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Abstract
To understand changes in agricultural systems, it is necessary to monitor vegetation dynamics based on the spatio-temporal 
characterization of phenological parameters. The purpose of this study is to identify the main agricultural systems using a 
phenology-based classification method in a semi-arid context. Phenological metrics were derived from Normalized Differ-
ence Vegetation Index time series extracted from MOD13Q1 product between 2012 and 2016. Furthermore, Support Vector 
Machine classification method was applied based on phenological metrics, to identify the main agricultural system classes 
in the study area. The main classes are; (1) irrigated annual crop, (2) irrigated perennial crop, (3) rainfed area and (4) fallow. 
The classification overall accuracy reached 88%, with a kappa coefficient of 0.83 and values of F1-score greater than 0.76. 
The results demonstrated the ability of phenological parameters to identify and monitor the main agricultural system classes 
in the study area and to control the illegal pumping zones.
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1 Introduction

In arid and semi-arid regions, the effects of climate change 
can be dramatic on agriculture whose production depends 
largely on the quantity and distribution of annual rainfalls 
(Almazroui et al. 2017b; DeFries et al. 1999; Dixon et al. 
1994). The global changes in land cover are at the origin of 
the disturbances observed in the agricultural cycle.

In the semi-arid context, successive droughts and floods 
affect the land cover and the socio-economic development, 
especially in arid and semi-arid regions (Almazroui et al. 
2017a; Barakat et al. 2019; Lionboui et al. 2014). In these 
areas, agricultural production depends on the spatio-tempo-
ral distribution of the rainfall amount (Benabdelouahab et al. 
2016; René and Nathalie 2007). Hence, evaluating and mon-
itoring land cover is an essential element for global changes 
(DeFries et al. 1999; Jung et al. 2006; Lambin et al. 2001).

The monitoring of vegetation cover variability during 
agricultural seasons allows managers and policy makers 
to manage agricultural systems (Löw et al. 2013). In this 
context, remote sensing can provide essential tools to sup-
port large-scale agricultural monitoring systems through 
vegetation indices. Many studies affirmed that vegetation 
indices used to produce phenological parameters based on 
time series data provide accurate and robust classification 
results compared to traditional methods that use a single 
image (Alcantara et al. 2012; Pal and Mather 2005).

Phenological parameters provide information on plants’ 
periodicity, as well as the monitoring of the appearance and 
occurrence of phenological events, such as onset, senes-
cence, length of season and peak of biomass production 
(Lieth 1974; Schmidt et al. 2015; Schwartz 2003). Remote 
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sensing time series analysis based on Normalized Difference 
Vegetation Index (NDVI) can be one of the most reliable 
tools for mapping and characterizing the vegetative develop-
ment behaviors among cropping seasons.

Many studies used phenological parameters extracted 
along one or several seasons in different applications: (i) 
for crop mapping (Arvor et al. 2011; Lessel and Ceccato 
2016; Wardlow et al. 2007), (ii) crop yield and agricultural 
production (Mottaleb et al. 2015; Shahriar et al. 2014; Zhao 
et al. 2017), (iii) analyzing the spatio-temporal trends of 
the vegetation linked to climate (Evrendilek and Gulbeyaz 
2011; Peng et al. 2013; Vrieling et al. 2011), (iv) extract-
ing pheno-regions and biomass quantification (Diouf et al. 
2014, 2015) and monitoring drought dynamics effects on 
agriculture (McVicar and Jupp 1998; Winkler et al. 2017; 
Wu et al. 2015).

Phenological observations (e.g., biomass accumulation, 
peak of greenness, and period of leaf development) in agri-
culture provide valuable information to improve yield pre-
diction models (Hadria et al. 2006, 2007; Viña et al. 2004). 
Therefore, it is important to be able to monitor and deter-
mine accurately the spatio-temporal variability of phenologi-
cal metrics (e.g., length, start, and end of the agricultural 
season) and to analyze their behavior in arid and semi-arid 
regions. This study is crucial in filling the gap of information 

to monitor agricultural area using phenological metrics and 
to help managers and decision makers to analyze the agricul-
tural policies’ impact and to optimize the land use choices.

The aim of the present study is twofold: (1) spatio-tem-
poral analysis of phenological parameters patterns using 
four seasons of NDVI time series obtained from MODIS 
satellite data, (2) map the main phenological classes through 
phenology-based classification approach.

2  Data and Methodology

2.1  Data

2.1.1  Study Area

The study area is covered by Moderate Resolution Imaging 
Spector-radiometer (MODIS), tile: h17v05, clipped to Beni-
Mellal-Khenifra region located in centre of Morocco, with 
a total area of 28,374 km2 that represent about 4% of the 
national territory (Fig. 1). In the geomorphological aspect 
the region includes four geographical units; the Atlas Moun-
tains, the foothill area that represents the transition between 
the Mountain and the Tadla plain, the phosphate plateau and 
the irrigated perimeter of Tadla. The study area topography 

Fig. 1  Localisation of the Beni-Mellal-Khenifra region and the training samples
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ranges from 300 m above sea level, in the plan to 3890 m in 
the Mountain. About half the region is Mountainous (from 
900 to 3890 m) while the other half consists of plains and 
plateaus (around 600 m).

The main agricultural classes present in this region are 
the irrigated perimeter, the rainfed area (no irrigated), the 
fallow, and the foothill zone (trees and forest). Climate is 
variable from humid in the high mountains to semi-arid in 
the plain, with an intense cold winter and very hot sum-
mers. In addition, the annual average rainfall is characterized 
by significant variations, with a rainfall average amount of 
230 mm in the plain and 1000 mm in the high mountains 
(Marchane et al. 2015; Ouatiki et al. 2019). The average 
annual temperatures vary between a maximum of 46 °C in 
August and a minimum of − 2 °C in January (Ouatiki et al. 
2017).

The agricultural sector is one of the most promising sec-
tors in the region and constitutes the main economic activity. 
The useful agricultural area in the region is about 948,397 ha 
of which 212,000 ha is irrigated (CRI 2015). The region is 
characterized by a large irrigation scheme covering about 
100,000 ha and a small and medium hydraulic zone (foothill 
area) with an approximate surface area of 81,787 ha (Lion-
boui et al. 2016).

2.1.2  Satellite Data

Moderate Resolution Imaging Spectro-radiometer (MODIS) 
was used to characterize the spatio-temporal dynamics 
of phenological metrics (Fig. 3). A set of 92 images of 
MOD13Q1 16-day composites product at 250 m resolution 
covering the study area has been acquired between 2012 
and 2016 (23 images per year). All images have been down-
loaded through the United States Geological Survey (USGS) 
reverb tool (NASA LP DAAC). MOD13Q1 product is cal-
culated from the Level-2G daily surface reflectance grid-
ded data (MOD09 and MYD09 8-day composites series) 
using the Constrained View angle-Maximum Value Com-
posite method (CV-MVC) (Didan 2015). MODIS-Terra is 
a near-polar orbiting satellite operated by NASA and has 
many spectral bands, NDVI, EVI, Bleu, NIR, Red, MIR and 
quality bands (Didan 2015). For the overall studied seasons, 
NDVI layers were used to produce NDVI time series.

In this study, the NDVI index was used for monitor-
ing phenological parameters. This choice is based on the 
sensitivity of this index to vegetation canopy variations 
in areas characterized by a low plant density, unlike other 
indices such as EVI (Enhanced Vegetation Index) (Ji and 
Peters 2007). The study concerns different agricultural 
production units with low (fallow), medium (rainfed) and 
high (irrigated area) crop density and growth potential. 
Normalization methods is another advantage of this index, 
which allows the minimization of shadow effects, noise 

related to the atmospheric conditions and the solar angle 
change (Matsushita et al. 2007). NDVI takes advantage 
of the degree of absorption by chlorophyll in the red and 
the scattering of leaves in the near infrared radiation of 
which is proportional to vegetative development (Tucker 
et al. 1983).

The land cover map originated from Glob Cover (Had-
ria et al. 2018; Kaptué et al. 2011), served as a mask for 
the agricultural zones in the study area. This map was 
developed by the Flemish Institute for Technological 
Research, Belgium (VITO), in the E-AGRI project (http://
www.e-agri.info).

2.1.3  Training Site

We selected four land cover types: irrigated perennial crop, 
irrigated annual crop, rainfed area and fallow, to evaluate 
the effectiveness of the curve fit for remotely sensed NDVI 
data within the Beni-Mellal-Khenifra Region. Agricultural 
systems’ types zones were identified and selected in 2016 
and are distributed across the study area (Fig. 1). For the 
period from 2012 to 2016, a verification step was carried 
out using ground truth data from field survey and Google 
Earth to confirm the no-change of the agricultural sys-
tem type. Type localities consist of 40 irrigated annual 
crop locations containing 210 pixels, 40 irrigated peren-
nial crop locations containing 301 pixels, 40 rainfed crop 
locations containing a total pixels of 254 and 40 fallow 
locations containing a total of 441 pixels (Table 1). Time 
series of an arbitrarily selected pixel from each land cover 
type are shown in Fig. 1. 

Irrigated annual crop represents a high degree of inter-
annual variability with a high amplitude and abrupt growth 
and senescence. The irrigated perennial crop was selected 
as representative of a high base and weak amplitude. Rain-
fed crop and fallow were selected as representative of typi-
cal semi-arid land cover, which depends on climate condi-
tions and may not have a pronounced phenology.

Table 1  Classes and size of the training data set

Class name Number of 
training samples 
(pixel)

Irrigated annual crop 210
Irrigated perennial crop 301
Rainfed area 254
Fallow 441
Total 1206

http://www.e-agri.info
http://www.e-agri.info
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2.2  Methodology

Three steps were carried out to map agricultural systems 
over the study area using phenological metrics extracted 
from the NDVI time-series data (Fig. 2).

2.2.1  Data Time Series Analysis

To analyze and extract phonological metrics (Fig. 3 and 
Table 2) NDVI time series profiles were generated from 
2012 to 2016, using TIMESAT Program (Fig. 3). TIME-
SAT software was developed by Eklundh and Jönsson (2015) 
and it was used for estimating seasonal phenological metrics 
(Table 2). TIMESAT implements three processing meth-
ods using a preliminary definition of the seasonality (uni-
modal or bi-modal) with approximations of growing season 
times. These methods are Savitzky-Golay (SG) (Chen et al. 
2004), Gaussian asymmetric (GA) (Bachoo and Archibald 
2007; Chen et al. 2006) and double logistic (DL) (Geng 
et al. 2014), which require several statistical parameters of 
adjustment.

The GA and DL approaches seem to be less sensitive to 
noise than the SG approach (Jönsson and Eklundh 2002, 
2004). In this study, the GA filter was used for its low sen-
sitivity to noise and high ability to process the satellite data 
series. The phenological metrics values were extracted for 
the sampled pixels. These values were analyzed using a 
statistical method to display the distribution of data based 
on the extremes, first quartile, median and third quartile 
(boxplot) (McGill et al. 1978). The boxplots help to make 
comparisons across phenological parameters to analyze the 
behavior of the phenological metrics in terms of agricultural 
systems.

2.2.2  Classification of Time‑Series Data

In this study, Support Vector Machine (SVM), which is a 
supervised nonparametric statistical technique, was used as 
a classification method. SVM is a mathematical technique 
for solving the classification problems with a high gener-
alization capability from small training samples and a high 
potentiality for regional characterization study (Shao and 
Lunetta 2012; Vapnik 2006). The open-source R language 
and software was used to implement the SVM classification 
using the “CARET” package (Jed Wing et al. 2018; R Core 
Team 2017). Four classes were considered, namely irrigated 
annual crop, irrigated perennial crop, rainfed area and fal-
low (Fig. 4). The accuracy assessment was carried out using 
overall accuracy, producer and user accuracy, F1 score and 
the Kappa coefficient.

SVM with Radial Basis Function (RBF) kernel was used 
due to this robustness and effectiveness for remote sens-
ing data classification (Mountrakis et al. 2011). Defining 
Kernel function parameters (g and C) is required to use the 
SVM method. The optimal choice of these parameters was 
performed using the “CARET” package. The tuning step 
was performed based on 2015/2016 data. Then, the optimal 
model was defined and used to classify the agricultural sys-
tems over the study area.

Fig. 2  Schematic diagram illustrating the research methodology 
adopted in this study

Fig. 3  Phenological parameters available in TIMESAT software. 
Adapted from Jönsson and Eklundh (2004)
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3  Results and Discussion

3.1  NDVI Profile Analysis

In this step, NDVI profile responses were represented in 
Fig. 4 at the pixel-level in the time-series MODIS data for 
each agricultural system class which are; the irrigated per-
ennial crop (Fig. 4a), the irrigated annual crop (Fig. 4b), 
the rainfed area (Fig. 4c) and the Fallow (Fig. 4d). The 
multi-temporal NDVI profile of a specific agricultural 
system reflects its phenological characteristics (e.g., start, 
end, and length of season).

Figure 4 shows four different categories of profiles, 
which are characterized by a well-defined shape. For each 
category, the phenological metrics values depend on the 
NDVI profile size and dimensions. Figure 4a, b is discrim-
inated by their high values of the NDVI peak ranges from 
0.7 to 0.9, unlike that for Fig. 4d and partially for Fig. 4c. 

The NDVI profile in Fig. 4a is characterized by its high 
base value, which indicates a perennial crop zone with 
high and permanent photosynthetic activity. The opposed 
profiles observed in IPC agricultural system were origi-
nated from the phenological cycle of certain irrigated per-
ennial crops (e.g., pomegranate), which starts the photo-
synthetic activity in late March and reach the maximum on 
around June (Fig. 4a). The length of the cropping season 
(LOS) lasts longer for Fig. 4a, b where the season length 
takes more than 8 months, in contrast to other two profiles 
where LOS takes less than 5 months.

NDVI profiles for the rainfed area (Fig. 4c), and fallow 
(Fig. 4d) show an important internal variability linked to the 
cropping season climate conditions. Accordingly, all phe-
nological parameters in these areas are directly influenced 
by the local climate fluctuations; mainly the water amount 
available from rainfall events over each season.

Regarding the start of season criteria, NDVI values in 
irrigated zones are heterogeneous (Fig. 4a, b). This observed 

Table 2  Definition of computed phenological parameters (Eklundh and Jönsson 2015; Reed et al. 1994)

Phenological metric Phenological definition

Start of season—time Beginning of photosynthesis activity in the vegetation canopy
End of season—time End of photosynthesis activity in the vegetation canopy
Length of season (LOS) Length of photosynthetic activity
Peak of season Maximum level of photosynthetic activity
Middle of season Mean value of the times for which left edge increases to 80% and right edge decreases to 80%
Great integral (GINT) Canopy photosynthetic activity across the entire growing season
Small integral (SINT) Canopy photosynthetic activity between the function describing the season and the base level
Amplitude Maximum increase in canopy photosynthetic activity above the baseline
Base level The average of the left and the right minimum values

Fig. 4  NDVI profiles for land surface phenology in the study area. a Irrigated perennial crop, b irrigated annual crop, c rainfed area, d fallow
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heterogeneity is due to the farmer decision about sowing 
dates and the irrigation water supplies moments. Adversely, 
the start of season in the rainfed area, as shown in Fig. 4c, d, 
is homogeneous due to the crop dependence to the first rain-
fall event. For the amplitude parameter, as shown in Fig. 4a, 
b, irrigated perennial crop zones are characterized by low-
est amplitude values, contrary, highest amplitude values are 
observed in the irrigated annual crops profile.

3.2  Phenological Parameters Analysis

The phenological metrics were computed for each pixel 
on the basis of the NDVI profile. The distribution of these 
metrics was analyzed using boxplot representation to study 
their behavior regarding the agricultural system classes. Fig-
ure 5a, b, f–h represents statistics of the studied phenological 
metrics for each phenological classes. The amplitude and 
small integral metrics confound irrigated perennial crops 
and fallow (Fig. 5a, g). Similarly, the rainfed area and fal-
low classes are not separable when just using the base level 
and the end-of-season metrics (Fig. 5b). The middle of sea-
son and the end of season confounded between the irrigated 
annual crops, rainfed area and fallow (Fig. 5f, h).

Unlike previously cited indicators, the great integral, the 
start of season, the peak and the length of the season param-
eters provide valuable information to discriminate between 
surface classes (Fig. 5c–e, i). Based on these results, we 
focused on the spatial analysis of the phenological metrics 
for the 2015/2016 season (Fig. 6).

The parameters showed high spatial variability and a con-
trasting level of phenological responses. Indeed, according 
to Jönsson and Eklundh (2002), the great integral (GINT) 
indicates the level of plant biomass production. This produc-
tion is strongly related to water availability in the arid and 
semi-arid areas (Benabdelouahab et al. 2015). Similarly, in 
the irrigated area (irrigated and pumping zone) the length of 
the season (LOS) parameter takes a longer period compared 
to the non-irrigated area due to the irrigation water supplies 
during the critical periods of crop development (Figs. 4, 6). 
Since the LOS parameter was calculated based on the differ-
ence between the end (Fig. 6h) and the start of the cropping 
season (Fig. 6c), it plays a key role to observe the length of 
the biomass production period.

For the case of irrigated area of the studied zone (Tadla 
irrigated perimeter, foothill area, and pumping area), the 
values of GINT, LOS, and the Base level are high and range 

Fig. 5  Boxplot presenting the phenological parameters behavior in the study area
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Fig. 6  Seasonality maps of the nine phenological parameters: a amplitude, b base, c end of season, d great integral, e peak, f middle, g small 
integral, h end of season, i length of season. The background is a RGB composite of MODIS image
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from 11.2 to 14.4, 256 to 288 days and from 0.4 to 0.6, 
respectively (Fig. 6b, d, i). The peak of season parameter 
indicates the highest level of NDVI values in the irrigated 
area with values ranging between 0.6 and 0.9 (Fig. 6e). 
Adversely, the rainfed area and fallow zones are character-
ized by the lowest GINT, LOS, and peak values with less 
than 6.4, 208 days and 0.4, respectively, but are more distin-
guished by amplitude and middle-of-season metrics (Fig. 6a, 
f). Regarding the short integral metrics (SINT), the high 
values observed correspond to the perennial crops character-
ized by high biomass production during the cropping season 
(Fig. 6g). As seen by these results, phenological parameters 
values in the rainfed area and fallow zones depend on the 
cropping season climate conditions. The nine phenological 
parameters are considered as keys parameters to discriminate 
the different phenological zones (Fig. 6).

3.3  SVM Classification

The specific objective of this step is to classify, at the overall 
study zone, the discriminated area combining the nine phe-
nological parameters, discussed previously, as input to the 
SVM classifier. The optimal model was selected based on 
the tuning step of the classifier since it ensures the highest 
accuracy (C = 8 and g = 0.274). To evaluate the accuracy 
of the classification, a confusion matrix was established by 
comparing classification results with reference data essen-
tially based on ground truth data (Table 3).

The confusion matrix results are 88.7% and 0.83 for 
overall accuracy and kappa coefficients, respectively. For 
the irrigated annual crop class, it was accurately classified 
with 92.59% and 86.21% for producer and user accuracy, 
respectively (Table 3). Concerning the irrigated perennial 
crop class, it was mapped correctly with 92.98% of pro-
ducer accuracy that has been ranked correctly considering 
the reference data and user accuracy of 94.64% that has 
been mapped with the classification algorithm (Table 3). 
For this class, about 6% of the pixels were committed 
to other classes. Producer accuracy for the Rainfed area 
class is about 81.25%, as long as it is about 88.64% for the 
user accuracy, i.e., 11.36% of the rainfed area class have 
been classified inaccurately (Table 3). Rainfall area class 

results show a high omission error value of around 0.18. 
This is justified by the behavior of rainfed crops in rela-
tion to the climatic conditions of the agricultural season. 
An extremely dry year will condition the rainfall area to 
behave as a fallow area. Contrary to the good climatic con-
ditions, which allow the rainfed areas to have a phenologi-
cal behavior relatively similar to the irrigated crops. The 
fallow class has accuracy values of 91.30% and 88.42% 
for the producer and user accuracy, respectively (Table 3).

Phenological parameters extracted in this study showed 
high spatio-temporal heterogeneity over the study area. 
The contrasting differences between the derived param-
eters could be explained by the complex relationship 
between the rainfall anomalies and vegetation cover. The 
heterogeneous behavior of the vegetation cover is also 
influenced by climatic conditions, natural resources avail-
ability and land-use practices such as rainfall amount and 
distribution, amount of irrigation water supply and access 
mode, soil quality and technical itinerary (Benabdeloua-
hab et al. 2016).

The obtained classification results for the 2014/2015 
cropping season were compared to the official statistics from 
the Regional Investment Centre (CRI) to assess the ability of 
the proposed classification method to predict the agricultural 
system superficies over the region (CRI 2015) (Figs. 7, 8).

The total irrigated class superficies is about 414,081 ha 
compared to 212,000 ha of the irrigated area estimated by 
CRI (CRI 2015). This gap is due essentially to the no-con-
trolled pumping area that is not involved in the official statis-
tics. The pumping area can be detected and estimated using 
the developed classification approach based on phenological 
remotely sensed data. This approach constitutes a relevant 
way, for local policy makers and managers, to monitor and 
control the irrigated and the rainfed agricultural zones (Lion-
boui et al. 2016).

Furthermore, superficies estimation errors can be also 
related to the low resolution of the MOD13Q1 data product 
used in this study. In this case, one pixel can represent a 
mixture of two classes or more due to the short cover type 
change (Biggs et al. 2006; Boschetti et al. 2009). The domi-
nant class will be retained, given its influence on the pheno-
logical behavior for each pixel (Sun et al. 2012).

Table 3  Confusion matrix 
obtained from the SVM 
classifier for the 2015/2016 
agricultural season

Class Producer accu-
racy (%)

User accu-
racy (%)

F1 score Commission 
error

Omission error

Fallow 91.3 88.42 0.88 0.08 0.09
Irrigated annual crop 92.59 86.21 0.91 0.02 0.07
Irrigated perennial crop 92.98 94.64 0.95 0.02 0.07
Rainfed area 81.25 88.64 0.77 0.03 0.19
Overall accuracy 88.7
Kappa coefficient 0.83
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Concerning the change in agricultural superficies, the 
fallow class has raised from 1,256,000 ha in 2014/2015 to 
1,506,000 ha in the 2015/2016 cropping season (Fig. 8). The 
increase of fallow superficies observed in the 2013/2014 
(1,308,682 ha) and 2015/2016 (1,505,873 ha) cropping sea-
sons is strongly related to rainfall with an average amount 
of 232 mm and 128 mm, respectively. Adversely, the fallow 

superficies are less than 1,260,000 ha, i.e., 2012/2013 and 
2014/2015 cropping seasons, with an average amount of 
rainfall higher than 380 mm (Fig. 8). For the same reason, 
the rainfed class area has decreased and classified as fal-
low area due to the lack of rainfall during the 2015/2016 
cropping season. Irrigated areas are partially independent 
of climatic conditions. Except for the extremely dry years 

Fig. 7  Classification results of 
the agricultural system classes. 
The background is a RGB com-
posite of MODIS image
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where managers can apply restrictions on access to irrigation 
water (Lionboui et al. 2016).

As a result, they give priority to the maintenance of 
orchards without a production goal and limit the areas of 
annual crops. This is reflected in the stability of the perennial 
crops superficies, unlike annual crops superficies that regress 
(Fig. 8). Farmers in the study area practice supplementary 
irrigation. During a dry year, the farmer using pumping 
as the main source of irrigation will abandon his land or 
give up cultivation given the very high energy cost. This 
implies a reduction in the superficies of the irrigated annual 
crops by pumping. This is the case of 2015/2016 cropping 
season with an average of rainfall amount of 128 mm and 
a superficies of 534,081 ha. Adversely, cropping seasons 
with an average rainfall amount higher than 370 mm, e.g., 
2014/2015 cropping season, reach superficies greater than 
580,890 ha (Fig. 8).

Although, the classification of agricultural systems based 
on phenological parameters as an input of the classification 
algorithm meets the objective to map the main phenological 
classes at large scale (Fig. 7). This approach based on the 
low spatial resolution data can be seen as a preliminary step 
before moving on to higher resolution products.

Over inter-annual time scales, phenological patterns of 
rainfed crop areas depend strongly on the spatio-temporal 
fluctuations of rainfall and dry periods. Therefore, the 
phenological analysis provides information to deepen our 
understanding about the spatio-temporal variability of land 
surface phenology in arid and semi-arid area on one hand, 
and on the other, to improve agricultural system monitor-
ing that allows managers and policy makers to optimize the 
agricultural vocation and land suitability. These fluctua-
tions in rainfall amount have a negative impact on agricul-
tural systems, especially in arid and semi-arid region like 
the soil degradation (e.g., soil salinity, nutrient depletion) 

and the quality and depth of groundwater. Furthermore, the 
proportion of groundwater used for irrigation of croplands 
increases in parallel with the overall decline in rainfall, 
which decreases the groundwater amount and leads to the 
degradation of croplands.

4  Conclusion

This study examines the use of remote sensing data to char-
acterize and map the spatio-temporal phenological metrics 
variability through Beni-Mellal-Khenifra region between 
2012 and 2016. Phenology-based classification approach 
showed a high ability to identify and monitor the main agri-
cultural system in the study area. The classification overall 
accuracy reached 88%, with a kappa coefficient of 0.83. The 
F1-score values for all classes were greater than 0.76. Ana-
lyzing the results, the rainfed area shows a dependence on 
the spatio-temporal fluctuations of rainfall, this result can 
be extended in further studies on the characterization of 
drought in agricultural zones. Therefore, the phenological 
analysis provides information to deepen our understanding 
of the spatio-temporal variability of land surface phenol-
ogy in arid and semi-arid area. In perspective, assessment 
of environmental, agronomic and socio-economic conse-
quences of phenological changes can improve the aware-
ness of stakeholders to adapt it to take decisions to limit the 
impacts of change on ecosystems and society. The results 
demonstrated the ability of phenological parameters to iden-
tify and monitor the main agricultural system classes in the 
study area and to control the illegal pumping zones and the 
irrigated area.
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