
The Warp programming environment 

by B. BRUEGGE, C. H. CHANG, R. COHN, T. GROSS, M. LAM, P. LIEU, 
A. NOAMAN, and D. YAM 
Carnegie-Mellon University 
Pittsburgh, Pennsylvania 

ABSTRACT 

This paper describes the environment for developing and executing Warp* pro­
grams. The center of the program development environment is a customized shell 
that ties together a compiler for the Warp array, the Warp run-time system, and a 
debugger. The compiler translates high-level language programs to microcode for 
the Warp machine. It achieves a high utilization of the computation power of the 
processor. The run-time system supports remote execution of Warp programs 
across a network and makes the Warp machine available as a shareable resource. 
The debugger permits symbolic debugging of Warp programs. The Warp pro­
gramming environment makes the Warp machine an easily programmable and 
accessible attached processor in a UNIX™ environment. 

* Warp is a service mark of Carnegie Mellon University. 

141 

From the collection of the Computer History Museum (www.computerhistory.org)



INTRODUCTION 

In our programming environment, Warp is modeled as an 
attached processor accessible from an interactive, program­
mable, command interpreter called the Warp shell. The shell 
provides traditional operating system commands as well as 
commands to execute programs on the Warp machine. Calling 
a Warp program is similar to invoking a procedure: the shell 
calls the Warp program and passes input and output data 
between the application and Warp. The run-time system pro­
vides low-level support such as securing exclusive access to the 
machine, downloading object code, and transferring data be­
tween the host and the Warp system. 

For programming the Warp, we have designed a language 
called W2 and implemented an optimizing compiler. The pro­
gramming model, as supported by the language, allows the 
user to see the machine as a linear array of sequential pro­
cessors and hides the low-level details from users. From a W2 
program, the compiler generates microcode for the Warp 
array and the interface unit, as well as C programs for the I/O 
processors. 1 

In this paper we first describe the objectives of the Warp 
programming environment (\VPE), and the system config­
uration. Then we describe the two methods for using the Warp 
system. The primary method is the interactive mode through 
the Warp shell; a library of existing Warp routines as well as 
user programs can be invoked interactively through shell com­
mands. Program development is done almost exclusively with 
this method. The second method, used mainly for real-time 
systems, is the direct mode, for users who cannot afford the 
overhead of an interactive system. We then describe the sup­
port software in WPE: the run-time system, compiler, and 
debugger. We conclude with a review of the current status and 
a brief discussion of our experience to date. 

Objectives of WPE 

The primary objective of WPE is to simplify the use of the 
Warp machine. WPE is a uniform environment to edit, com­
pile, debug, and execute W2 programs. Its audience includes 
the user who calls routines from a W2library, the programmer 
who develops new algorithms for Warp, as well as the imple­
mentor who writes support software. 

WPE must support efficient multiple user access because 
the use of the Warp hardware in a typical user session is 
sporadic. By allowing multiple user sessions to overlap and by 
serializing the use of the hardware, the Warp machine can be 
better utilized. WPE also provides multiple machine access; if 
there is more than one Warp array available, a user has the 
choice of connecting to any of these machines. It also provides 

The Warp Programming Environment 143 

network transparency, the user sees no difference whether he 
uses the Warp array remotely from his personal workstation 
or logs in directly to the Warp host machine. 

WPE is designed to be development machine-portable. The 
shell, compiler, and debugger are written in Common LISP, 
which runs on many workstations, and the TCP/IP protocol is 
used in inter-machine communication. Our current release of 
WPE runs on SUN-3 under BSD UNIX 4.2. WPE is also de­
signed to be target machine-portable. It has been in use for 
our prototype system, and it can be used with the successor 
Warp architectures: the production architecture implemented 
with printed circuit boards as well as the VLSI Warp which is 
currently in the design stage. 

System Configuration 

Figure 1 shows the configuration of WPE. Each worksta­
tion, a SUN-3, runs one or more Warp shells. The worksta­
tions communicate with a machine called the Warp host. This 
is another SUN-3 which is physically connected via a bus 
repeater to the external host and Warp array.2 The Warp 
server executes on the Warp host and is the intermediator 
between users and the Warp array and external host. 

TWO MODES OF ACCESSING WARP 

There are two methods of running programs on Warp. Users 
may use the Warp shell which provides an interactive interface 
to the constituents of WPE such as the compiler, run-time 
system, debugger, and servers. Or, if absolute performance is 
necessary, users may program the machine in direct mode, 
without the overhead of a command interpreter. 

The Warp Shell 

The Warp shell binds together the components of WPE. 
Shell commands can be used to invoke the compiler, run a 
program on the array, and call debugging functions. The 
Warp shell is based on an extensible shell written in Common 
LISP. 3 The extensibility makes it possible to support different 
classes of users. Specifically, the Warp shell distinguishes be­
tween the novice and the experienced user. For example, the 
implementation language Common LISP and the components 
of the environment are completely hidden from a novice. This 
is useful for programmers interested in using the Warp shell to 
execute W2 programs from a library. On the other hand, the 
LISP implementation and all the software components com­
prising the Warp environment are easily available when de-

From the collection of the Computer History Museum (www.computerhistory.org)




