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Abstract. We present a non-linear mathematical model which analyzes the
spread and control of HIV (human immunode�ciency virus)/AIDS(acquired immun-
ode�ciency syndrome). We divide the population into four subclasses one of them is
the susceptible population S and the others are HIV infectives (HIV positives that
do not know they are infected) I1, HIV positives that know they are infected (by
away of medical screening or other ways) I2 and that of AIDS patients A. Both
the disease free equilibrium and the infected equilibrium are found and their global
stability is investigated. The model is analyzed by using the basic reproduction
number R0. If R0 < 1, the disease free equilibrium point is globally asymptotically
stable, whereas the unique positive infected equilibrium point is globally asymptoti-
cally stable when R0 > 1. Also we study the e¤ect of screening of unaware infectives
on the spread of HIV disease and study the situation when aware HIV infectives
take preventive measures and change their behavior so that they do not spread the



3252 S. Al-Sheikh, F. Musali and M. Alsolami

infection in the community.
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1 Introduction

AIDS stands for acquired immunode�ciency syndrome, a disease that makes
it di¢ cult for the body to �ght o¤ infectious diseases. The human immun-
ode�ciency virus known as HIV causes AIDS by infecting and damaging the
CD4+ T-cells, which are a type of white blood cells in the body�s immune
(infection-�ghting) system that is supposed to �ght o¤ invading germs.In a
normal healthy individual�s peripheral blood, the level of CD4+ T-cells is be-
tween 800 and 1200 / mm3 and once this number reaches 200 or below in
an HIV infected patient, the person is classi�ed as having AIDS. HIV can be
transmitted through direct contact with the blood or body �uid of someone
who is infected with the virus. That contact usually comes from sharing nee-
dles or by having unprotected sex with an infected person. An infant could
get HIV from a mother who is infected.Although AIDS is always the result
of an HIV infection, not everyone with HIV has AIDS. In fact, adults who
become infected with HIV may appear healthy for years before they get sick
with AIDS.
The study of HIV/AIDS transmission dynamics has been of great inter-

est to both applied mathematicians and biologists due to its universal threat
to humanity. Mathematical models have become important tools in analyz-
ing the spread and control of HIV/AIDS as they provide short and long term
prediction of HIV and AIDS incidences. Many models available in the litera-
ture represent the dynamics of the disease by systems of nonlinear di¤erential
equations. Several investigations have been conducted to study the dynam-
ics of HIV/AIDS [1,3-5,8-18]. In particular, Srinivasa Rao [18] presented a
theoretical framework for transmission of HIV/AIDS epidemic in India. It is
pointed out that the screening of infectives has substantial e¤ect on the spread
of AIDS. Naresh et al. [17] have proposed a nonlinear model to study the e¤ect
of screening of unaware infectives on the spread of HIV/AIDS in a homogenous
population with constant immigration of susceptibles. They have shown that
screening of unaware infectives has the e¤ect of reducing the spread of AIDS
epidemic. Cai et al. [4] investigated an HIV model with treatment, they es-
tablished the model with two infective stages and proved that the dynamics of
the spread of the disease are completely determined by the basic reproduction
number.
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One of the most important concerns about any infectious disease is its
ability to invade a population. Many epidemiological models have a disease
free equilibrium (DFE) at which the population remains in the absence of dis-
ease. These models usually have a threshold parameter, known as the basic
reproduction number, R0, such that if R0 < 1, then the DFE is locally asymp-
totically stable, and the disease cannot invade the population, but if R0 > 1,
then the DFE is unstable, (i.e If R0 is 1 or greater, an epidemic is expected,
and if R0 ,less than 1, then infection is expected to die out.)
In this paper, we introduce a nonlinear model to study the e¤ecct of screen-

ing of infectives that are not aware of their infection on the long term dynamics
of the disease. The paper is organized as follows: In the next section, the model
is presented and the basic reproduction number is obtained. In section 3, we
investigate the stability of the DFE and the endemic equilibrium. In section
4, we analyze the model when aware HIV infectives do not spread the dis-
ease. Section 5, is dedicated for the analysis of the model without screaning.
Section 6 presents a numerical simulation of the model systems followed by a
conclusion in section 7

2 Mathematical model and the basic repro-
duction number

In deriving our model equations, we divided the population into four sub-
classes, the susceptible S(t), the infectives that do not know they are infected
I1(t), the infectives that know they are infected I2(t) (by way of medical screen-
ing or otherwise) and that of the AIDS population A(t).
Taking the above considerations, the model dynamics is assumed to be gov-

erned by the following system of ordinary di¤erential equations:

dS

dt
= Q0 � (�1I1 + �2I2)S � �S (2.1)

dI1
dt

= (�1I1 + �2I2)S � (� + �+ �)I1
dI2
dt

= �I1 � (�+ �)I2
dA

dt
= �(I1 + I2)� (�+ d)A

where
Q0 = constant rate of immigration of susceptibles,
�i(i = 1; 2) are the per capita contact rates for susceptibles individuals

with (unaware , aware) infectives respectively,
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� = the natural mortality rate unrelated to AIDS,
� = the rate of unaware infectives to become aware infectives by screening,
� = the rate by which types of infectives develop AIDS,
d = the AIDS related death rate.
Since the variable A of system (2.1) does not appear in the �rst three

equations, in the subsequent analysis, we only consider the subsystem:

dS

dt
= Q0 � (�1I1 + �2I2)S � �S; (2.2)

dI1
dt

= (�1I1 + �2I2)S � (� + �+ �)I1;
dI2
dt

= �I1 � (�+ �)I2:

It follows from system (2.2) that

dS

dt
+
dI1
dt
+
dI2
dt

= Q0 � �(S + I1 + I2)� �(I1 + I2)

� Q0 � �(S + I1 + I2)

Hence

lim
t!1

sup(S + I1 + I2) �
Q0
�
:

Thus, the considered region for system (2.2) is

� = f(S; I1; I2) : S + I1 + I2 �
Q0
�
; S > 0; I1 � 0; I2 � 0g:

The vector �eld points into the interior of � on the part of its boundry
when S + I1 + I2 =

Q0
�
. So ,

S(t) + I1(t) + I2(t) <
Q0
�
, for t > 0.

Hence, � is positively invariant.
Now we investigate the dynamic behavior of system (2.2) on �. First

we �nd the basic reproduction number R0 by the method of next generation
matrix , see [19] for details.
The disease free equilibrium of system (2.2) is E0 = (

Q0
�
; 0; 0)

Let X = (I1; I2; S), system (2.2) can be written as:

X 0 = F(x)� V(x)

where
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F(x) =

24 (�1I1 + �2I2)S0
0

35 ; V(x) =
24 (� + �+ �)I1

��I1 + (�+ �)I2
�Q0 + (�1I1 + �2I2)S + �S

35 :
The jacobian matrices of F(x) and V(x) at the disease free equilibrium

point E0, are

DF(E0) =

24 �1Q0� �2
Q0
�

0

0 0 0
0 0 0

35 =

�
F 0
0 0

�
; where F =

�
�1

Q0
�

�2
Q0
�

0 0

�

DV(E0) =

24 � + �+ � 0 0
�� �+ � 0

�1
Q0
�

�2
Q0
�

�

35= � V 0
J1 J2

�
, whereV =

�
� + �+ � 0
�� �+ �

�

FV �1 =

"
�1Q0

�(�+�+�)
+ �2�Q0

�(�+�)(�+�+�)
�2Q0
�(�+�)

0 0

#
is the next generation matrix

of system (2.2). It follows that the spectral radius of FV �1 is �(FV �1) =
Q0[�1(�+�)+�2�]
�(�+�)(�+�+�)

Thus, the basic reproduction number of system (2.2) is

R0 =
Q0[�1(�+ �) + �2�]

�(�+ �)(�+ � + �)
:

3 Equilibria and their stability

System (2.2) has the disease free equilibrium E0 = (Q0
�
; 0; 0) and the unique

positive endemic equilibrium E�(S�; I�1 ; I
�
2 ) where

S� = (�+�)(�+�+�)
�1(�+�)+�2�

= Q0=�
R0
; I�1 = Q0

�+�+�
[1 � �

Q0
S�] = Q0

�+�+�
[1 � 1

R0
] and

I�2 =
�
�+�
I�1

We see that I�1 is positive if R0 > 1 and also I
�
1 =

Q0��S�
�+�+�

.
So E�(S�; I�1 ; I

�
2 ) is the unique positive endemic equilibrium point which

exists if R0 > 1.

3.1 Local stability of the equilibria

First we investigate the local stability of the disease free equilibrium Eo

Theorem 1 (local stability of E0) If R0 < 1, the disease free equilibrium
point E0 of system (2.2) is locally asymptotically stable. If R0 = 1; E0 is locally
stable. If R0 > 1; E0 is unstable.
Proof. : Linearizing system (2.2) around E0 we get:
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J(E0) =

24 �� ��1Q0� ��2Q0�
0 �1

Q0
�
� � � �� � �2

Q0
�

0 � ��� �

35
We can write the characteristic equation as (�� � �)[�2 + a1� + a2] = 0

where

a1 = � + 2�+ 2� � �1
Q0
�
;

a2 = (�+ �)(� + �+ � � �1
Q0
�
)� �2

Q0�

�

= (�+ �)(� + �+ �)� Q0
�
[�1(�+ �) + �2�]

= (�+ �)(� + �+ �)[1� Q0[�1(�+ �) + �2�]
�(�+ �)(�+ � + �)

]

= (�+ �)(� + �+ �)(1�R0):

Clearly the �rst root of the characteristic equation is �1 = �� < 0 .
If R0 < 1, then a2 > 0: Also, �(�+ �)(�+�+ �) > Q0�1(�+ �)+Q0�2� >

Q0�1(�+ �)
which means that � + �+ � > Q0�1

�
and so a1 > 0:

Hence by applying Routh-Herwitz criteria , E0 is locally asymptotically sta-
ble.
If R0 = 1, then a2 = 0 and E0 becomes ocally stable.
If R0 > 1, then a2 < 0 and E0 becomes unstable.

Now we investigate the local stability of the positive equilibrium E�; by
using the following lemma:

Lemma 2 [4] Let M be a 3� 3 real matrix. If tr(M), det(M) and det(M [2])
are all negative, then all of the eigenvalues of M have negative real part.

Before we apply this lemma we need the following de�nition:

De�nition 1 (Second additive compound matrix ) [7] Let A = (aij) be
an n � n real matrix . The second additive compound of A is the matrix
A[2] = (bij) de�ned as follows:
n = 2 : A[2] = a11 + a22

n = 3 : A[2] =

24 a11 + a22 a23 �a13
a32 a11 + a33 a12
�a31 a21 a22 + a33

35 .
Theorem 3 The positive endemic equilibrium E� of system (2.2) is locally
asymptotically stable if R0 > 1:
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Proof. Linearizing system (2.2) at the equilibrium E�(S�; I�1 ; I
�
2 ) gives:

J(E�) =

24 ��� k I�1S� ��1S� ��2S�
k
I�1
S� �1S

� � k �2S
�

0 � ��� �

35

Using �1I
�
1 + �2I

�
2 = k

I�1
S�

The second additive compound matrix J [2](E�) is

J [2](E�) =

264 ��� k
I�1
S� + �1S

� � k �2S
� �2S

�

� ��� k I
�
1

S� � �� � ��1S�
0 k

I�1
S� �1S

� � k � �� �

375

tr(J(E�)) = ��� k I
�
1

S� + �1S
� � k � �� � < 0 since�1S� =

�1(�+�)(�+�+�)
�1(�+�)+�2�

< k
.
det (J(E�)) = (���k I

�
1

S� )[�(�+�)(�1S
��k)��2�S�]�k

I�1
S� [�1S

�(�+�)+�2�S
�]

= �k I
�
1

S� [�1S
�(�+�)+�2�S

�] < 0 since (���k I
�
1

S� )[�(�+�)(�1S
��k)��2�S�] =

0.

det(J [2](E�)) = (��� k I
�
1

S�
+ �1S

� � k)[(�+ k I
�
1

S�
+ �+ �)(�+ � + k � �1S�)

+�1kI
�
1 ]� �[��2S�(�+ � + k � �1S�)� �2kI�1 ]

= �(�+ k I
�
1

S�
)2(�+ � + k � �1S�)� (�+ k

I�1
S�
)(�+ �)(�+ � + k � �1S�)

�(k � �1S�)(�+ k
I�1
S�
)(�+ � + k � �1S�)

�(k � �1S�)(�+ �)(�+ � + k � �1S�)� �1kI�1 (�+ k
I�1
S�
+ k � �1S�)

+�2�S
�(�+ � + k � �1S�) + �2�kI�1 :
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= �(�+ k I
�
1

S�
)2(�+ � + k � �1S�)� (�+ k

I�1
S�
)(�+ �)2

��(�+ �)(k � �1S�)� k
I�1
S�
(�+ �)(k � �1S�)

�(k � �1S�)(�+ k
I�1
S�
)(�+ � + k � �1S�)

��2�S�(�+ � + k � �1S�)� �1kI�1 (�+ k
I�1
S�
+ k � �1S�)

+�2�S
�(�+ � + k � �1S�) + �2�kI�1

= �(�+ � + k � �1S�)[(�+ k
I�1
S�
)2 + (k � �1S�)(�+ k

I�1
S�
)]

�(�+ k I
�
1

S�
)(�+ �)2 � �(�+ �)(k � �1S�)

��1kI�1 (�+ k
I�1
S�
+ k � �1S�)

< 0:

Hence, by lemma (2) E� is locally asymptotically stable.

3.2 Global stability of equilibria

Now we investigate the global stability of E0 when R0 � 1:
Consider the Liapunov function

L = [�1(�+ �) + �2�]I1 + �2(�+ � + �)I2
dL

dt
= [�1(�+ �) + �2�]I

0
1 + �2(�+ � + �)I

0
2

= [�1(�+ �) + �2�][(�1I1 + �2I2)S � (� + �+ �)I1]
+�2(�+ � + �)[�I1 � (�+ �)I2]

= [�1(�+ �) + �2�](�1I1 + �2I2)S � (�+ �)(�+ � + �)(�1I1 + �2I2)
= [[�1(�+ �) + �2�]S � (�+ �)(�+ � + �)](�1I1 + �2I2)

� [[�1(�+ �) + �2�]
Q0
�
� (�+ �)(�+ � + �)](�1I1 + �2I2)

= (�+ �)(�+ � + �)(R0 � 1)(�1I1 + �2I2)
� �(�+ �)(�+ � + �)(R0 � 1)L � 0

when R0 � 1 , where � = maxf �1
�1(�+�)+�2�

; �2
�2(�+�+�)

g
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De�ne G = f(S; I1; I2) 2 � : L0 = 0g, E0 = (Q0
�
; 0; 0) is the maximal

compact invariant set in G, the Lasalle Invariance principle theorems shows
the global stability of E0.
Now, we can derive the following theorem:

Theorem 4 If R0 � 1, then E0 is globally asymptotically stable in �. If
R0 > 1 then E0 is unstable.

Now we investigate the global stability of E� by showing that system (2.2)
has no periodic solutions, homoclinic loops and oriented phase polygons inside
the invariant region, we refer the reader to [2].
Let �� = f(S; I1; I2) 2 � : S+ �+�

�
I1+

�+�
�
I2 =

Q0
�
g: It is easy to prove that

�� � �; �� is positively invariant and E� 2 ��
We will show that system (2.2) has no periodic solutions, homoclinic loops

and oriented phase polygons inside the invariant region by using Theorem (4.1)
in [2] which is stated as follows:

Theorem 5 Let g = (S; I1; I2) = fg1(S; I1; I2); g2(S; I1; I2); g3(S; I1; I2)g be a
vector �eld which is piecewise smooth on ��, and which satis�es the conditions:
g:f = 0, and (curl g):n < 0 in the interior of �� ,where n is the normal vector
to �� and f = (f1; f2; f3) is a lipschitz �eld in the interior of �� and

curl g = det

0@ �!
i

�!
j

�!
k

@
@S

@
@I1

@
@I2

g1 g2 g3

1A = (@g3
@I1
� @g2

@I2
; @g1
@I2
� @g3

@S
; @g2
@S
� @g1

@I1
):

Then the di¤erential equation system S 0 = f1; I
0
1 = f2; I

0
2 = f3 has no periodic

solutions, homoclinic loops and oriented phase polygons inside ��.

Thus, we can state the following theorem.

Theorem 6 :The system (2.2) has no periodic solutions, homoclinic loops and
oriented phase polygons inside the invariant region ��.

Proof. Let f1; f2 and f3 denote the right hand side of system (2.2), respec-
tively.
Now use

S +
�+ �

�
I1 +

�+ �

�
I2 =

Q0
�
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to rewrite f1; f2; f3 in the equivalent forms:

f1(S; I1) = Q0 � [�1I1 + �2(
Q0
�
� S � �+ �

�
I1)

�

�+ �
]S � �S;

f1(S; I2) = Q0 � [�1(
Q0
�
� S � �+ �

�
I2)

�

�+ �
+ �2I2]S � �S;

f2(S; I1) = [�1I1 + �2(
Q0
�
� S � �+ �

�
I1)

�

�+ �
]S � (�+ � + �)I1;

f2(I1; I2) = (�1I1 + �2I2)(
Q0
�
� �+ �

�
I1 �

�+ �

�
I2)� (�+ � + �)I1;

f3(S; I2) = �(
Q0
�
� S � �+ �

�
I2)

�

�+ �
� (�+ �)I2;

f3(I1; I2) = �I1 � (�+ �)I2:
Let g = (g1; g2; g3) be a vector �eld such that:

g1 =
f3(S; I2)

SI2
� f2(S; I1)

SI1
=
�(Q0 � �S)
SI2(�+ �)

� �1 �
�2(Q0 � �S)
I1(�+ �)

+ �2:

g2 =
f1(S; I1)

SI1
� f3(I1; I2)

I1I2
=
Q0
SI1

� �1 + �2 �
�

I2
+
�

I1
� �2(Q0 � �S)

I1(�+ �)
:

g3 =
f2(I1; I2)

I1I2
� f1(S; I2)

SI2
=
�1[Q0 � (�+ �)I1]

�I2
+
�2[Q0 � (�+ �)I2]

�I1

��+ �
�

(�1 + �2)�
� + �

I2
� Q0
SI2

+
�1(Q0 � �S)
I2(�+ �)

� �1 + �2:

Since the alternate forms of f1; f2 and f3 are equivalent in ��, then
g:f = (

I02
SI2
� I01

SI1
)S 0 + ( S

0

SI1
� I02

I1I2
)I 01 + (

I01
I1I2

� S0

SI2
)I 02 = 0 .

So, g:f = 0, on �� .
using the normal vector n = ( �

Q0
; �+�
Q0
; �+�
Q0
); to ��, we can see that

(curl g):n = � �1�

Q0I2
� �2
I21
� �

SI22
� �+ �
S2I2

� �+ �
S2I1

� �2�

Q0I1
< 0

Thus, system (2.2) has no periodic solutions, homoclinic loops and oriented
phase polygons inside the invariant region ��:

Theorem 7 :If R0 > 1; then the infected equilibrium point E� is globally
asymptotically stable.
Proof. :We know that if R0 > 1 in �, then E0 is unstable. Also �� is a
positively invariant subset of � and the ! limit set of each solution of (2.2)
is a single point in �� since there is no periodic solutions, homoclinic loops
and oriented phase polygons inside ��. Therefore E� is globally asymptotically
stable.
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4 ODE model when aware HIV infectives do

not spread the infection (�2 = 0 )

When aware HIV infectives do not spread the infection in the community and
take preventive measuures, then �2 = 0. Thus, the infection is spread only by
unaware infectives. In this case we have the following ODE system:

dS

dt
= Q0 � �1I1S � �S (4.1)

dI1
dt

= �1I1S � (� + �+ �)I1
dI2
dt

= �I1 � (�+ �)I2
dA

dt
= �(I1 + I2)� (�+ d)A

Since the variableA of above system does not appear in the �rst three equa-
tions, in the subsequent analysis, we only consider the subsystem:

dS

dt
= Q0 � �1I1S � �S (4.2)

dI1
dt

= �1I1S � (� + �+ �)I1
dI2
dt

= �I1 � (�+ �)I2

We also have two equilibrium points E0 = (
Q0
�
; 0; 0) and E�:

By a way similar to the previous section, we calculate the basic reproduction
number R01. Let X1 = (I1; I2; S), system (4.2) can be written as:

X 0
1 = F1(x)� V1(x)

The jacobian matrices of F1(x) and V1(x) at Eo are

DF1(E0) =

24 �1Q0� 0 0

0 0 0
0 0 0

35 =

�
F1 0
0 0

�
, where F1 =

�
�1

Q0
�

0

0 0

�

DV1(E0) =

24 � + �+ � 0 0
�� �+ � 0

�1
Q0
�

0 �

35= � V1 0
J3 �

�
, where V1 =

�
� + �+ � 0
�� �+ �

�

F1V
�1
1 =

"
�1Q0

�(�+�+�)
0

0 0

#
R01 =

�1Q0
�(�+�+�)

. We note that R0 ! R01 when

�2 = 0.
The considered region � for system (4.2) is the same as in system (2.2).
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The positive equilibrium E�(S�; I�1 ; I
�
2 ) is given by the following

S� = �+�+�
�1

= Qo=�
R01

, I�1 =
Q0��S�
�+�+�

= Q0
�+�+�

(1� 1
R01
) and I�2 =

�
�+�
I�1

E�(S�; I�1 ; I
�
2 ) exists if R01 > 1.

We investigate the local and global stability of the disease free equilibriumE0
and the endemic equilibrium E� by using the same methods in section 3.

Theorem 8 : If R01 < 1, the disease free equilibrium point E0 of system
(4.2) is locally asymptotically stable. If R01 = 1, E0 is locally stable and if
R01 > 1; then E0 is unstable.
Proof. Linearizing system (3.2) at the equilibrium E0(

Q0
�
; 0; 0) gives the

characteristic equation (��� �)[�2 + a1�+ a2] = 0
where

a1 = � + 2�+ 2� � �1
Q0
�

a2 = (�+ �)(� + �+ � � �1
Q0
�
)

If R01 < 1, then a1; a2 > 0. So, E0 is locally asymptotically stable.
If R01 = 1, then a2 = 0. So, E0 is locally stable.
If R01 > 1, then a2 < 0:So, E0 is unstable.

Theorem 9 The positive endemic equilibrium E�of system (4.2) is locally as-
ymptotically stable if R01 > 1.
Proof. Linearizing system (3.2) at the equilibrium E�(S�; I�1 ; I

�
2 ) gives:

J(E�) =

24 ��� �1I�1 ��1S� 0
�1I

�
1 0 0
0 � ��� �

35
tr(J(E�)) = �2�� � � �1I�1 < 0
det(J(E�)) = ��21I�1S�(�+ �) < 0
The second additive compound matrix J [2](E�) is

J [2](E�) =

24 ��� �1I�1 0 0
� �2�� � � �1I�1 ��1S�
0 �1I

�
1 ��� �

35
det(J [2](E�)) = (��� �1I�1 )[(2�+ � + �1I�1 )(�+ �) + �21I�1S�] < 0
Hence, E� is locally asymptotically stable.

Theorem 10 If R01 � 1, E0 is globally asymptotically stable in �. if R01 > 1,
then E0 is unstable.

Proof. Consider the Liapunov function. L = �1(� + �)I1. Then follow the
same steps in the proof of theorem 4.
We investigate the global stability of E� by showing that this system has

no periodic solutions, homoclinic loops and oriented phase polygons inside the
invariant region ��: So we have the following theorem
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Theorem 11 If R01 > 1; then the infected equilibrium point E� is globally
asymptotically stable.

5 ODE model without screening (� = 0)

In this section we consider the situation without screening of unaware infectives
(� = 0). In this case we have the following ODE system:

dS

dt
= Q0 � �1I1S � �S (5.1)

dI1
dt

= �1I1S � (�+ �)I1
dA

dt
= �(I1 + I2)� (�+ d)A

As before we consider the subsystem:

dS

dt
= Q0 � �1I1S � �S (5.2)

dI1
dt

= �1I1S � (�+ �)I1

We also have the disease-free equilibrium point E0 = (
Q0
�
; 0) and the unique

positive endemic equilibrium point E�(S�; I�1 ) .
The basic reproduction number here is given by R02 =

�1Q0
�(�+�)

. Note
that R02 �! R0 when � = 0
The considered region for system (5.2) is:

� = f(S; I1) : S + I1 �
Q0
�
; S > 0; I1 � 0g:

The positve equilibrium point E�(S�; I�1 ) is given by: S
� = �+�

�1
= Qo=�

Ro2
,

I�1 =
Q0��S�
�+�

= Q0
�+�
(1� 1

R02
):

E�(S�; I�1 ) existx if R02 > 1.
The local and global stability of the positive equilibrium E0 and the en-

demic equilibrium E� are stated in the following theorems whose proofs are
similar to what we did in section 3.

Theorem 12 If R02 < 1, the disease free equilibrium point E0 of system (5.2)
is locally asymptotically stable. If R02 = 1, E0 is locally stable and if R02 > 1;
then E0 is unstable.

Theorem 13 If R02 > 1; then the positive endemic equilibrium point E� is
locally asymptotically stable.
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By using the same Liapunov function in theorem 10, we can prove the
following theorem

Theorem 14 If R02 � 1, E0 is globally asymptotically stable in � . If R02 > 1
then E0 is unstable.

We investigate the global stability of the positive equilibriumE� by showing
that this system has no periodic solutions inside the invariant region � using
Dulac�s criterion [6].

Theorem 15 If R02 > 1; then the infected positive equilibrium point E� is
globally asymptotically stable.
Proof. To prove this we use Dulac�s criterion with B(S; I1) = 1

SI1

Bf1 =
1

SI1
(Q0 � �1I1S � �S)

=
Q0
SI1

� �1 �
�

I1

and

Bf2 =
1

SI1
(�1I1S � (�+ �)I1)

= �1 � (�+ �)
1

S

Then

@(Bf1)

@S
+
@(Bf2)

@I1
= � Q0

S2I1
6= 0

Thus, there exist no periodic solutions in �.Hence, E� is globally asymp-
totically stable.
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6 Numerical simulations

To see the dynamical behavior of system (2.1) , we solve the system by Runge-
Kutta method using the parameters; Q0 = 2000, � = 0:02, � = 0:1, � = 0:015,
d = 1, �1 = 0:0009, �2 = 0:00027. with di¤erent initial values:

1. S(0) = 1100; I1(0) = 16000, I2(0) = 1540; A(0) = 1360,

2. S(0) = 1180; I1(0) = 12850, I2(0) = 1100; A(0) = 870,

3. S(0) = 2000; I1(0) = 5400, I2(0) = 850; A(0) = 500,

4. S(0) = 1200; I1(0) = 10000, I2(0) = 500; A(0) = 300.

In the �rst two �gures 1and 2, we use di¤erent initial values in four cases to
display the unaware and aware population plotted against the total population.
We see from these �gures that for any initial value, the solution curves tend
to the equilibrium E� where R0 = 6917 > 1. Hence, system (2.1) is globally a
symptotically stable about E� for the above set of parameters.

Figure 1: Variation of unaware HIV infected population against total
population
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Figure 2: Variation of aware HIV infected population against total population
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In the following �gures 3-5, the variation of unaware and aware HIV infected
population and that of AIDS patients for di¤erent rates of screening is shown
by using the parameters. Q0 = 3000, � = 0:04, � = 0:3, � = 0:02, d = 1,
�1 = 0:0009, �2 = 0:00027. with initial values S(0) = 15300, I1(0) = 5400,
I2(0) = 4500, A(0) = 1800. It is seen that as � decreases to zero aware
infectives will decreases to reach zero also, where as the unaware infected
population will be increasing (i.e I1 will grow ), so, they will continue to
spread the disease and increase the AIDS patients population.

Figure 3: Variation of unaware HIV infected population for di¤erent values of
�
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Figure 4: Variation of aware HIV infected population for di¤erent values of �
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Figure 5: Variation of AIDS population for di¤erent values of �
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Under the same parameters and initial conditions, we see that Figures
6 and 7 show the role of contact rate �2 of aware HIV infectives. When
aware HIV infectives do not take preventive measures, the unaware infective
population increases which leads to increase the AIDS patients. When aware
HIV infectives take preventive measures (i.e �2 = 0), the number of unaware
infectives decreases leading to AIDS population decline.

Figure 6: Variation of unaware HIV infected population for di¤erent values of
�2
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Figure 7: Variation of AIDS population for di¤erent values of �2

7 Conclusions and Recommandations

In this paper, a non-linear mathematical model was formulated. Su¢ cient
conditions have been given ensuring local and global stability of the disease
free equilibrium point and the unique positive endemic equilibrium point. The
disease-free equilibrium (E0) is shown to be locally asymptotically stable when
the associated epidemic threshold known as the basic reproduction number
(R0) for the model is less than unity. Liapunov function is used to show the
global stability of E0 when R0 is less than unity. The positive infected equi-
librium (E�) is shown to be locally asymptotically stable when R0 is greater
than unity. By showing that this model has no periodic solutions, homoclinic
loops and oriented phase polygons inside the invariant region �� we proved the
global asymptotically stable of E�. The model has also been analyzed to study
the e¤ect of screening of unaware infectives on the spread of HIV disease. It is
found that the spread of the disease will be controlled with increase in the rate
of detection by screening, which means that the endemicity of the infection
increases in the absence of screening and consequently the AIDS population
increases continuously. The impact on the dynamics of HIV/AIDS is also an-
alyzed when aware HIV infectives take preventive measures with their contact
in the community.
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At the end, we want to recommend as a result of our study that the most
e¤ective way to lower the incidence rate is by enforcing screening on indivi-
suals who are most likely to get infected like drug adects on a regular basis
and to educate the population by making them aware of the consequences of
preventive measures against the infection. If the population presents a positive
attitude towards preventive procedures, the spread of disease can be controlled
even for relatively small screening rates. Therefore, education programs must
reach the community at all social levels to increase the awareness about the
disease and protection techniques in the community.
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