience.org.au/sites/default/files/Baroclinic%20Instability%20Keating%20.pdf
https://www.climatescience.org.au/sites/default/files/Baroclinic%20Instability%20Keating%20.pdf
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thermal wind, to a meridional temperature gradient) between 
rigid upper and lower boundaries. Solutions of the form 
ei(kx +  y — ωt) for streamfunction perturbations yield eigenfunc-
tions that provide the vertical wave structures. In the Eady 
model at least (and in the Phillips models for large wave-
numbers), two stable Rossby wave solutions are obtained 
when the vertical shear is weak: one propagating westward 
(ω < 0), the other eastward (ω > 0). The westward-propagat-
ing wave may be thought of as anchored in the region aloft 
where the meridional PV gradient is positive, while the east-
ward-propagating wave is anchored at the surface, or lowest 
model layer, where the meridional PV gradient is negative. 
In the Phillips two-layer model, for low wavenumbers and 
weak shear, the PV gradient is positive in both layers and so 
both Rossby wave solutions propagate westward.

As the shear increases, however, those freely propagating 
waves are replaced by solutions that either grow or decay 

exponentially in place. This change occurs exactly at the 
point where (as a direct consequence of the increased shear) 
the PV gradient becomes negative somewhere in the domain. 
At this point, the upper and lower Rossby waves connect, 
and become “phase locked” into what is effectively a grow-
ing baroclinic instability. As summarized by Hoskins et al. 
(1985), “the induced velocity field of each Rossby wave 
keeps the other in step, and makes the other grow.” In the 
Eady and Phillips models, the shorter, shallower waves 
remain stable because they cannot achieve this “phase lock-
ing”. They are effectively separated, lacking the vertical 
penetration needed to connect with each other.

All the essential characteristics of baroclinic instability 
are captured by the natural evolution of stable Rossby waves 
into a growing stationary wave (along with a decaying part-
ner wave) as illustrated by the analytic solutions to the Eady 
model and the Phillips two-layer model (and Fig. 6). The 
baroclinic instabilities that grow in more complex configura-
tions (such as the Charney model, or multi-layered models) 
are just elaborations of those simple unstable structures.

If the regions of positive and negative PV gradients are 
not separated by artificially large vertical distances (as in the 
Eady and 2-layer models), then even short, shallow waves 
can (and do) become unstable as well. All baroclinically 
unstable waves have many common features (such as a west-
ward tilt with height), as mentioned in Sect. 2 and well docu-
mented elsewhere (e.g., Pierrehumbert and Swanson 1995; 
Pedlosky 1979; Holton 2004). These features result from 
the systematic organization of vertical wave structure to 
reduce the meridional temperature gradient, as represented 
by the negative PV gradient at the surface, in the context of 
a positive PV gradient everywhere else, all subject to the 
constraint that total PV must be conserved. Some structures 
are more efficiently organized than others—they do not all 
have to be the fastest-growing normal mode, or even normal 
modes at all. They may change shape as they grow, and they 
may be more or less efficient at extracting APE from the 
background baroclinicity, and in rearranging the overall PV 
field (Farrell 1982, 1984; O’Brien 1992).

8 � Onset of Baroclinic Instability in the Held–
Suarez Model

The spin-up phase of the idealized Held–Suarez model 
(Held and Suarez 1994) provides a good illustration of how 
the gradual buildup of PV gradients results in the onset of 
baroclinic instability as soon as a change in sign of the PV 
gradient appears somewhere in the domain. In practice, that 
means as soon as the PV gradient at the surface becomes 
negative, or as soon as the surface meridional temperature 
gradient becomes large enough to offset the positive con-
tribution to the PV gradient made by planetary vorticity. 

Fig. 6   Schematic of how Rossby waves propagating westwards on 
positive PV gradient (a), and eastwards on a negative PV gradient 
(b), may become “phase locked”, and cooperate to reinforce PV per-
turbations of both positive and negative sign (c)—while still conserv-
ing total PV. The X- and Y-axis directions represent eastwards and 
northwards, respectively
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The Held–Suarez configuration is forced with an idealized 
meridional and vertical heating profile that is uniform in lon-
gitude and symmetric about the equator. The model surface 
exerts a frictional force on the atmosphere above, but is uni-
form everywhere, with no topography or land–sea contrasts. 
Thus, all forcing and boundary conditions are symmetric in 
longitude and about the equator. The model is initialized 
with zero flow and uniform temperature everywhere, apart 
from a small flow perturbation that breaks the zonal sym-
metry and seeds the eventual instability. Results shown here 
are from the finite-volume dynamical core of the Saudi-KAU 
climate model (Almazroui et al. 2017).

During the spin-up phase, the flow remains zonally sym-
metric (apart from the arbitrary perturbation) while the ide-
alized forcing builds up the meridional and vertical tempera-
ture gradients. The meridional PV gradient of this zonally 
symmetric circulation (i.e., ∂[(ξθ +  f) (− g∂θ/∂p)]/∂ϕ] can 
be plotted at each time step—and indeed may be viewed 
as a movie, available in the supplementary material. Dur-
ing spin-up, relative vorticity ξθ is essentially zero. The PV 
gradient is clearly controlled by the (positive) planetary vor-
ticity gradient ∂f/∂ϕ, and by positive contributions from the 
stratification (− ∂θ/∂p), especially in the stratosphere.

As differential heating builds up the meridional tem-
perature gradient, eventually small regions of negative PV 
gradient appear at the model surface around 40° latitude, 
shown as the blue regions in Fig. 7. At this point, the Char-
ney–Stern–Pedlosky condition for instability is satisfied, and 

given the presence of some perturbation, baroclinic insta-
bility occurs immediately. Since the regions with negative 
PV gradients are initially small and shallow, the baroclinic 
instabilities are also localized and shallow.

Figure 8 shows a longitudinal cross-section at 40° lati-
tude through the perturbation v and θ fields of the growing 
instability. This is just a random common-or-garden baro-
clinic wave; it is not a normal mode and was not chosen 
for any special attributes, other than for being early in its 
growth phase but still developed enough to reveal its intrin-
sic features. Indeed, it does show all the features expected 
in a growing baroclinic wave, including the westward tilt 
with height of the wind field along with eastward tilt of the 
temperature field, the out of phase relationship between the 
wind and temperature fields (for meridional heat advection), 
and even a hint of the “phase locking” between upper and 
lower parts of the growing wave. Although the Held–Suarez 
model is symmetric in its geometry and forcing, it provides a 
relatively free and unstructured context for the development 
of baroclinic instabilities, so the snapshot of an early-stage 
growing baroclinic wave shown in Fig. 8 is quite spontane-
ous, and is not artificially optimized or idealized in any way. 
Different initial perturbations lead to different details in the 
resulting instability, but the overall structures retain all the 
key common features mentioned above. As the integration 
of the model proceeds, the forcing builds up even stronger 
surface temperature gradients, leading to strong and ubiqui-
tous baroclinic instabilities. These eventually grow to feed 
back nonlinearly on the mean flow, rearrange the mean PV, 

Fig. 7   Vertical cross-section of meridional gradient of potential vorti-
city at longitude = 30°, 53 days into the spin-up from rest of a Held–
Suarez model configuration. Quantity shown is the meridional dif-
ference in potential vorticity (m2 s−1 K kg−1 × 106) between adjacent 
grid points approx. 125 km apart. Note the negative gradient in dQ/
dy at about 40O latitude, which only appeared first about a day earlier, 
due to the differential heating in the model. Baroclinically unstable 
waves, made possible by the change in sign in dQ/dy, quickly grow at 
these latitudes

Fig. 8   Vertical–longitudinal cross-section snapshot at 40° latitude 
and same time as Fig. 7, during initial stage of baroclinic instability, 
showing perturbation potential temperature (θ′, shading, color bar in 
units of K) and perturbation meridional component of the wind (v′, 
contours, 2  m  s−1 contour interval). Only 180° longitude is shown, 
since baroclinic instability has not yet occurred (or spread) outside 
this region
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and ultimately lead to the familiar time- and zonal-mean 
flow structures of the Held–Suarez model, as are well docu-
mented elsewhere (e.g., Wan et al. 2008).

9 � Summary: The “PV Seesaw”

While most studies of baroclinic instability (as in references 
below) take a predominantly mathematical perspective, this 
paper offers a more heuristic and mechanistic picture. Ulti-
mately, perhaps the clearest insights come from a combina-
tion of analytic solutions to the idealized models of Eady and 
Phillips, and numerical experiments with the Held–Suarez 
model. Complex as it may be, baroclinic instability never-
theless provides the most efficient way to reduce the large 
temperature gradients and associated baroclinicity and APE 
that are generated by differential heating of an atmosphere 
on a rotating sphere.

While the “parcel model” is useful up to a point, it is 
ultimately inadequate for a full understanding of baroclinic 
instability, which is intrinsically three-dimensional, requir-
ing multiple Rossby waves propagating on PV gradients of 
opposite sign to phase lock so that the wave perturbations 
may grow down the PV gradient in each region, while con-
serving PV overall. This suggests the analogy of two bowl-
ing balls on opposite limbs of a seesaw, moving away from 
the center while preserving overall balance.

A variation of this concept is shown schematically in 
Fig. 9. The regions of positive and negative PV gradients are 
represented by the gradients of opposite limbs of a seesaw 
that can pivot independently about a central point (making 
this a somewhat non-standard seesaw). PV perturbations 
are represented by the distance that a bowling ball can roll 
along each limb. The balls are connected to each other by 
ropes and pulleys, requiring that the distances rolled by each 
ball must remain in proportion to the other—all reflecting 
the need to conserve overall PV. Figure 9a represents the 
situation where only a positive PV gradient [∂Q/∂y > 0] is 
present. The opposite limb of the seesaw pins the bowling 
ball representing positive PV perturbations to a solid block, 
effectively putting a brake on development of PV perturba-
tions of any sign. The brake is then removed by differential 
heating, which lowers the horizontal limb, allowing both 
positive and negative PV perturbations to grow as they roll 
out along opposite limbs (Fig. 9b).

As the instability grows, the surface temperature gradi-
ent is reduced, the “wedge of instability” is narrowed, and 
eventually the negative PV gradient is eliminated. This pro-
cess is analogous to raising the right limb of the seesaw in 
Fig. 9 as the perturbation PV grows along it, to the point 
where it becomes horizontal and chokes off the instability 
again. This is a more general nonlinear adjustment than the 
“barotropic governor” proposed by James (1987), although 

there certainly may be a barotropic governor element to 
it. The nonlinear equilibration of baroclinic instability, as 
manifested in the later, occluded stage of cyclone life cycles, 
may be seen as the elimination of opposing PV gradients, 
just as the onset of baroclinic instability depends on their 
appearance.
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