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Abstract
This paper studies sensitivity of Standardized Precipitation Index (SPI) to statistical distribution functions used in SPI com-
putation procedure, in order to find out which are more appropriate and to assess SPI shift if using inappropriate distribution 
functions. Results may explain one of the reasons why spatial SPI computed with unique distribution function as usually, 
sometimes does not give better drought description. Central Africa is chosen as the study area because of its importance 
in climate change perspective and the necessity to use improved tools for drought quantification in this region. Monthly 
precipitation data for the period 1951–2016, both from the Climatic Research Unit (CRU) and Global Precipitation Climatol-
ogy Centre (GPCC) were used. They were first aggregated at various time scales and four statistical distribution functions 
(gamma, weibull, exponential and lognormal) were tested to select the best-fit. Next, SPI was calculated for various time 
scales using the best fit function at each grid point and results were compared to those computed assuming a same distribu-
tion function at all grid points. Results show that, from 1- to 9-month time scales, observed spatial patterns of distribution 
functions were more homogeneous and the weibull function had the highest extended spatial rate, followed successively 
by gamma, lognormal and exponential. From 12-month time scale, spatial patterns were inhomogeneous, and no gridded 
precipitation followed the exponential function. The study of cross-correlations showed significant resemblance between 
SPIs at different time scales, leading to reduce the studies from 1- to 15-month. SPI values were affected if inappropriate 
distribution functions were used and the shift increases in correlation with the increase of time scale. The two datasets CRU 
and GPCC showed similar results, but GPCC’s SPIs were wetter and distribution functions somewhat more dispersed spatially 
from 12-month time scale. For SPI calculation in Central Africa, the weibull and gamma functions if used lead to good SPI 
results at short time scales (not more than 9-month) compared to SPI calculated using exponential or lognormal function. 
From 12-month time scale, it is recommended to choose the best fit distribution function at each grid point in order to expect 
good SPI results and then better drought description.
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1  Introduction

Prolonged drought leading to vegetation destruction and 
loss in biological and economic productivity of the dry 
land is cited by WMO (2006) as one of the causes of 
desertification. Given the ever-increasing threats of this 
phenomenon in many areas of the world as a result of cli-
mate change, scientists have invested in the quantification 
and categorization of drought for forecasting purposes. 
Despite these efforts on the part of the scientific com-
munity, one of the remaining challenges is to develop and 
improve efficient drought tools.

There are several indices developed for the quantifica-
tion of drought, for instance the Palmer drought severity 
index (PDSI) (Palmer 1965), the standardized precipita-
tion index (SPI) (McKee et al. 1993), the rainfall anomaly 
index (RAI), Bhalme and Mooley drought index (BMDI) 
and the Palmer drought index (PDI) (Oladipio 1985), the 
Z-score or standardized rainfall anomalies (Jones and 
Hulme 1996), the standardized precipitation evapotran-
spiration index (SPEI) (Sergio et al. 2008) and the pre-
cipitation anomaly index (PAI) (Zhang et al. 2013). Many 
other indices can be found in Amin et al. (2011). Several 
studies comparing results of these indices exist in the sci-
entific literature (Oladipio 1985; Guttman 1998; Szalai 
and Szinell 2000; Lloyd-Hughes and Saunders 2002; 
Majid et al. 2017; Gustavo et al. 2018). It appears that 
these indices are efficient in quantifying drought, but with 
performances often changing slightly from one index to 
another (Alley 1984; Oladipio 1985), SPI being often more 
robust (Okpara and Tarhule 2015) and the PDSI sometimes 
problematic (Oladipio 1985; Alley 1984). Of all these 
indices, SPI, a probability index formulated by McKee 
et al. (1993) presents many advantages (Hayes et al. 1999): 
it is the most common and applicable tool, mainly in areas 
where access to data other than rainfall is difficult or even 
impossible (e.g., many African countries). Furthermore, It 
is not affected by topography and is suitable for quantify-
ing most types of droughts (Lana et al. 2001; Szalai and 
Szinell 2000).

SPI which is the index studied in this paper for quanti-
fying drought, needs first an investigation on appropriate 
statistical function fitting precipitation distribution. The 
gamma function has been found to fit the precipitation 
distribution quite well (Sharma and Singh 2010; Alva-
rez et al. 2011); it provides the best model for describing 
monthly precipitation over most of Europe (Lloyd-Hughes 
and Saunders 2002). In the region of West-Africa, par-
ticularly in the Niger River Basin, Okpara and Tarhule 
(2016) fitted to monthly rainfall series, five different dis-
tribution functions (lognormal, exponential, log-logistic, 

Weibull and gamma) and the results of the case study 
showed the gamma-type two distributions to be the best 
fit over the upper Niger sub-basin. Other studies using 
SPI as drought indicator used the gamma distribution as 
the best fit only because it is commonly used (Dutra et al. 
2013). Likewise, Okpara et al. (2017) also used this dis-
tribution (Gamma probability distribution type 2) to fit 
gauged-based monthly rainfall and derived SPI was used 
to investigate the potentials of SPI as standard measure 
for meteorological drought in West Africa. However, 
SPI derived from gamma distribution shows some good 
results. In Zambia, it successfully categorized extremely 
dry years (1992 and 2015), severely dry year (1995), mod-
erately dry years (1972, 1980, 1987, 1999 and 2005) and 
26 near normal years Libanda et al. (2019). Naumann et al. 
(2014) investigated the capability of different data sets 
(the ECMWF ERA-Interim reanalysis, the Tropical Rain-
fall Measuring Mission satellite monthly rainfall product 
3B-43, the Global Precipitation Climatology Centre grid-
ded precipitation data set, the Global Precipitation Clima-
tology Project Global Monthly Merged Precipitation Anal-
yses, and the Climate Prediction Center Merged Analysis 
of Precipitation) and drought indicators (the Standardized 
Precipitation Index, the Standardized Precipitation-Evap-
oration Index, and Soil Moisture Anomalies) to improve 
drought monitoring in Africa. The gamma function was 
chosen as distribution to fit precipitation and derive SPI. 
They found that for the areas affected by drought, all the 
drought indicators agree on the time of drought onset and 
recovery, and show higher uncertainties in regions with 
limited rain gauge data.

In many studies, the precipitation record is directly fitted 
to a gamma distribution before deriving SPI (Gidey et al. 
2018; Mustafa and Rahman 2018; Spinoni et al. 2014; Amin 
et al. 2011; Lloyd-Hughes and Saunders 2002). Neverthe-
less, this function is not always the best-fit distribution in 
some areas (Guenang and Mkankam 2014) and very few 
studies consider this preliminary step that skipping may gen-
erate wrong SPI values.

This paper aims for providing appropriate distribution 
functions that better fit multi-scale aggregated precipitation 
at each grid point in Central Africa and investigate on the 
derived SPIs if using non appropriate distribution functions; 
it also investigates the possibility to reduce the number of 
time scales in a multiscalar drought study to guide users 
on the choice of a minimum and efficient time scales for 
its activity sector. Study domain, data and methodology are 
described in the next section. Sections 3 and 4 present the 
results and discussion, respectively, and the work ends with 
conclusions.
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2 � Study Domain, Data and Methodology

2.1 � Study Domain

The domain of this study is delimited by the coordinates 
15◦S–15◦N and 5◦E–35◦E (Fig. 1) comprising southern 
part of Niger, Nigeria, Chad, Sudan, Cameroon, Central 
African Republic (CAR), Guinea, Gabon, Congo, The 
Democratic Republic of Congo (DRC), Angola, Zambia, 
Malawi, Tanzania, Burundi, Rwanda, and Uganda. Fig-
ure 1 show that the topography is diversified with high-
lands, basins, plateaus and plains. Its hydrological network 
is also important. The northern part of the domain ( > 7◦ N 
of latitude and including northern Nigeria, Chad, north 
Cameroon and Sudan) is subject to desert conditions and 
the southern part to tropical rain-forest. The intermediate 
zone is dominated by an equatorial climate. More infor-
mation about the description of the region can be found 
in Fotso-Nguemo et al. (2016). This area is a center of 
interest for the study of drought as its plays an important 
role for the global climate change perspective. Hence the 
need to develop and improve drought quantification tools 
for control purposes and alerts in case of risk.

This domain is located between the tropics where solar 
radiations are constantly high during the year (Qiang 2003). 
The southern part of the domain is the Congo basin known 
as the second largest rainforest in the world, a significant 
carbon sink in global climate perspective. The northern part 
(Sahel region) is defined as an arid region. The western part 
is bordered by Atlantic Ocean. The relief of the area is diver-
sified and characterized by many high lands.

2.2 � Data Used

Two datasets ranging from 1951 to 2016 were used in this 
study:

–	 Gridded monthly precipitation data version 4.01, from 
the Climatic Research Unit (CRU) released the 20 Sep-
tember 2017 (Harris et al. 2014). They have 0.5◦ × 0.5◦ 
spatial resolution and cover the time period ranging from 
1951 to 2010. These data (CRU TS 4.01) are download-
able free of charge from the CRU website. Version 3 of 
these data was used in a part of this region especially in 
Cameroon to compute SPI and results were satisfactory 
similar to those from observation stations (Guenang and 
Mkankam 2014). CRU data have also been used suc-
cessfully for computing total water storage change and 
establishing the link with onset and retreat dates of the 
rainy season in the same area (Guenang et al. 2016).

–	 Full monthly precipitation dataset version 8, from the 
Global Precipitation Climatology Centre (GPCP) which 
is a German contribution to the World Climate Research 
Program (WCRP) and to the Global Climate Observing 
System (GCOS) (Schneider et al. 2016, 2017, 2018). 
These data based on quality-controlled data from all sta-
tions in GPCC’s data base are on a regular grid with 
a spatial resolution of 0.5◦ × 0.5◦ latitude by longitude. 
They are optimized for best spatial coverage and used 
for water budget studies and available through the GPCC 
Product Access Page.

2.3 � Methodology

First, gridded monthly precipitation time series (CRU TS 
4.01) were aggregated on 1-, 3-, 6-, 9-, 12-, ..., 48-month 
time scales. Second, four probability distribution functions 
(gamma, weibull, exponential and lognormal) estimated by 
the method of the maximum-likelihood (ML) (Thom 1958) 
were tested on time series of each aggregated precipitation 
and the Kolmogorov–Smirnov goodness-of-fit test statistic 
(Frank and Massey 1951) was applied.

The Kolmogorov–Smirnov test (KS-test) is a non-para-
metric test used to decide if a sample comes from a popu-
lation following a specific distribution. The KS-test statis-
tic, D, for a given cumulative distribution function F and 
empirical cumulative distribution function F

n
 is defined as 

the maximum absolute difference between F(x) and F
n
(x) 

for the same x.

where n is the number of independent and identically distrib-
uted observations x of a continuous variable, and

(1)D = sup
−∞<x<∞

|F
n
(x) − F(x)|,

Fig. 1   Study area and topography
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According to Glivenko–Cantelli theorem (Howard 1959), 
D almost converges to zero for n → ∞ , if empirical sam-
ple data follow the distribution F. At each grid point, the 

(2)F
n
(x) =

1

n

n∑

i=1

I(−∞,x](Xi
)

best-fit distribution function among the four used was that 
having the lowest KS-test statistic. Next, the best-fit function 
was used to calculate the cumulative distribution of data, 
which was finally transformed into standardized normal vari-
ate (Abramowitz and Stegun 1965) of zero mean and unity 
variance. This Standardized Precipitation Index quantifies 
precipitation deficits and value less than 0 (zero) indicates a 
drought condition. The drought severity is categorized into 
four classes shown in Table 1. More details on the method, 
theory and the main mathematical tools used can be found 
in Guttman (1999), Lloyd-Hughes and Saunders (2002) and 
Guenang and Mkankam (2014).

Spatial SPIs using each of the four distribution functions 
at all grid points were computed and compared to those 
derived from appropriate distribution functions at each 
grid point in order to evaluate the impact of the choice of 

Table 1   Drought classification according to SPI ranges

SPI range Drought category

−0.99 ≤ SPI < 0 Mild drought
−1.49 ≤ SPI < −1 Moderate drought
−1.99 ≤ SPI < −1.50 Severe drought
SPI ≤ −2 Extreme drought

Fig. 2   Distribution functions fitting several time scales aggregated 
precipitation from CRU and for the time period 1951–2016. The time 
scales concerned are 1-, 3-, 6-, ..., 48-month. Four distribution func-

tions were tested and the best fit at each grid point was represented. 
So four different colors were used for the four distribution functions
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distribution on SPI values. A classification of drought events 
according to SPI ranges (Lloyd-Hughes and Saunders 2002) 
was adopted (Table 1). The interpretation of SPI is done 
on the basis of the following illustration: the 3-month SPI 
provides a comparison of the precipitation over a specific 
3-month period with the precipitation totals from the same 
3-month period for all the years included in the historical 
record. Similar interpretation was done for n-month SPI 
value, where n is the number of months used as time scale.

After, calculation of cross-correlations between multisca-
lar SPIs were undertaken to objectively reduce the number 
of time scales without losing important information. So, the 
total surface average of SPIs for each time scale was calcu-
lated and used for computing cross-correlation.

3 � Results

3.1 � Determination of Statistical Distribution 
Functions Fitting Various Time Scales 
Aggregated Precipitation

Figures 2 and 3 show the spatial distribution of statistical 
functions that better fit the time series of precipitation over 
the period 1951–2016, for several time scales ranging from 
1- to 48-month, and for CRU and GPCC precipitation data, 
respectively.

For short time scales ranging from 1- to 6-month (Fig. 2a, 
b, c), the four distribution functions tested are spatially well 
represented, but with a strong preponderance of gamma 
and weibull functions at 1- and 3-month, and only weibull 
largely predominates at 6-month, the lognormal function 

Fig. 3   Distribution functions fitting several time scales aggregated 
precipitation from GPCC and for the time period 1951–2016. The 
time scales concerned are 1-, 3-, 6-, ..., 48-month. Four distribution 

functions were tested and the best fit at each grid point was repre-
sented. So four different colors were used for the four distribution 
functions
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being poorly represented. At 9-month time scale and above, 
areas where precipitation time series are described by these 
functions decrease in the benefit of the lognormal function 
which below 9-month time scale was very weakly repre-
sented. For 12-month time scale and more, the lognormal 
function predominates except at 18- and 21-month where 

both gamma and weibull outperform, respectively (Fig. 2g, 
h). We note that between 12- and 48-month, the three func-
tions, namely gamma, weibull and exponential are all rep-
resented at competing portions, but spatially scattered. The 
exponential function has the lowest spatial representation 
at 1-, 3- and 6-month, but none of the gridded time series 

Table 2   Cross-correlation between SPIs computed with CRU precipitation data for several time scales and for total area

Values showing significant correlation between SPIs are indicated in bold

SPI
n

1 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

1 1 0.294 0.757 0.133 0.013 0.070 0.684 0.111 −0.009 0.042 0.571 0.083 −0.009 0.033 0.490 0.081 −0.002
3 1 0.209 0.458 0.042 −0.209 0.189 0.368 0.008 −0.165 0.133 0.256 −0.007 −0.124 0.108 0.211 −0.013
6 1 −0.017 0.031 0.246 0.854 −0.021 −0.010 0.188 0.727 0.002 −0.020 0.141 0.618 0.002 −0.027
9 1 0.154 −0.473 0.118 0.813 0.049 −0.339 0.126 0.637 0.058 −0.254 0.125 0.508 0.029
12 1 0.284 0.150 0.290 0.682 0.378 0.245 0.354 0.520 0.325 0.223 0.302 0.371
15 1 0.281 −0.314 0.231 0.845 0.290 −0.196 0.149 0.671 0.253 −0.161 0.105
18 1 0.234 0.149 0.311 0.910 0.245 0.116 0.264 0.799 0.207 0.082
21 1 0.374 −0.100 0.310 0.855 0.304 −0.031 0.314 0.718 0.237
24 1 0.516 0.325 0.489 0.815 0.528 0.357 0.473 0.647
27 1 0.453 0.061 0.440 0.875 0.441 0.085 0.355
30 1 0.433 0.320 0.450 0.919 0.393 0.265
33 1 0.565 0.197 0.484 0.888 0.478
36 1 0.628 0.437 0.597 0.855
39 1 0.566 0.276 0.573
42 1 0.552 0.436
45 1 0.659
48 1

Table 3   Cross-correlation between SPIs computed with GPCC precipitation data for several time scales and for total area

Values showing significant correlation between SPIs are indicated in bold

SPI
n

1 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

1 1 0.311 0.775 0.178 0.026 0.045 0.736 0.165 0.022 0.032 0.634 0.136 0.029 0.037 0.561 0.126 0.029
3 1 0.196 0.491 0.082 −0.244 0.192 0.399 0.073 −0.176 0.157 0.312 0.063 −0.115 0.155 0.269 0.053
6 1 −0.029 0.067 0.267 0.866 −0.019 0.026 0.213 0.759 0.008 0.022 0.173 0.667 0.020 0.022
9 1 0.193 −0.490 0.130 0.836 0.105 −0.361 0.144 0.674 0.106 −0.257 0.150 0.555 0.097
12 1 0.323 0.184 0.365 0.774 0.416 0.273 0.439 0.676 0.425 0.300 0.444 0.596
15 1 0.274 −0.311 0.283 0.868 0.292 −0.181 0.226 0.723 0.283 −0.114 0.192
18 1 0.237 0.174 0.304 0.925 0.242 0.151 0.276 0.833 0.221 0.129
21 1 0.419 −0.109 0.319 0.875 0.367 −0.014 0.343 0.760 0.324
24 1 0.527 0.331 0.541 0.871 0.567 0.395 0.575 0.784
27 1 0.438 0.060 0.480 0.899 0.452 0.123 0.427
30 1 0.420 0.337 0.448 0.935 0.398 0.302
33 1 0.605 0.212 0.493 0.910 0.543
36 1 0.653 0.464 0.670 0.913
39 1 0.563 0.314 0.621
42 1 0.553 0.464
45 1 0.707
48 1
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precipitation follows this distribution at longer time scales. 
In many cases, the Republic Democratic of Congo (DRC) 
area globally shows preference to weibull function. GPCC 
precipitation data show similar results (Fig. 3), but with dis-
tribution functions somewhat more dispersed spatially from 
12-month time scale.

Overall, from 1- to 6-month, the four distribution func-
tions are well grouped by zone and the weibull function 
is the most extended spatially. The gamma function for 
1-month time scale is preferentially located in the belt 10◦N
–15◦N of latitude, and in the southern part of the domain. In 
the band 7◦N–10◦N , and in the loop crossing the southern 
parts of Gabon and the DRC, a thin layer of the exponential 
function is revealed, surrounding a space largely dominated 
by the weibull function.

3.2 � Study of the links between SPIs at different 
time scales

Tables 2 and 3 show cross-correlations between SPI values 
at different time scales (1-, 3-, 6-, 9-, 12-, ..., 48-month) 
and computed using appropriate distribution functions 
at each grid point. Results give a symmetric matrix and 

only the part upper the diagonal is shown. Correlations 
between two SPIs at the same time scale are obviously per-
fect ( r = 1 ). Correlations between SPI from 1- to 6-month 
time scales and SPI at other time scales are generally too 
weak ( |r| < 0.1 ) except few cases. This shows less similar-
ity between SPI at short time scales. However, from 9 to 
36 months, cross-correlations between SPIs are higher and 
ranged from 0.1 to 0.9. Using CRU data (Table 2), SPI1 
and SPI6 are significantly correlated and one can account 
for about 76% of the variance of the other. SPI6 is also 
significantly correlated with SPI18 at 85%. By reasoning 
in a similar way for other time scales, we establish a cor-
respondence table (Table 4) to better understand the links 
between SPIs at different scales. In this table, SPI ran at 
9-month time scale ( SPI9 in column 1) can significantly 
explain 81% of the variance of SPI21 (column 2), 64% 
for SPI33 (column 2) and 51% for SPI45 (column 2); SPI18 
and SPI30 can be skipped in the benefit of SPI6 * which is 
already selected, because SPI18 (column 1) can be signifi-
cantly explained by 85% of SPI6 * (column 2). SPI42 (col-
umn 1) can be explained at 92% by SPI30 (column 2) which 
can in turn be explained by 73% of SPI6 * (column 3). In 
the same way as previously, we can skip SPI39 , SPI42 , SPI45 
and SPI48 in the benefit of SPI15 *, SPI6 *, SPI9 * and SPI12 *, 
respectively. In addition, spatial patterns of SPIs from 18- 
to 48-month show resemblances to at least one from 1- to 
15-month time scale (Fig. 5: (i), (m) and (q) are similar to 
(e), (j), (k), (l), (n), (o) and (p) are similar to (c) but with a 
slight overestimation of SPI absolute value). Precipitation 
data from GPCC gives similar results to those from CRU, 
but with correlation values all slightly larger, increasing 
the number of significant correlations (> 0.5) between 
time scales (from 32 to 37 significant values). The links 
that are added are those between 24- and 33-month, 1- and 
42-month, 12- and 48-month, 24- and 45-month, and 33- 
and 48-month. It remains true that SPIs at these scales are 
represented between 1  and 15 months. The correspond-
ence table (Table 4) established for CRU data remains 
valid for GPCC. Finally, SPIs from 1- to 15-month time 
scales can significantly explain the variances of SPIs at 
other time scales. Therefore, the rest of the study will be 
limited to time scales ranging from 1  to 15 month.

3.3 � Sensitivity of SPI to statistical distribution 
functions

Figures 4 and 5 present multiscalar SPI means (sub-figures 
(a1), ..., (a6)) using appropriate distribution functions at 
each grid point and SPI biases ((b1), ..., (b6); (c1), ..., (c6); 
(d1), ..., (d6); (e1), ..., (e6)) if using one of the four distribu-
tion functions (gamma, exponential, lognormal and weibull, 
respectively) at all grid points. 1- to 15-month time scales 
aggregated monthly precipitation data from CRU and GPCC 

Table 4   Correspondence between SPIs at different time scales and for 
CRU precipitation data

Correlation values are shown in parenthesis. Symbol (*) indicates the 
selected SPIs significantly correlated to other SPIs. SPI

n
 represents 

SPI at n-month time scale

SPI
n

SPI
n
 Correlated to

SPI
n
 in 1st column SPI

n
 in 2nd column

SPI
1
* SPI

6
 (76%); SPI

18
 (68%); SPI

30
 (57%)

SPI
3
*

SPI
6
* SPI

18
 (85%); SPI

30
 (73%); SPI

42
 (62%)

SPI
9
* SPI

21
 (81%); SPI

33
 (64%); SPI

45
 (51%)

SPI
12

* SPI
24

 (68%); SPI
36

 (52%)
SPI

15
* SPI

27
 (85%); SPI

39
 (67%)

SPI
18

SPI
6
 * (85%); SPI

1
 * (68%)

SPI
21

SPI
9
 * (81%)

SPI
24

SPI
12

 * (68%)
SPI

27
SPI

15
 * (85%)

SPI
30

SPI
18

 (91%); SPI
6
 * (73%); SPI

1
 * (57%)

SPI
33

SPI
21

 (86%); SPI
9
 * (64%)

SPI
36

SPI
24

 (82%) SPI
12

 * (68%)
SPI

39
SPI

27
 (88%) SPI

15
 * (85%)

SPI
42

SPI
30

 (92%) SPI
6
 * (73%)

SPI
45

SPI
33

 (89%) SPI
9
 * (64%)

SPI
48

SPI
36

 (86%) SPI
12

 * (52%)
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were used. The time period 01/1993–12/1993 was chosen 
within the decade 1990s known as one of the driest in Cen-
tral Africa.

Figure 4 ((a1), ..., (a6)) indicates in Congo Basin an area 
where SPIs are negative and of the order of − 1.2, showing 
the Moderate drought type, that widens from 1- to 6-month 
time scale. From 9-month, it decreases in mild drought (SPI 
> −1 ) while another similar drought pole appears north of 
the basin and intensifies at higher timescales. The study of 
SPIs trends indicates that the Congo Basin in general has 
recorded a significant drying that deserves attention in fur-
ther investigation. The other parts of the domain generally 
have much lower and positive SPIs, indicating an increase 
in precipitation. Spatial patterns of SPIs with GPCC data are 

similar to that of CRU (Fig. 5 (a1), ..., (a6)) but with lower 
values and highest dispersion from 12-month time scale. So, 
GPCC underestimates droughts and spatially more disperses 
them as compared to CRU.

If the same distribution function is applied at all grid 
points, instead of the appropriate distribution functions at 
each grid point, the results of SPIs obtained become biased. 
These are the cases shown in Figs. 4 and 5 ((bi), (ci), (di), 
(ei), i=1, ..., 6) where the gamma, exponential, lognormal 
and weibull distribution functions were used, respectively. 
The bias is weaker at 1-month time scale. It is generally 
observed that the intensity and the spatial extent of biases 
increase as the time scale increases and is much more 

Fig. 4   Multiscalar SPI mean from January to December 1993 ((a1), 
..., (a6)) using appropriate distribution functions at each grid point 
and SPI biases ((b1), ..., (b6); (c1), ..., (c6); (d1), ..., (d6); (e1), ..., 
(e6); ) if using one of the four distribution functions (gamma, expo-

nential, lognormal and weibull, respectively) at all grid points. 
Aggregated CRU monthly precipitation data from 1- to 15-month 
time scales were used
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localized in the center of the domain, particularly where 
grid points have inappropriate distribution functions. The 
exponential function, the least suitable distribution in the 
domain, presents the highest biases (c1, ..., c6), whereas the 
most representative weibull function (d1, ..., d6) spatially 
has the weakest bias. These biases sometimes going up to 2 
can unfortunately give rise to a type of drought rather than 
another.

In all, SPI is sensitive to distribution function used to fit 
precipitation. However, weibull followed by gamma shows 
best performances for computing SPI, while the exponen-
tial most of the time shows significant difference. From 

12-month time scale and above, the best fit distribution func-
tion at each grid point will be benefited to expect good SPI 
computation and then better drought description.

4 � Discussion

Several studies show that the choice of methods to calcu-
late drought characteristics can introduce uncertainties 
in drought projections in the future periods (Okpara and 
Tarhule 2011; Mo 2008; Sheffield and Wood 2007). One 
of the sources of error in SPI results could come from the 
fact that in many computations (Lloyd-Hughes and Saunders 

Fig. 5   Multiscalar SPI mean from January to December 1993 ((a1), 
..., (a6)) using appropriate distribution functions at each grid point 
and SPI biases ((b1), ..., (b6); (c1), ..., (c6); (d1), ..., (d6); (e1), ..., 
(e6); ) if using one of the four distribution functions (gamma, expo-

nential, lognormal and weibull, respectively) at all grid points. 
Aggregated GPCC monthly precipitation data from 1- to 15-month 
time scales were used
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2002; Amin et al. 2011; Spinoni et al. 2014; Gidey et al. 
2018; Mustafa and Rahman 2018), the precipitation record 
is directly fitted to a gamma distribution before deriving SPI, 
yet there are other distribution functions. In a part of the 
current study, we tested four distribution functions (gamma, 
exponential, lognormal and weibull) and chose the suitable 
fit at each grid point for better computing SPI. We found 
that the functions weibull and gamma are concurrently the 
best fits in most area over Central Africa. These results cor-
roborate those previously obtained in Cameroon by Guenang 
and Mkankam (2014), where using both station and CRU 
datasets, they found that distribution function fitting pre-
cipitation changes with space and depends on the aggregated 
precipitation time scales. Thus the gamma distribution is 
not only the best-fit function in Africa contrary to Europe 
(Sharma and Singh 2010; Alvarez et al. 2011). Danielle et al. 
(2015) also fitted and tested three distributions functions, 
including lognormal, gamma and generalized extreme value 
to identify suitable parameters for the 3-month, 6-month and 
12-month SPI. They found that the gamma distribution was 
suitable for precipitation in most area over the globe. Unfor-
tunately afterward, the SPI calculation was done only with 
the best distribution statistically at all grid points, which 
could sometimes skew the results in areas where a differ-
ent distribution function was suitable. Other investigations 
(Sienz et al. 2012) have noted limitations with the gamma 
distribution, particularly under extreme climates, and the 
three-parameter distributions such as the Pearson Type three 
have been proposed as an alternative (Guttman 1999).

There is a challenge to reduce the number of time scale in 
multi-scalar drought study or to find optimal time scale to be 
used if studying many drought indices. In the first case, con-
sidering different time scales, we found that some SPIs are 
highly correlated and show similar patterns. Thus the choice 
of time scales is important to avoid redundant drought inter-
pretation. In the second case, Javier et al. (2018) found that 
6-month time scale best reproduces observed events across 
all the drought indices used.

The current study has also shown that CRU TS 4.01 and 
GPCC datasets corroborate, but GPCC’s SPIs are wetter and 
slightly more dispersed at longer time scales. The version of 
CRU precipitation data used have been improved compara-
tively to version 3.10.01 or older whose a wet bias (due to 
a sharp decline in its number of rain-gauges for the recent 
decades) was underlined by Trenberth et al. (2014). This 
bias is due to a sharp decline in its number of rain-gauges for 
the recent decades. Furthermore, CRU data show high cor-
relation with the GRACE data in Central Africa, especially 
south of the equator (Aiguo and Tianbao 2016). Otherwise, 
some investigations showed reliability of GPCC data and 
recommended to use them where there is poor data coverage 
since the 1990s (Aiguo and Tianbao 2016).

This study also noticed a trend to drying in Congo basin 
in particular, reinforcing the idea that the central African 
rain-forests have experienced a long-term drying (Wenjian 
et al. 2016; Spinoni et al. 2014). Such climatic condition is 
very alarming in Jordan according to Mustafa and Rahman 
(2018) who detected an increase in drought magnitude by 
applying both the Mann–Kendall trend test to precipita-
tion recorded at several stations of the country and the 
regression test to the SPI values. Northern Ethiopia is not 
spared by this hazards in the sense that Gidey et al. (2018) 
detected a spatial and temporal increase in drought with 
incidences high during the past three decades. Over Africa 
in general, many different measures of drought all found 
widespread drying from 1950 to 2012 (Aiguo and Tianbao 
2016). Dai (2013) tries to explain that the increase of dry-
ing over many land areas in the globe in general is due to 
the warming since the 1980s. It would be necessary to go 
deeper into this study in further investigations.

5 � Conclusions

In a context where the climate is changing, it is of utmost 
importance to follow the dynamic of indices that can 
inform on the state of the climate in various regions of 
the world. Therefore, this study was undertaken to exam-
ine SPI calculation method and to show the sensitivity of 
results to the choice of distribution function used to fit 
precipitation data in one of the stages of SPI computation. 
Study domain was Central Africa and two monthly grid-
ded precipitation datasets, both from the CRU and GPCC, 
were used on the time period 1951–2016. Four statistical 
distribution functions (gamma, weibull, exponential and 
lognormal) were tested to determine the best fit for multi-
scale precipitation accumulation ranging from 1-, 3-, 6-, 
... to 48-month. Next the multi-scale SPIs were computed 
and the sensitivity of results to distribution functions was 
examined. The study also attempted to establish relation-
ship between SPIs computed at various timescales.

The results let appear that for short time scales (not more 
than 9-month), most gridded precipitation data prefer-
ably follow the weibull distribution function. Many other 
grid points show interest for gamma, few for lognormal 
and very few for exponential. Observed spatial pattern at 
1-month time scale progressively shifts northward along 
longer time scales. Spatial distribution of functions scat-
tered at 12-month, and no grid point follows the exponen-
tial function. Results of cross-correlations showed links 
between SPIs at different time scales and led to the neces-
sity to reduce the study from 1- to 15-month. Overall, SPI 
values are sensitive to distribution function used to fit pre-
cipitation. The functions weibull and gamma showed lower 
bias in computing SPI if used at all grid points while the 
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exponential most of the time shows significant difference. 
For long time scale (12-month and more), the best fit dis-
tribution function chosen at each grid point will be benefit 
to expect good SPI computation and then better drought 
description.

The SPI was recommended in 2009 as the best meteoro-
logical index (Hayes et al. 2011). One of the advantages 
of SPI is its ability to compute drought levels for different 
time scales ranging from 3, 6, 12, 24, and 48-month periods 
(Amin et al. 2011), but the pattern of increase in the duration 
and magnitude of droughts resulting from higher tempera-
tures can not be identified by SPI, so SPEI was developed to 
overcome this shortcoming (Vicente-Serrano et al. 2010).
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