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In this paper, an analytical expression for the solution of the ratio-dependent
predator-prey system with constant effort harvesting by an adaptation of the
homotopy perturbation method (HPM) is presented. The HPM is treated as
an algorithm for approximating the solution of the problem in a sequence of
time intervals, i.e HPM is converted into a hybrid numeric–analytic method.
Residual error for the solution is presented.

1 Introduction

Most modelling of biological problems are characterized by systems of ordinary
differential equations (ODEs). The prey is subjected to constant effort har-
vesting with r, a parameter that measures the effort being spent by a harvesting
agency. The harvesting activity does not affect the predator population directly.
It is obvious that the harvesting activity does reduce the predator population
indirectly by reducing the availability of the prey to the predator. Adopting a
simple logistic growth for prey population with e > 0, b > 0, and c > 0 standing
for the predator death rate, capturing rate, and conversion rate, respectively,
we formulate the problem as [1]

dx(t)

dt
= x(t)(1 − x(t)) −

bx(t)y(t)

y(t) + x(t)
− rx(t), x(t0) = c1, (1)

dy(t)

dt
=

cx(t)y(t)

y(t) + x(t)
− ey(t), y(t0) = c2, (2)

where x(t) and y(t) represent the fractions of population densities for prey and
predator at time t, respectively. Equations (1–2) are to be solved according to
biologically meaningful initial conditions x(t) ≥ 0 and y(t) ≥ 0.

Authors in [3] and [4] used the Adomian decomposition method (ADM) to
handle the systems of prey-predator problem. Yusufoǧlu and Erbaş [5] and
Rafei et al. [6] employed the variational iteration method (VIM) to compute an
approximation to the solution of the system of nonlinear differential equations
governing the problem. Biazar [7] used the power series method (PSM) to
handle the systems.
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In recent years, a great deal of attention has been devoted to study HPM,
which was first invented by Prof Ji-Huan He [8] for solving a wide range of
problems whose mathematical models yield differential equation or system of
differential equations. HPM has successfully been applied to many situations.
Chowdhury et al. present new modification of HPM by dividing the solution
interval to finite number of subintervals [4].

In this paper, we are interested to find the approximate analytic solution of
the system of coupled nonlinear ODEs (1) and (2) by treated the HPM as an
algorithm for approximating the solution of the problem in a sequence of time
intervals. Residual error for the present solution is introduced.

2 Solution procedure

Firstly, consider (1) and (2) subject to

x(t∗) = c1, y(t∗) = c2. (3)

We note that when t∗ = 0 we have the initial condition of Eq. (1) and (2). It
is straightforward to choose

x0(t) = c1, y0(t) = c2, (4)

as our initial approximations of x(t) and y(t), and the linear operator should be

L[φ(t; q)] =
∂φ(t; q)

∂t
, (5)

with the property

L[A] = 0, (6)

where A is the integration constant, which will be determined by the initial
condition.

If q ∈ [0, 1] indicate the embedding parameter, then the zeroth-order defor-

mation problems are of the following form:

(1 − q)L[x̂(t; q) − x0(t)] = qNx[x̂(t; q), ŷ(t; q)], (7)

(1 − q)L[ŷ(t; q) − y0(t)] = qNy[x̂(t; q), ŷ(t; q)], (8)

subject to the initial conditions

x̂(t∗; q) = c1, ŷ(t∗; q) = c2, (9)

in which we define the nonlinear operators Nx and Ny as

Nx[x̂(t; q), ŷ(t; q)] =
∂x̂(t; q)

∂t
− x̂(t; q)(1 − x̂(t; q)) +

bx̂(t; q)ŷ(t; q)

ŷ(t; q) + x̂(t; q)
+ rx̂(t; q),

Ny[x̂(t; q), ŷ(t; q)] =
∂ŷ(t; q)

∂t
−

cx̂(t; q)ŷ(t; q)

ŷ(t; q) + x̂(t; q)
+ eŷ(t; q).
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For q = 0 and q = 1, the above zeroth-order deformation equations (7) and (8)
have the solutions

x̂(t; 0) = x0(t), ŷ(t; 0) = y0(t), (10)

and
x̂(t; 1) = x(t), ŷ(t; 1) = y(t). (11)

When q increases from 0 to 1, then x̂(t; q) and ŷ(t; q) vary from x0(t) and y0(t)
to x(t) and y(t). Expanding x̂ and ŷ in Taylor series with respect to q, we have

x̂(t; q) = x0(t) +

∞
∑

m=1

xm(t)qm, (12)

ŷ(t; q) = y0(t) +

∞
∑

m=1

ym(t)qm, (13)

in which

xm(t) =
1

m!

∂mx̂(t; q)

∂qm

∣

∣

∣

∣

q=0

, ym(t) =
1

m!

∂mŷ(t; q)

∂qm

∣

∣

∣

∣

q=0

. (14)

Therefore, we have through Eq. (11) that

x(t) = x0(t) +

∞
∑

m=1

xm(t), (15)

y(t) = y0(t) +

∞
∑

m=1

ym(t). (16)

Define the vectors

~x(t) = {x0(t), x1(t), ..., xn(t)}, (17)

~y(t) = {y0(t), y1(t), ..., yn(t)}. (18)

Differentiating the zeroth-order equations (7) and (8) m times with respect
to q, then setting q = 0, and finally dividing by m!, we have the mth-order

deformation equations

L[xm(t) − χmxm−1(t)] = Rx,m(~x(t), ~y(t)), (19)

L[ym(t) − χmym−1(t)] = Ry,m(~x(t), ~y(t)), (20)

with the following boundary conditions:

xm(t∗) = 0, ym(t∗) = 0, (21)

for all m ≥ 1, where

Rx,m(~x(t), ~y(t)) =
1

(m − 1)!

∂m−1Nx[x̂(t; q), ŷ(t; q)]

∂qm−1

∣

∣

∣

∣

q=0

, (22)

Ry,m(~x(t), ~y(t)) =
1

(m − 1)!

∂m−1Ny[x̂(t; q), ŷ(t; q)]

∂qm−1

∣

∣

∣

∣

q=0

. (23)
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This way, it is easy to solve the linear non-homogeneous Eqs. (19) and (20)
at general initial conditions by using Maple, one after the other in the order
m = 1, 2, 3, ... . Thus we successfully have

x1(t) = −
c1

(

−c1 + 7 c2 + 10 c1
2 + 10 c1 c2

)

(t − t∗)

10(c1 + c2)
,

y1(t) = −
c2 (3 c1 + 5 c2) (t − t∗)

10(c1 + c2)
,

x2(t) =
1

200 (c1 + c2)
3

c1

(

c1
3 − 30 c1

4 + 200 c1
5 + 19 c1

2c2

+19 c1 c2
2 + 49 c2

3 + 70 c1
3c2 + 310 c1

2c2
2 + 210 c1 c2

3

+600 c1
4c2 + 600 c1

3c2
2 + 200 c1

2c2
3
)

(t − t∗)
2

y2(t) = −
1

200 (c1 + c2)
3

c2

(

−25 c2
3 − 9 c1

3 − 47 c1
2c2

−51 c1 c2
2 + 20 c1

3c2 + 20 c1
2c2

2
)

(t − t∗)2 ,

...

By the same way we can get the first fourth term to be as analytical approximate

solution as x(t) ≃
4
∑

i=0

xi(t) and y(t) ≃
4
∑

i=0

yi(t) terms. Now we divide the interval

[0, T ] to subintervals by time step ∆t = 0.01. Then we start from the initial
conditions and we get the solution on the interval [0, 0.01). Further, we take
c1 = x(0.01) and c2 = y(0.01) and t∗ = 0.01, so we get the solution on the new
interval [0.01, 0.02), and so on. Therefore, by choosing this initial approximation
on the starting of each interval, the solution on the whole interval should be
continuous. It is worth mentioning that if we take t∗ = 0 and we fixed c1 and
c2, then the solution will be the standard HPM solution which is not effective
at large value of t.

3 Analysis of results

In this section, we compute the result using above algorithm for x(0) = 0.5, y(0) =
0.3, b = 0.8, c = 0.2, e = 0.5 and r = 0.9. Figure 1 presents the population frac-
tion versus time for prey population fraction (x(t)) and predator population
fraction (y(t)). Moreover the residual error using this algorithm is given in
Fig.2 (a)and (b). It is clear that the error within the range 10−15 which mean
that is very small and it is not be possible in the standard HPM which give
error 106 using the same interval as in Fig. 2(c).
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(a) (b)

Figure 1: Population fraction versus time(a) prey population fraction; (b) preda-
tor population fraction.
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(a) (b)

(c)

Figure 2: Residual error for (a) MHPM solution of x (b) MHPM solution of y

(c) HPM solution
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