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Abstract
Providing timely weather forecasts from operational weather forecast centers is extremely critical as many sectors rely on 
accurate predictions provided by numerical weather models. Weather research and forecasting (WRF) is one of primary tools 
used in generating weather predictions at operational weather centers, and an optimal domain configuration of WRF along 
with suitable combination of robust computational resources and high-speed network are required to achieve the maximum 
performance on high-performance computing cluster (HPC) for the WRF model to deliver the timely forecasts. In this study, 
we have analyzed the number of methods to optimize WRF model to reduce computational time taking for the operational 
weather forecasts tested on HPC available at University Grants Commission center for mesosphere stratosphere troposphere 
radar applications, Sri Venkateswara University (SVU). To do this exercise, we have prepared a benchmark dataset by con-
figuring WRF model for the Indian monsoon region as similar to real-time weather forecasting system model configuration. 
We have first carried out a series of scalability tests by increasing the number of computational nodes till it reaches a scalable 
point using the prepared benchmark dataset. Our node scalability results indicate the WRF model is scalable up to 65 nodes 
for the benchmark dataset and configured model domain on HPC available at UGC SVU center. As the total time taken for 
generating the model forecasts is the sum of computational time taken for predicting weather and the input/output (IO) time 
for writing into the storage disks. Further, we have performed several tests to optimize the time taken for IO by the weather 
model, and the results of IO tests clearly indicate that the WRF configured with parallel IO is highly beneficial method to 
reduce the total time taken for the generation of weather forecasts by the WRF model.
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1 Introduction

Precise and accurate weather forecasting is extremely use-
ful and required for many sectors ranging from aviation to 
agriculture. Also the timely weather forecast will help our 
socioeconomic life and can be useful for saving lives, reduc-
ing damage to property and crops and for planning by deci-
sion makers (Yesubabu et al. 2014a; Thomas et al. 2016; 
Langodan et al. 2016). In global warming era with changing 
climatic patterns, even common people are often interested 
in weather forecasts to plan their day-to-day activities (Srini-
vas et al. 2011; Viswanadhapalli et al. 2017). This inter-
est is mainly due the fact that certain decisions are to be 

made depending on current forecasts, giving the forecasts an 
economic value. Additionally, concerning extreme weather 
events, forecasts can have a great impact on the possible 
damage to lives and material properties (Srinivas et al. 2010; 
Viswanadhapalli et al. 2016; Zaz et al. 2019). Modern day 
weather forecasts generated at national meteorological cent-
ers employ primarily advanced numerical weather prediction 
(NWP) models which involve the atmospheric observations 
represented in the grid form and the combinations of numer-
ical equations to predict the future state of atmosphere on 
high-performance computing (HPC) platforms. Employing 
these methods, the meteorological centers are able to provide 
reasonably accurate predictions for the common public 3 to 
4 days in advance. India metrological department (IMD) is 
one of such national meteorological centers authorized for 
providing weather forecasts in India, and the department 
uses weather research and forecasting (WRF) model cus-
tomized for Indian region as one of the prime members in 
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IMD’s multi-model ensemble system to provide short-range 
and medium-range weathers forecasts for India and neigh-
borhood region (Srinivas et al. 2013; Diwakar et al. 2015).

Advanced Research Weather Research and Forecasting 
(ARW 3.9.1) mesoscale model (Skamarock et al. 2008) 
is used in the present study developed by National Center 
for Atmospheric Research (NCAR), National Oceanic and 
Atmospheric Administration/Earth System Research Labo-
ratory (NOAA/ESRL) and NOAA/National Centers for 
Environmental Prediction (NCEP)/Environmental Mod-
eling Center (EMC) with partnerships and collaborations 
with universities and other government agencies in the USA 
and overseas. It has been designed to support operational 
forecasting and atmospheric research needs. The modeling 
system has versatility to choose the domain region of inter-
est, horizontal resolution and interactive nested domains 
with various options to choose parameterization schemes 
for cumulus convection, planetary boundary layer (PBL), 
and explicit moisture, radiation and soil processes. ARW 
is designed to be a flexible, state-of-the-art atmospheric 
prediction system that is portable and efficient on available 
parallel computing platforms, and a detailed description was 
provided by Skamarock et al. (2008). The model has become 
popular over the last 2 decades in forecasting atmospheric 
phenomena due to its accurate numeric, higher-order mass 
conservation characteristics, advanced physics and dynam-
ics. This model is also referred as the next-generation model 
after Fifth-Generation Mesoscale Model (MM5), incorpo-
rating the advances in atmospheric prediction suitable for 
a broad range of applications and also widely used by the 
scientific community all over the world for atmospheric 
research.

The WRF model is primarily designed as a mesoscale 
numerical weather prediction system for atmospheric mod-
eling research, and it is also widely used as short-range 
forecast tool at operational weather centers for prediction of 
various weather phenomena on HPC platforms (Yesubabu 
et al. 2014b; Dasari et al. 2017). Though the model has mul-
tiple options such as serial, parallel and hybrid modes to 
configure on HPC platforms, the code is primarily designed 
to get high performance in parallel mode (Skamarock et al. 
2008). Moreover, due to its sophisticated programming 
structure with parallel programming capability and easy 
portability on any computing system, the code is also widely 
used in evaluating the performance of HPC resources. Sev-
eral performance studies were available on optimizing WRF 
using single domain benchmarks such as CONUS and Arc-
tic Region Supercomputing Center benchmarks (Micha-
lakes and Vachharajani 2008; Morton et al. 2009, 2010). 
Morton et al. (2009) developed a WRF benchmark of one 
billion grid points by configuring the model centered at 
Fairbanks, Alaska, taking a horizontal domain composed 
of 6075 × 6,075 km and 28 vertical levels, and their results 

show that the model is scalable even with one billion grid 
points; however, they reported the requirement of special-
ized software in writing input/output (IO) and procedures 
while operating WRF on large-scale problems. The subse-
quent results of their benchmark study (Morton et al. 2010) 
also reveal that the model build in the distributed-memory 
configuration provides the higher scalability (twice) than the 
hybrid MPI/OpenMP configurations.

The previous scalability studies showed that the perfor-
mance of the WRF not only depends on the model configu-
ration in terms of spatial extent and physics, but also the 
computed system and high-speed interconnect used for the 
communicating between nodes. Shainer et al. (2009) clearly 
show that the HPC systems need a high speed and low 
latency clustering interconnect is required to run WRF for 
achieving the high performance and scalability with WRF. 
Moreover, the studies reveal that the increasing performance 
scaling with much number of compute nodes and coding 
architectures may not necessarily provide the fine-grained 
parallelism in the NWP models, but sometimes provide 
mere large-scale coarse-grain parallelism. Though the sys-
tem performance of WRF model has been tested on multi-
core systems, most of these studies (Kerbyson et al. 2007; 
Delgado et al. 2010) are limited in evaluating the perfor-
mance for the single case WRF domain configurations. The 
studies (Preeti et al. 2013) have filled the gap by designing 
an efficient strategy for optimizing the parallel execution 
of multiple nested domain of WRF model on International 
Business Machines (IBM) Blue Gene systems, and their 
study reported that the execution time of the nested domain 
simulations is easily optimized by the sibling domains in 
parallel mode. Their study indicated a performance improve-
ment of nearly 33% than the default sequential strategy exist-
ing in WRF. Singh et al. (2015) showed the performance of 
WRF simulations can be improved further by 14% through 
parallel execution of sibling domains with different configu-
rations of domain sizes, temporal resolutions and physics 
options. Studies (Sergio et al. 2017) such as the sensitivity 
analysis of PBL schemes against the model computational 
speedup over Mexico reveal that the Mellor–Yamada–Janjic 
Scheme (MYJ) scheme provides maximum speedup with 
low latency.

Though there are previous benchmark and scalability 
studies on WRF, there is no attempt to design a benchmark 
and analyze the scalability results of WRF for Indian region. 
In this study, we have designed a benchmark considering 
the operational WRF model configuration employed at IMD 
for Indian region. The objective of the study is to analyze 
the number of methods to optimize WRF model to reduce 
computational time taking for the operational weather fore-
casts on HPC available at University Grants Commission 
(U.G.C) center for Mesosphere Stratosphere Troposphere 
(MST) radar applications, Sri Venkateswara University 
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(SVU), Tirupati. The structure of the study is organized in 
four sections; Sect. 2 presents the WRF model configuration 
used in this study and the methodology designed to perform 
experiments, Sect. 3 provides detail discussion on the results 
of WRF model benchmark, scalability tests and the optimi-
zation of IO, and the conclusions are given in Sect. 4.

2  Methodology and Model Configuration

This section provides the configuration and parameteriza-
tion of physical and computational characteristics required 
to perform calculations using WRF-ARW model (Skama-
rock, 2008) on UGC HPC.

The model was configured with three nested domains 
in two-way interactive mode with horizontal resolution of 
9 km (370 × 308 grids), 3 km (616 × 493 grids) and 1 km 
(427 × 427 grids) and 60 vertical layers (with the model 
top at 10 hPa). Figure 1 shows the spatial extent of three 
two-way nested model domains configured over Indian 
subcontinent similar to operational configuration of IMD. 
The physics options are configured based on the previ-
ous studies (Srinivas et al. 2013, 2018; Ghosh et al. 2016; 
VijayaKumari et al. 2018 and Reshmi et al. 2018) used in 
the model which include the Goddard microphysics scheme, 
Dudhia shortwave radiation scheme (1989), rapid and accu-
rate radiative transfer model (RRTM) long wave radiation 
scheme (Mlawer et al. 1997), Yonsei University Scheme 
(YSU) non-local scheme for PBL turbulence (Hong and 
Lim 2006), Kain-Fritsch (KF-Eta) (Kain and Fritisch 1993) 
mass-flux scheme for cumulus convection, the Noah scheme 
for land surface processes (Chen and Dudhia 2001) and 
Thompson scheme for the representation cloud microphysics 
(Thompson et al. 2008). The land-use dataset available with 

WRF-ARW model is derived from the NOAA Advanced 
Very-High-Resolution Radiometer (AVHRR) visible, infra-
red bands corresponding to 1992–1993 (Loveland et al. 
2000). These data consist of 24 vegetation categories, and 
the United States Geological Survey (USGS) data in WRF 
model are available at arc 10 min, 5 min, 2 min, 30 s and 
15 s resolutions. The topographic information such as ter-
rain, land use and soil types is interpolated from the USGS 
arc 5 min, 2 min and 30 s data to the model first, second 
and third domains, respectively. The WRF model initialized 
at 0000 UTC on June 01, 2018, using 0.25° × 0.25° NCEP 
Final Analysis (FNL) data and integrated up to 72-hours, 
while the boundary conditions are updated every 6 hours for 
domain to WRF model. The FNL data are chosen because 
they contain 10% more observations than operationally 
available Global Forecast System (GFS) analysis. The coarse 
resolution FNL lower boundary conditions are replaced with 
NOAA/NCEP real-time global (RTG) high sea surface tem-
perature (SST) analysis. The model configured with only 
SST update option, and further, no explicit ocean coupling 
is used in the study.

The HPC established at SVU consists of 100 computa-
tional nodes excluding the two master or login nodes (shown 
in Fig. 2). Each compute node is equipped with 16 cores of 
Intel CPUs with a clock speed of 2.7 GHz and 64 GB double 
data rate type three (DDR3) random access memory (RAM) 
and the total number of cores nearly about 1600 cores. The 
compute nodes as well as master nodes are connected by 
Infiniband switches for the parallel computing and IO pro-
cessing. It is having a luster file system of 50 TB. The HPC 
is equipped with a total network storage of 600 TB including 
online, and archival storage.

3  Results and Discussion

The optimization results of WRF configured for Indian 
benchmark are organized in three subsections. The first 
subsection details about the scalability tests conducted by 
varying both the number of compute nodes and number of 
cores in each compute node for Indian Benchmark dataset; 
the scalability analysis carried out by the four microphysi-
cal parameterization schemes available in the WRF; perfor-
mance of different WRF input/output methods and optimiza-
tion of WRF working for operational configuration.

3.1  Scalability of WRF Computed Nodes for Indian 
Benchmark Dataset

To find out the suitable combination of the computed nodes 
and number of cores per node using the Indian benchmark on 
U.G.C HPC, we first conducted scalability experiments by 
varying both the number of computed nodes from 20 to 100 

Fig. 1  The spatial extent of three model domains configured over 
Indian subcontinent
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as well as the number of cores in the compute node shown 
in Fig. 3. The performance bar shown in Fig. 3 is plotted 
with the computational time taken in minutes to complete 
the model forecast of 72 h against the nodes including the 
number of cores. The computational time reported in this 
study is calculated by neglecting the time taken for input/
output (IO) and model initialization, and also the results 
presented are with six sets of cores/processor combinations 
per node (4, 8, 10, 12, 14 and 16 per node). The scalability 
results suggest that the WRF model with configured domain 

can scale up to 960 cores in logarithmic manner; however, 
480 cores (12 cores and 40 nodes) itself provide the optimize 
performance. It is also noticed that with increasing number 
of cores per node, the computing time is decreasing and the 
input/output (IO) writing time is increasing. Model exhib-
its a strong scalability observed up to 40 compute nodes, 
a weak scalability untill 60 compute nodes, thereafter the 
scalability reaches saturation point (particularly after 80 
compute nodes). After 80 compute nodes, simulation time 
follows a negative trend as the time is increasing instead of 

Fig. 2  A generic block diagram 
of UGC S.V University HPC

Fig. 3  Scalability analysis of 
WRF plotted with the computa-
tional time taken by operational 
workflow (in minutes) against 
the number of computational 
nodes
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decreasing. Also we observed that by increasing the number 
of processes per node, strong scalability is coming down. 
The maximum scalability per node is found in case of 12 
processors per node. Out of six processor configurations we 
employed, 12 cores/processors per node combination pro-
vides optimized results with minimum time taken, while the 
number of nodes combinations found to be 50 as the best 
configuration found for the Indian benchmark. So, we have 
considered the experiment with 480 cores (12 cores per 40 
nodes) as the suitable combination of cores for the present 
study to get best utilization and optimization of the HPC 
resources. The reduction in model compute time by using 
less number of cores (12 of 16) than instead of all cores in 
a compute node is possible due to the reason that reducing 
the number of cores on a particular node enables to free the 
RAM and network constraints, resulting in the increase in 
performance and leading to decrease in the compute time. 

3.2  Scalability Analysis of WRF Microphysical 
Parameterization

As mentioned in the introduction, WRF model equipped 
with many parameterization modules (shown in Fig. 4) and 
the accuracy of the model forecasts over any region highly 
depend on the choice of parameterizations which needs 
to be studied by carrying the sensitivity experiments. 

Each parameterization process is having different levels 
of complexity; moreover, the computational resources 
required to adopt those module vary based on the com-
plexity of process and time frequency of calling them in 
the model. Several studies (Rajeevan et al. 2010; Srikanth 
et al. 2013; Reshmi et al. 2018) showed the choice of cloud 
microphysics (CMP) in the weather models as one of such 
parameterizations which play critical role in simulating 
deep convective processes at cloud resolving scale. Stud-
ies (Reshmi et al. 2018) which focused on improving the 
precipitation forecasts have shown that more sophisticated 
and complex microphysical parameterization will certainly 
reduce the model errors, particularly in providing the pre-
cise location-specific rainfall forecasts. Though CMP 
schemes in weather models vary based on the complexity 
of hydrometers, they are classified primarily as diagnostic 
and bulk methods based on the treatment of hydrometeors 
and particle distribution. Moreover, the advanced CMP 
schemes are equipped with many microphysical species 
and formulations, but these schemes can enable to resolve 
the cloud microphysical processes in realistic way and 
are known to produce accurate forecasts. However, the 
advanced and complex microphysical parameterizations 
are compute-intensive as they are not only involved in the 
representation of complex cloud process but also increase 
frequency in calling the other parameterization modules 

Fig. 4  Operational WRF model workflow used in the present study
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such as long and short radiation and land surface phys-
ics. Thus, the above studies reveal that the CMP schemes 
are known to play critical role in model simulations and 
the computational time consumed by the CMP module is 
relatively high as compared to the other physical param-
eterizations in WRF.

Many researchers improve the computational perfor-
mance of the model by implementing the CMP schemes on 
graphics processing unit (GPU) and co-processor chipset 
and also analyze the scalability analysis of WRF model by 
varying the microphysics option using CONUS Benchmark. 
However, there was no attempt on how WRF model behaves 
on account of increased complexity of CMPS. In this study, 
we have carried out the WRF sensitivity experiments with 
varying complexity of the cloud microphysics model to esti-
mate the computational cost required for deploying a com-
plex CMP in the operational configuration. The scalability 
results in Sect. 3.1 demonstrated the performance of WRF 
while running on 40 nodes (with 12 cores per node), i.e., 480 
processors (PEs) provide an optimized performance, and we 
have opted the same node and processor configuration to test 
the time taken by WRF with varying degree of complexity.

We have performed four types of simulations by vary-
ing CMP schemes, namely WSM3 (WRF-single-moment-
microphysics class 3), WSM6 (WRF-single-moment-
microphysics class 6), Thompson (Thompson et al. 2008) 
and New Thompson Schemes. The WSM3 has a represen-
tation of three hydrometeors types namely water vapor, 
cloud water and rain, while the WSM6 includes additional 
prognostic variables such as cloud ice, graupel and snow. 
Thompson et al. (2008) equipped with detailed and complex 
formulations to resolve the process of cloud ice phase, the 
fourth experiment with New Thompson scheme which was 
equipped with the feedback of cloud-aerosol process. We 
have taken only these four schemes as they have varying 
degree complexity in the representation of cloud micro-
physics (Reshmi et al. 2018). Figure 5 shows the scalability 
analysis performed by plotting the time taken for four CMP 
schemes by increasing the number of nodes to simulate 
72-hour model forecasts. The results clearly show that the 
time taken for completing 72-hour simulation increases with 
complexity of CMP and the maximum time taken is found to 
be high in the case of New Thompson scheme. Though the 
large differences in the computational time found with less 
number of computational nodes, when the model reaches 
saturation point the time differences are reduced drastically 
in all the schemes. The computational times in all schemes 
remain constant when we use relatively sufficient number 
of computational nodes. This also reflects that though the 
complex CMP is configured for your operational setup, the 
complex representation may not have high impact on the 
total computational time taken by the model when we use 
large number of nodes. 

3.3  Optimization of IO Time for Operational 
Weather System

The operational requirements in any weather forecast system 
are not only the high accuracy weather forecasts but also the 
need to generate high temporal forecasts at frequent inter-
vals. The forecast system has to produce the weather data 
at high temporal resolution such as at every 10- to 15-min 
interval which makes the computing system to spend more 
time on the writing outputs and increase the load on the 
network. Conventionally, WRF system products are created 
in netCDF which is a flexible IO library for the creation of 
self-describing scientific data format. The advantage of this 
format is self-describing and machine-independent and sup-
ports the sequential creation, retrieving, accessing and also 
sharing of earth science data at point of time. However, the 
major disadvantage of the earlier versions of netCDF format 
in WRF is that the model produces parallel IO files in the 
domain decomposed structure; however, it writes the outputs 
in sequential process collected from all the processors which 
cause the increase in waiting of all process for very high 
resolution model configuration, and the recent versions of 
WRF have a dedicated I/O processing library called parallel-
netCDF (PnetCDF) where the IO fields have an additional 
property in addition to the conventional NetCDF file-format 
compatibility that the system can write the IO files in par-
allel as soon as it is collected by all the MPI processes or 
tasks. Morton et al. (2010) study clear indicated that the 
handling of the model results of one billion points marks 
itself to pose many challenges in terms of IO and fine-grain 
parallelism that need to be addressed for these large-scale 
computations to be practical.

Fig. 5  Variation of computational time taken by the four microphysi-
cal schemes to complete 72-hours forecast against the number of 
computational nodes
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The time taken for writing I/O of WRF outputs can be 
defined as the time spent in writing actual I/O as well as MPI 
communication that archives directly from I/O reads and 
writes in the model simulations. This is extremely significant 
for larger problem sizes and when running on larger numbers 
of nodes. We tested the performance of quilt functionality 
where the user was able to select how many PEs to dedicate 
to I/O at run time, and the results are shown in Table 1. The 
results indicate that the implementation of quilting func-
tionality helps in reducing the time taken for WRF in the 
existing real-time weather step. The increase in the number 
of tasks in a group optimizes the time of IO process, but 
the number of groups in which these tasks execute does not 
seem to be linear process because of the network issues. 
Invoking the quilting functionality with the number of task 
of 8 per group with 4 groups on UGC HPC provides the 
optimal solution writing IO for WRF.

The major limitation of the quilting functionality arise 
from its sequentitial method of I/O writing. Since the quility 
functionality adopted in WRF stores the I/O at the master 
PE in sequential manner and neglects the advantage of using 
parallel file systems. As discussed in the previous section, 
PnetCDF enables to take the advantage of writing I/O in par-
allel and the IO will be written in the storage in a distributed 
array form at master PE which will lead to minimize the IO 
time. However, WRF has to be configured on the parallel 
file system (luster) to enable the PnetCDF. To illustrate how 
the PnetCDF reduces the IO time in operational workflow, 
we have plotted the time taken with and without PnetCDF 
along with three other optimization methods as considered 
from the previous studies such as processor pinning (PP) and 
adaptive time step (ATS). The process pinning or binding 
is one of optimized and advance methods in distributed-
memory parallelism which make use of local memory to get 
control over the distribution of the process in the HPC sys-
tems. This is carried out through the binding of processes to 
a specific processor or a set of processors to avoid frequent 
accesses of remote memory by keeping the pinned processes 
close to each other. Recently, Meadows (2012) showed the 
performance of WRF on many integrated core architecture 
improved significantly by adopting the process pinning 

method. While the length of model time step is another crit-
ical parameter in consuming the computational resources 
for the simulation of NWP models, defining a maximum 
length for the model time steps consumes less computational 
resources but at the same time longer time steps are known 
to induce numerical instabilities, leading to model failure 
or blowup. For the sake of numerical stability, specifying 
shorter time steps will consume high computational power 
or increases the computational total time taken by the step 
to complete the whole simulation. To avoid these complica-
tions arisen from the conventional model time step, Hutch-
inson (2009) introduced the concept of ATS in the WRF 
model. The study showed that the computational perfor-
mance of the model significantly improved without altering 
the forecast accuracy and stability of the model. In the ATS 
method, the maximum stable model time step is determined 
dynamically by adjusting advective time step of the model 
based on the maximum Courant number criteria. Figure 6 
shows the computational and IO time taken by the WRF 
model with the existing previous workflow (PW) against the 
optimized or modified workflow of 12 PEs with 40 nodes 
along with configuring PP, ATS and PnetCDF options in 
the operational model workflow. The time consumed by 
the operational workflow is reduced gradually from 15 to 
69% with the optimization option of quilting, processor pin-
ning and PnetCDF. The results indicate the adaptive time 
step though reduces the total time taken by the WRF and 
it also slightly changes the simulated results of the model. 
Thus, the optimization methods (quilting, processor pinning 
and PnetCDF) except the adaptive time step employed in 
operational workflow are highly useful in reducing the total 
computational time by WRF without affecting the results of 
simulations. 

4  Summary and Conclusions

In this study, an assessment has been carried out to find the 
optimal computing sources required for implementing the 
real-time workflow of WRF model, and further, we have 
also considered the various aspects of the scalability and IO 
performance of the WRF model on the HPC. The results of 
the performance scalability tests using the Benchmark data 
suggest that the performance of WRF model on the HPC 
with 40 computing nodes having 12 processors (PEs) per 
node provides the optimized timing for Indian benchmark 
configuration considering the constraints of random access 
memory and the network aspects between the nodes. The 
scalability results also show that if we use many number of 
nodes in execution of the WRF model, it results in under-
populating many nodes and further slowing down the total 
performance of the system. The IO analysis has been carried 
out for the WRF system as the total time taken for generating 

Table 1  Performance evaluation of WRF benchmark with quilting 
option

Quilt options (no. of task per group, no. of 
groups)

Total time for 12 h 
simulation period 
(minutes)

0, 1 94
2, 4 55
4, 8 41
8, 12 44
8, 4 37
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the model forecasts is the sum of computational time for 
predicting weather evolution over future time steps as well 
as the input/output (IO) time taken to write into hard disks. 
Further, we have performed several tests to optimize the time 
taken for IO by the weather model, and the results of IO tests 
clearly indicate that writing a parallel IO is highly beneficial 
method to reduce the total time taken for the generations 
of weather forecasts by the WRF model. The limitation of 
the quilting functionality to configure in the operational 
workflow comes from its sequentitial IO writing method. In 
quiliting, this is primerly due to the sequential collection of 
the I/O at the master PE as it avoides the use of parallel file 
systems in the operational workflow. One of limitations in 
this study is that the performance and optimization results 
presented are confined to HPC available at SVU. There is a 
chance of getting variable results for the HPC configuration 
with even slightly varying geometry of processors and the 
network combination.
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