

Web Service Composition to Facilitate Grid and Distributed Computing: Current
Approaches and Future Framework

Muhammad Ahtisham Aslam, Sören Auer
Betriebliche Informationsysteme

Universität Leipzig, Germany
aslam@informatik.uni-leipzig.de, auer@informatik.uni-leipzig.de

 Jun Shen

Faculty of Informatics
University of Wollongong, Australia

jshen@uow.edu.au

Michael Herrmann
DaimlerChrysler AG, Sindelfingen Germany
michael.hm.herrmann@daimlerchrysler.com

Abstract
As long as Web Services are getting into the heart
of the growing e-business world, numbers of ser-
vices available on the Web are increasing rapidly.
With such a growth of available services, it is also
becoming more and more difficult to discover these
services manually. After manual discovery, manu-
ally composing these services to perform complex
tasks is also a non-flexible and inefficient ap-
proach. Sometimes unavailability of a single ser-
vice within Web services composition can cause a
crash of the whole composite process in a distrib-
uted computing environment, even though some
other services exist in UDDI registries that can be
used to perform the same task. This is due to the
lack of systems and approaches that can be used to
dynamically discover and compose these alternate
services on the fly. Therefore dynamically
discovering and composing required Web services
at run time is preferably needed in the service
oriented e-business world. In this paper we provide
a survey of existing dynamic and automated Web
services composition approaches. We highlight
limitations of these existing approaches and
propose a new framework at an abstract level for
dynamic and automated composition of Web
services, especially in grid and distributed
computing environment.
1. Introduction
Dynamic composition of Web services is highly
needed by the growing e-business world to automat
the process of Web services interaction. To perform
complex business tasks, composition of Web services
will remain inefficient and unreliable, as long as Web
services are discovered and composed manually.

Composing Web services on the fly can efficiently
affect the e-business world both at B2C and B2B
levels. For example consider the simple scenario of a
B2C interaction in which a client wants to order a
pizza for delivery. In such a scenario the user has

some specifications (e.g. pizza ingredients, specific
geographical location to deliver pizza, pizza rates
etc.). To perform such a task a client has to manually
discover and execute required services one-by-one,
which is not an effective approach. Similarly, B2B
interactions in a distributive business environment
involve prior agreements and pre-defined standards
between interacting partners. Such prior agreements
at different levels of integration cannot motivate ef-
forts for dynamic interaction between Web services.

Current Web services standards (i.e. WSDL [19],
SOAP [17] and UDDI [18]) provide syntax-based
interaction and composition of Web services in a
loosely coupled way. However, dynamic composition
needs more than syntactical information about Web
services functionality. SWSs are capable of providing
such kind of information, which make Web services
capabilities understandable for computers. Several
current efforts (e.g. OWL-S [13] and WSMO [20]
and WSDL-S [15]) aim at providing Web service
semantics.

After all these efforts to add semantics to Web ser-
vices technology, dynamic and automated composi-
tion is still an open question. Different solutions, like,
enhancing BPEL4WS (shortly BPEL) [1] to create
such dynamic composition or using AI planning to
automate the composition process of required ser-
vices have been proposed. Till now interaction be-
tween Web services either in the form of the BPEL
process model or as a composite service generated by
an AI planner, is not dynamic or does not consider
both functional and non-functional semantics of a
service in the composition process.

Several approaches have been proposed to address
Web services composition problem. Most of them fall
into one of the following two categories: methods
based on pre-defined workflow model and methods
based on AI planning [11]. The first method uses

workflow techniques. The second approach is based
on AI planning techniques. Both of these methods
have their own composition approaches. The work-
flow method is more meaningful and useful in situa-
tions where problem model (e.g. BPEL process
model) is already defined. In such a method dynamic
composition involves discovery and binding of re-
quired services within Web services composition. On
the other hand, AI planning method is more suitable
in situations where requester has no process model
but has a set of constraints and preferences. On the
basis of this set of constraints and preference final
composition can be generated automatically by the
program [5].

In section 3 of this paper we describe a motiva-
tional scenario for our work and highlight some com-
position issues (challenges) that can arise in case of
syntax based Web services composition. Keeping in
mind these issues, we first analyse major existing
approaches for dynamic and automated composition
of Web services both from workflow and AI commu-
nities and untangle their limitations (with respect to
composition issues highlighted in our motivational
scenario). Then we point out major challenges for
dynamic and automated composition of Web services
and propose our framework encompassing essentially
required modules to bridge the gap within this do-
main.

The remaining paper is organized as follows: Sec-
tion 2 provides a review of related technologies. Sec-
tion 3 discusses the motivational scenario. Different
composition approaches have been briefly discussed
and compared in section 4. In section 5 we exploit
and integrate these approaches and propose a new
framework for dynamic and automated composition
of Web services. Section 6 concludes our work and
discusses future directions.

2. Background
This section gives a review of different technologies
that are being used by academic and industrial re-
searchers for dynamic and automated Web services
composition (e.g. BPEL [1], OWL-S [13]).

2.1 BPEL4WS
Business Process Execution Language for Web Ser-
vices (BPEL4WS) is a well-known process modelling
and execution language that can be used to model
business processes as composition of Web services.
BPEL composes Web services by defining a work-
flow and binding required services at design time.
Discovering required services manually and compos-
ing them syntactically is not enough for dynamic and
automated composition. A BPEL process model can
itself be exposed and used with other services to per-
form some complex jobs that a single service alone
cannot do. For example, different process modelling
tools (e.g. MS BizTalk Server, IBM WebSphere,
Vitria’s BusinessWare and BEA WebLogic) support
such kind of tasks. Exporting a BPEL process as a

Web service has same syntactical limitations as tradi-
tional syntax based WSDL services. However, we
have presented an approach and relevant tool [9] that
can be used to map syntax based composition to
SWSs composition (OWL-S composite service). The
mapped OWL-S service exposes semantic informa-
tion to facilitate dynamic discovery, composition and
invocation.

BPEL uses primitive and structured activities to
define a process as a composition of Web services.
Primitive activities (e.g. Receive, Send and Invoke)
can be used to communicate with the outer world by
sending and receiving appropriate messages. The
sample code given below shows a very simple exam-
ple of BPEL primitive activity (Invoke), which per-
forms a Web service operation “DeliverPizza” by
sending and receiving appropriate messages from a
Web service. The BPEL’s Structured activities (e.g.
sequence, flow, while, switch etc.) can be used to
define control flow between process components. For
example, structured activity (sequence) defines that
child activities will be performed in a sequence.

<invoke partnerLink="DP_Ser_Port"portType=”DPSerPort-
 Type” operation=“DeliverPizza" inputVariable=”Mess_

 _To_DP_Ser” outputVariable ”Mess_From_DP_Ser”/>

2.2 OWL-S
OWL-S is suite of OWL ontologies. It provides ma-
chine understandable description of a Web service
(annotated with domain ontologies). Such semantic
based descriptions of Web services facilitate dynamic
discovery, invocation and composition tasks. OWL-S
suite consists of Profile, Process Model and
Grounding ontologies.

Profile ontology describes capabilities of a Web
service. Semantics about service capabilities can be
categorized as functional and non-functional seman-
tics. Functional semantics include information about
input, output, pre-condition and post-condition of a
service. Sample code given below provides a very
simplified example of Profile ontology (i.e. Deliver-
PizzaProfile) for an atomic process “DeliverPiz-
zaProcess”. The sample code shows that input and
output parameters of an atomic process have data
type of ontological concepts “Pizza” and “Delivery”
which are defined in appropriate domain ontologies.
Non-functional semantics provide information about
service provider, geographical location, QoS seman-
tics etc. Section 4 describes different composition
approaches, which use this semantic information to
dynamically compose Web services. Specially, we
will see how non-functional semantics can be used to
filter and select a single service when multiple ser-
vices have been discovered for composition on the
basis of matching functional semantics.

<profile:Profile rdf:ID="DeliverPizzaProfile">
 <service:isPresentedBy
 rdf:resource="#DelilverPizzaService"/>

 <process:hasInput rdf:resource="#PizzaIngredients"/>
 <process:hasOutput
 rdf:resource="#PizzaDeliveryNotification"/>
</profile:Profile>

<process:Input rdf:ID="PizzaIngredients">
 <process:parameterType rdf:datatype="&xsd;#anyURI">
 &bibtex;#Pizza</process:parameterType>
 <rdfs:label>Pizza Ingredients</rdfs:label>
</process:Input>

<process:Output rdf:ID="DeliveryNotification">
 <process:parameterType rdf:datatype="&xsd;#anyURI">
 &concepts;#Delivery</process:parameterType>
 <rdfs:label>Pizza Name</rdfs:label>
</process:Output>

Process Model ontology composes Web services in
flow like a workflow language. The OWL-S defines a
subclass (Process) of ServiceModel, which draws
upon well-established work in a variety of fields, in-
cluding work in AI on standardizations of planning
languages [13]. Process Model ontology has three
kinds of processes i.e. atomic processes, composite
processes and simple processes. An atomic process
is a process that can be performed in a single step. A
composite process may have one or more sub atomic
or composite processes and can define control flow
between processes by using OWL-S control con-
structs (e.g. Sequence, Split, Split-Join etc.). Third
kind of processes (i.e. simple processes) can be used
to define a level of abstraction between process com-
ponents.

The Grounding describes how to interact with an
OWL-S service. The Grounding of a process estab-
lishes its correspondence to a particular WSDL op-
eration, and the correspondence of each I/O element
to a particular WSDL message part element. Also,
XSL Transformation script can be defined in
Grounding ontology to transform input/output of
complex data types to WSDL supported syntax form.

3. Motivational Scenario
To understand the motivational task behind efforts
for dynamic and automated Web services composi-
tion, let us consider a simple scenario in a Pizza de-
livery use case. Figure 1 shows a pizza delivery proc-
ess as syntax based composition of different Web
services (e.g. Check Location service, Check
CreditCard service etc.). If any of the services in-
volved in such syntax based composition of Web ser-
vices failed or is not accessible over network, the
process will not be able to perform the pizza delivery
task. Such syntax based and manual composition of
Web services will result in following challenges for
pizza delivery process to complete:

• Syntactically composed service (e.g. Sell Pizza ser-
vice) can fail to deliver pizza to every pizza request
with required ingredients.

• It may be possible that Deliver Pizza service will
not be geographically suitable for every pizza re-
quest.
• Check CreditCard Web services can possibly
change its behaviour with the passage of time.

With such potentially unfriendly behaviour of Web
services, syntax based composition cannot be consid-
ered as flexible, reliable and efficient approach in
rapidly growing dynamic and automated e-business
world. With these limitations of syntax based Web
services composition, the only possibility to complete
the pizza delivery process is either to change process
flow with available services that provide same results
or to manually find and compose other services that
perform same task. But relying on syntax based com-
position and changing the process flow manually is
not a flexible and an efficient approach.

Fig.1. Pizza Delivery Process.

Dynamic and automated composition of Web ser-
vices can perform the pizza delivery process in a
more flexible and efficient way. For example, if one
service in composition is not able to deliver pizza
with required pizza specifications, dynamic composi-
tion approach can discover, invoke and compose an-
other Web service on the basis of matching functional
and non-functional semantics (a Web service which
can deliver pizza with required pizza ingredients).
Similarly, a user requesting to deliver a pizza in New

York, needs a pizza service delivering pizzas in New
York, not in Chicago. Such a task can be performed
by dynamically composing a required service that
meets pizza specifications and is also geographically
suitable for a pizza request. If a Web service (e.g.
Check CreditCard Web service) within Web services
composition changes on the fly, dynamic and auto-
mated composition can handle this problem by find-
ing, invoking and composing another service on the
basis of matching semantics to perform same task. In
next section we describe some existing approaches to
perform Web services composition task in dynamic
and automated fashion.

4. Current Approaches for Dynamic and
Automated Web Services Composition
Dynamic and automated composition by means of
Web services semantics is most important and prom-
ising task for SWSs community. Different ap-
proaches both by workflow and AI communities have
been presented for this purpose. In this section we
have a look on some of most promising composition
approaches and then we discuss how these ap-
proaches are limited to perform dynamic composi-
tion.

4.1 Web Services Composition and Execution
Framework
The framework discussed in [10] provides mecha-
nism and tools for visual orchestration of semanti-
cally well-defined building blocks and semantic invo-
cation of services that match to the user specifica-
tions. The dynamic composition approach presented
in this work uses pre-defined flow of complex service
extended with abstract functional building blocks.
These abstract building blocks define requirements
for a service to perform a specific task. The best
matching service is discovered and invoked at execu-
tion time. A part of this work has been discussed in
[12] which describes how to handle BPEL limitations
of static Web service binding with late binding by
using the idea of “generic Web service proxies”. This
work presents idea of service ontology based semi-
automatically generated activity components, which
can be used and manipulated by tools (e.g. for visual
modelling of complex services, in deployment phase,
in execution phase during their invocation by work-
flow engine by using set of interfaces exposed by ac-
tivity components etc.). Framework proposed in [10]
does not fully support dynamic composition on the
basis of both functional and non-functional service
semantics, which reduces efficiency of proposed
framework.

4.2 Dynamic Composition by Using WSDL-S
WSDL-S [15] is another effort to provide Web ser-
vice semantics. WSDL-S development team has pre-
sented a tool for dynamic composition of Web ser-
vices. The dynamic composition tool uses abstract

processes for defining and discovering required ser-
vices dynamically. Among multiple numbers of dis-
covered services one service is selected for composi-
tion. Process designer uses BPEL for modelling proc-
esses. Partner services in a BPEL process are speci-
fied by using service templates. Service template al-
lows a process designer to specify semantic descrip-
tion of required Web service or binding to a known
Web service. A required service described semanti-
cally results in automatic semantic base discovery of
Web service. Once a service is selected from bundle
of discovered Web services, required information is
extracted from WSDL file and added in BPEL proc-
ess and relevant WSDL file. Also at this stage user
has to define required data flow between two activi-
ties.

Following the template based approach, the project
team has presented their relevant work in [16 & 6]
for semi-automatically integrating partner services
either at design time or deployment time. The
METEOR-S work supports design time or deploy-
ment time binding of Web services because location
of all WSDL files is required in a BPEL process be-
fore deploying process. Once a WSDL file is selected
and bound in the process, the final BPEL file is dis-
played in the designer so that user can complete
workflow. The resulting file is executed with
BPWS4J. But such a design time or deployment time
binding of services is not enough for real dynamic
Web services composition.

Another important point of this tool is the use of
WSDL-S (a METEOR-S project approach to de-
scribe Web service semantics) rather than using
OWL-S ontology. The METEOR-S’s work presented
in [7 & 14] discusses the project approach for adding
semantics to Web services standards. The proposed
work extends WSDL tags to add semantic informa-
tion and add new tags (e.g. pre-condition and post-
condition tags). These semantically enhanced Web
services can be published to semantically enriched
registries [8].

In above-discussed work of METEOR-S project,
process designer has facility to define semantic tem-
plates for required services. On the basis of these
templates, matching services can be discovered from
service repository dynamically and most suitable ser-
vice can be added to the process from this bundle of
discovered services. However, such a manual selec-
tion of a required service in composition process
keeps the project work away from ground realities of
dynamic Web services composition. Also this work
has not considered the issue that if a single service
does not meet requirements of a Web service directly,
then METEOR-S framework should create a service
chain by discovering and combining multiple services
so that they closely match to required service. The
resulting service chain should take as input the input
of the required service and should return required
output. METEOR-S claims to improve dynamic
composition of Web services from design time or de-

ployment time to run-time dynamic composition in
upcoming versions of their tool.

4.3 Semi-automatic Composition Using
OWL-S
The work discussed in [4] presents a prototype se-
mantic Web services composition tool. The tool dis-
covers semantically matching services from available
services repository, filter these services and present
them at each step of Web services composition.

The service composition tool consists of two com-
ponents (i.e. inference engine and a composer) and
discovers and filters these discovered services on the
basis of their matching functional and non-functional
semantics. The inference engine stores information
about all available services in its knowledge base and
is capable of finding matching services. The com-
poser is the user interface that handles communica-
tion between human operator and the inference en-
gine. The inference engine discovers matching ser-
vices on the basis of matching semantics and filters
most suitable services on the basis of functional and
non-functional attributes. But the tool interface does
not allow the user to define the control flow between
atomic processes during the composition process.
Also users are not able to define condition statements
to have some conditional results of a composite proc-
ess.

Filtering on Functional Attributes: At each step
of composition, the composer presents those services
for composition whose output can be taken as input
for a selected service. On the basis of the Profile de-
scription, services are matched as exact match or ge-
neric match. Exact match is the result of belonging of
a service parameter of two services to the same class.
Such matches have priority in composition and are
displayed on top in the list of matching services. A
service is marked as generic match, if its output is
sub-class of input parameter of current service. These
services have less priority in composition and are
presented at bottom in the list of matching Web ser-
vices.

Filtering on Non-Functional Attributes: It is dif-
ficult to choose a service from a list of available ser-
vices, if the number of services becomes high. It also
becomes difficult to select a service from list only on
the basis of the service name or small description
about a service. At this stage non-functional attrib-
utes (e.g. geographical location, response time etc.)
are used to filter and select a suitable service.

After selection and composition of services, final
composition is generated as a DAML-S (OWL-S)
composite process with its Profile so that it can be
advertised and composed with other services. The
composition framework can execute the resulting
composite service by invoking individual services in
Web services composition and passing data between
services according to the defined data flow.

Such a composition involves human interaction at
each step of composition that not fully automates the

process of Web services composition. Composition
process becomes more and more complex as number
of matching services increases. One of the major
drawbacks of this approach is that composition of
services doesn’t allow defining control flow for exe-
cution order of different services within composition.

5. A Framework for Dynamic and Automated
Web Services Composition
In this section we describe a general framework at an
abstract level for dynamic and automated Web ser-
vices composition. On the basis of above discussed
challenges and limitations of recent approaches we
propose a composition framework, which consists of
four modules (fig. 2). Each of these modules is re-
sponsible to perform a specific task that, in combina-
tion with other modules results in a SWSs composi-
tion framework. We describe each of these modules
in detail and discuss which specific composition
problem is addressed by each module.

Semantic Service Requester: The first step to per-
form the dynamic Web services composition is to
discover and select required services on the basis of
matching semantics. This dynamic discovery and se-
lection is a run time process. Because semantic base
discovery and selection of required services at design
time also involves human interaction, which no more
automates the process of Web services composition.
The discovery and selection process of required ser-
vices is based both on matching functional and non-
functional semantics of a Web service. For example,
in case of a pizza delivery process, a user sitting in
New York requests a vegetable and mutton pizza. In
case of such a request, there would be multiple ser-
vices that offer vegetable and mutton pizza delivery.
But in this case, a service with non-functional match-
ing semantic (e.g. suitable geographical location for a
pizza request) is selected for composition. At this
stage it is assumed that suitable work has already
been done to publish SWSs on semantically enriched
registries that have capabilities to reply for SWSs
queries. In our proposed framework, module 1 (Se-
mantic Service Requester) is responsible to perform
such a semantic base service request and to select a
service for composition, which has closer semantic
match to service request.

Service Binder: This module is responsible to bind a
dynamically discovered and selected service within
composition. Runtime binding of required services
can help to meet challenges produced by services
which change on the fly or which become inaccessi-
ble. For example, in case of composing services into
a workflow each partner service is bound in work-
flow at run time so that only those services become
part of the composition which are currently accessi-
ble and meet the functional and non-functional re-
quirements. Similarly, in case of the AI planning ap-
proach a single service performing some action in a

single step (atomic process) becomes part of the fi-
nal composition (complex service) generated by a
composition plan. Module 2 of the proposed frame-
work is responsible for run-time binding and
referencing of a service within Web service compo-
sition.
Composition Generator: This module (module 3) is
responsible for generating the final composition of
semantic services, discovered and bound within com-
position at run time. In case of a workflow language
as a composition of these dynamically discovered and
bound services, this module is responsible for gener-
ating the final composition process in some workflow
language (e.g. BPEL). In case of an AI planning for
automatic Web services composition this module
generates the final composition as a complex service
(composite service). Composition Generator com-
poses these services with well-defined control flow
and data flow within composition. Different ap-
proaches have been discussed [2, 3] to automatically
compose SWSs defined by using OWL-S descrip-
tions. The automatic composition of OWL-S services
can result in an OWL-S composite service. Since,
WSDL-S does not support to define composite ser-
vices, no approach has been discussed which allows
to automatically compose Web services using the
WSDL-S.

Execution Engine: Finally, the composition of dy-
namically and automatically composed services is
executed at this stage (module 4). Each service in-
volved with in the composition is executed according
to the defined control flow. The data flow definition
helps to pass data between services with in composi-
tion. For example, the approach discussed in section
4.3 uses its execution engine to execute the resulting
OWL-S composite process.

6. Conclusions and Future Work
Web services and SWSs are being adopted rapidly in
grid computing, distributed environments and P2P
systems. A successful use of SWSs in distributed and
grid environments is only possible if its related issues
(i.e. dynamic discovery, invocation and composition)
are resolved efficiently. Dynamic and automated Web
services composition will maximize the process of
Web services interaction. Complex business tasks
like arranging a trip to a conference or requesting a
pizza delivery, which involve the interaction and exe-
cution of multiple services, can be performed in more
flexible and reliable way by dynamically composing
required services. In this paper we provided a review
of research work and highlighted major challenges
and issues that need to be addressed to meet ground
realities of dynamic Web services composition. On
the basis of identified problems and limitations of the
existing work, we have presented a novel framework
that provides a solution at an abstract level for incen-
tive composition of Web services.

Acknowledgments

This work is partially supported by the Higher Edu-
cation Commission (HEC) of Pakistan under the
scheme “Partial Support Scholarship for PhD Stud-
ies Abroad”.

Workflow
Process as

Web services
Composition

Semantic
Web Ser-
vices Re-
pository

Semantic
Service
Request

Publish
Semantic Web

Service

AI Planning as
Web services
Composition

Semantic
Service

Requester

Requested
Semantic

Web Service

Service
Binder

Run-time
Service Bind-
ing & Refer-

encing

Composition
Generator

Execution Engine

Semantic
Service

Response

Composite
Service

1

2

3

4

Fig.2. Architecture of proposed framework for dynamic Web services composition.

References
[1] Business Process Execution Language for Web

Services Version 1.1. 5th May 2003. [online]
Available
ftp://www6.software.ibm.com/software/develope
r/library/ws-bpel.pdf.

[2] D. Sell, F. Hakimpour, J. Domingue, E. Motta
and R. C. S. Pacheco: Interactive Composition of
WSMO-based Semantic Web Services in IRS-
III. Proceedings of the First AKT Workshop on
Semantic Web Services (AKT-SWS04) KMi,
The Open University, Milton Keynes, UK, De-
cember 8, 2004.

[3] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D.
Nau: HTN Planning for Web Service Composi-
tion using SHOP. Journal of Web Semantics,
1(4): 377-396,2004.

[4] E.Sirin, J. Hendler and B. Parsia: Semi-
automatic Composition of Web Services Using
Semantic Descriptions.Proceedings of Web Ser-
vices: Modeling, Architecture and Infrastructure
Workshop (WSMAI), Angers, France, April
2003, pp. 17-24.

[5] J. Rao and X. Su: A Survey of Automated Web
Service Composition Methods. First Interna-
tional Workshop, SWSWPC 2004 San Diego, C,
USA, July 2004, Revised Selected Papers.

[6] K. Sivashanmugam, J. Miller, A. Sheth and K.
Verma: Framework for Semantic Web Process
Composition. Special Issue of the International
Journal of Electronic Commerce (IJEC), Eds:
Christoph Bussler, Dieter Fensel, Norman
Sadeh, Feb 2004.

[7] K. Sivashanmugam, K. Verma, A. Sheth and J.
Miller: Adding Semantics to Web Services Stan-
dards. Proceedings of 1st International Confer-
ence on Web Services (ICWS’03), Las Vegas,
Nevada (June 2003) pages 395-401.

[8] K. Verma, K. Sivashanmugam, A. Sheth, A.
Patil, S. Oundhakar and J. Miller: METEOR-S
WSDI: A Scalable Infrastructure of Registries
for Semantic Publication and Discovery of Web
Services. Journal of Information Technology and
Management 2004.

[9] M. A. Aslam, S. Auer, J. Shen, M. Herrmann:
Expressing Business Process Model as OWL-S
Ontologies. In proceedings of the 2nd Interna-
tional Workshop on Grid and Peer-to-Peer based
Workflows (GPWW 2006) in conjunction with
the 4th International Conference on Business
Process Management (BPM 2006), Vienna, Aus-
tria, LNCS 4103 , Sept. 4, 2006, pp.400-415.

[10] M. Flügge and D. Tourtchaninova: Ontology-
derived Activity Components for Composing
Travel Web Services. Presented at the Interna-
tional Workshop on Semantic Web Technologies
in Electronic Business (SWEB2004), Berlin,
Germany, October 2004.

[11] M. Matskin, P. Küngas, J. Rao, J. Sampson
and S.A. Petersen: Enabling Web Services

Composition With Software Agents. Proceed-
ings of the Ninth IASTED International Confer-
ence on Internet and Multimedia Systems and
Applications, IMSA 2005, Honolulu, Hawaii,
USA, August 15-17, 2005, ACTA Press, pp. 93-
98, 2005

[12] M. Paolucci, T. Kawarmura, T. R. Payne and
K. Sycara: Importing the Semantic Web in
UDDI. In Proceedings of Web Services, E-
Business and Semantic Web Workshop, CAiSE
2002, Trontoi, Canada.

[13] OWL-S: Semantic Markup for Web Services.
[online] Available
http://www.daml.org/services/owl-
s/1.2/overview/

[14] P. Rajasekaran, J. Miller, K. Verma and A.
Sheth: Enhancing Web Services Description and
Discovery to Facilitate Composition. Interna-
tional Workshop on Semantic Web Services and
Web Process Composition, 2004 (Proceedings
of SWSWPC 2004).

[15] R. Akkiraju, J. Farell, J.A. Miller, M. Nagara-
jan, A. Sheth and K. Verma : Web Service Se-
mantics – WSDL-S [online] Available
http://www.w3.org/2005/04/FSWS/Submissions
/17/WSDL-S.htm.

[16] R. Mulye, J. Miller, K. Verma, K. Gomadam
and A. Sheth: A Semantic Template Based De-
signer for Web Processes. Proceedings of the
IEEE International Conference on Web Services
(ICWS’05), pages 461-469.

[17] SOAP Version 1.2 Part 1: Messaging Frame-
work [online] Available
http://www.w3.org/TR/soap12-part1/.

[18] UDDI Spec Technical Committee Draft, Dated
20041019 [online] Available
http://uddi.org/pubs/uddi_v3.htm.

[19] Web Services Description Language (WSDL)
1.1. [online] Available
http://www.w3.org/TR/wsdl.

[20] Web Services Modeling Ontology [online]
Available http://www.wsmo.org/

