In this paper, we investigate the problem of existence of positive solutions for the nonlinear q-boundary value problem or quantum boundary value problem:

$$D_q^n u(t) + \lambda a(t)f(u(t)) = 0, \quad 0 < t < 1,$$

satisfying three kinds of q-different boundary value conditions. Our analysis relies on Krasnoselskii’s fixed point theorem of cone.

ABSTRACT

In this paper, we investigate the problem of existence of positive solutions for the nonlinear q-boundary value problem or quantum boundary value problem:

$$D_q^n u(t) + \lambda a(t)f(u(t)) = 0, \quad 0 < t < 1,$$

satisfying three kinds of q-different boundary value conditions. Our analysis relies on Krasnoselskii’s fixed point theorem of cone.

Keywords: q-difference equations; Fixed point theorem; Boundary value problem; Positive solution

I. INTRODUCTION:

There is currently a great deal of interest in positive solutions for several types of boundary value problems. A large part of the literature on positive solutions to boundary value problems seems to be traced back to Krasnoselskii’s work on nonlinear operator equations [15], especially the part dealing with the theory of cones in Banach spaces. In 1994, Erbe and Wang [6] applied Krasnoselskii’s work to eigenvalue problems to establish intervals of the parameter λ for which there is at least one positive solution. In 1995, Eloe and Henderson [2] obtained the solutions that are positive to a cone for the boundary value problem

$$u^{(i)}(t) + a(t)f(u(t)) = 0, \quad 0 < t < 1,$$

$$u^{(i)}(0) = u^{(n-2)}(1) = 0, \quad 0 \leq i \leq n - 2.$$

Since this pioneering works, a lot research has been done in this area [3, 6, 11, 16, 19, 20]. In 2008, EL-Shahed [4] obtained the existence of positive solutions to nonlinear nth order boundary value problems

$$u^{(i)}(t) + \lambda a(t)f(u(t)) = 0, \quad 0 < t < 1,$$

$$u(0) = u(0) = u(0) = \ldots = u^{(n-1)}(0) = 0, \quad u(1) = 0,$$

$$u(0) = u(0) = u(0) = \ldots = u^{(n-2)}(0) = 0, \quad u(1) = 0,$$

$$u(0) = u(0) = u(0) = \ldots = u^{(n-2)}(0) = 0, \quad u(1) = 0.$$

El-Shahed and Hassan [5] studied the existence of positive solutions of the q-difference boundary value problem:

Corresponding author: Maryam Al-Yami *E-mail: mohad20020@hotmail.com*
The purpose of this paper is to establish the existence of positive solutions to nonlinear nth order q-boundary value problems:

\[D_q^n u(t) + \lambda a(t)f(u(t)) = 0, \quad 0 < t < 1, \]

\[u(0) = D_q u(0) = D_q^2 u(0) = \ldots = D_q^{n-1} u(0) = 0, D_q u(1) = 0, \]

where \(\lambda \) is a positive parameter. Throughout the paper, we assume that

\[C1: f : [0, \infty) \to [0, \infty) \text{ is continuous} \]

\[C2: a : (0, 1) \to [0, \infty) \text{ is continuous function such that } \int_0^1 a(t)d_q t > 0. \]

2. PRELIMINARIES:

For the convenience of the reader, we present here some notations and lemmas that will be used in the proof our main results.

Let \(q \in (0, 1) \) and defined [14]

\[[a]_q = \frac{q^a - 1}{q - 1} = q^{a-1} + \ldots + 1, \quad a \in \mathbb{R}. \]

The q-analogue of the power function \((a - b)^n\) with \(n \in \mathbb{R} \) is

\[(a - b)^0 = 1, \quad (a - b)^n = \prod_{k=0}^{n-1} (a - bq^k), \quad a, b \in \mathbb{R}, \quad n \in \mathbb{R}. \]

More generally, if \(\alpha \in \mathbb{R} \), then

\[(a - b)^{(\alpha)} = a^\alpha \prod_{i=0}^{\infty} \frac{(a - bq^i)}{(a - bq^{\alpha+i})}. \]

Note that, if \(b = 0 \) then \(a^{(\alpha)} = a^\alpha \). The q-gamma function is defined by

\[\Gamma_q(x) = \frac{(1-q)^{(x-1)}}{(1-q)^{x-1}}, \quad x \in \mathbb{R} \setminus \{0, -1, -2, \ldots\}, \quad 0 < q < 1, \]

and satisfies \(\Gamma_q(x+1) = [x]_q \Gamma_q(x) \).

The q-derivative of a function \(f \) is here defined by

\[D_q f(x) = \frac{d_q f(x)}{d_q x} = \frac{f(qx) - f(x)}{(q - 1)x}, \]
and q-derivatives of higher order by

$$D_q^n f(x) = \begin{cases} f(x) & \text{if } n = 0, \\ D_q D_q^{n-1} f(x) & \text{if } n \in \mathbb{N}. \end{cases}$$

The q-integral of a function \(f \) defined in the interval \([0, b]\) is given by

$$\int_0^b f(t) d_q t = x (1-q) \sum_{n=0}^\infty f(x q^n) q^n, \quad 0 \leq |q| < 1, \quad x \in [0, b].$$

If \(a \in [0, b] \) and \(f \) defined in the interval \([0, b]\), its integral from \(a \) to \(b \) is defined by

$$\int_a^b f(t) d_q t = \int_0^b f(t) d_q t - \int_0^a f(t) d_q t.$$

Similarly as done for derivatives, it can be defined an operator \(I_q^n \), namely,

$$\left(I_q^0 f\right)(x) = f(x) \quad \text{and} \quad \left(I_q^n f\right)(x) = I_q \left(I_q^{n-1} f\right)(x), \quad n \in \mathbb{N}.$$

The fundamental theorem of calculus applies to these operators \(I_q \) and \(D_q \), i.e.,

$$\left(D_q I_q^n f\right)(x) = f(x),$$

and if \(f \) is continuous at \(x = 0 \), then

$$\left(I_q D_q^n f\right)(x) = f(x) - f(0).$$

Basic properties of the two operators can be found in the book [14]. We now point out three formulas that will be used later (\(D_q^i \) denotes the derivative with respect to variable \(i \)) [8]

$$\left[a(t-s)\right]^{(\alpha)} = a^\alpha (t-s)^{\alpha}, \quad (5)$$

$$D_q (t-s)^{\alpha} = \left[\alpha\right]_q (t-s)^{\alpha-1}, \quad (6)$$

$$\left(D_q \int_0^x f(t) d_q t\right)(x) = \int_0^x D_q f(t) d_q t + f(qx, x). \quad (7)$$

Remark: 2.1. We note that if \(\alpha > 0 \) and \(a \leq b \leq t \), then \((t - a)^{(\alpha)} \geq (t - b)^{(\alpha)}\) [8].

Definition: 2.1. Let \(\alpha \geq 0 \) and \(f \) be a function defined on \([0, 1]\). The fractional q-integral of the Riemann–Liouville type is \((RL I_q^0 f)(x) = f(x)\) and

$$\left(RL I_q^\alpha f\right)(x) = \frac{1}{\Gamma_q(\alpha)} \int_a^x (x - qt)^{(\alpha-1)} f(t) d_q t, \quad \alpha \in \mathbb{R}^+, \ x \in [0, 1].$$

Definition: 2.2. [18] The fractional q-derivative of the Riemann–Liouville type of order \(\alpha \geq 0 \) is defined by

$$\left(RL D_q^0 f\right)(x) = f(x) \quad \text{and} \quad \left(RL D_q^\alpha f\right)(x) = (D_q^{|\alpha|} I_q^{|\alpha| - \alpha} f)(x), \quad \alpha > 0,$$

where \([\alpha]\) is the smallest integer greater than or equal to \(\alpha\).
Definition: 2.3. [18] The fractional q-derivative of the Caputo type of order \(\alpha \geq 0\) is defined by
\[
\left(cD_q^{[\alpha]} f \right)(x) = \left(I_q^{[\alpha]} D_q^{[\alpha]} f \right)(x), \quad \alpha > 0,
\]
where \([\alpha]\) is the smallest integer greater than or equal to \(\alpha\).

Lemma: 2.1. Let \(\alpha, \beta \geq 0\) and \(f\) be a function defined on \([0, 1]\). Then, the next formulas hold:

1. \((f Q I_q^\beta f)(x) = (f Q Q I_q^\alpha f)(x)\),
2. \((D_q^\alpha I_q^\beta f)(x) = f(x)\).

The next result is important in the sequel. It was proved in a recent work by the author [8].

Theorem: 2.1. Let \(\alpha > 0\) and \(p\) be a positive integer. Then, the following equality holds:
\[
\left(R L I_q^\alpha R L D_q^p f \right)(x) = \left(D_q^p I_q^\alpha f \right)(x) - \sum_{k=0}^{p-1} \frac{x^{\alpha-p+k}}{\Gamma_q(\alpha+k+1)} (D_q^k f)(0).
\]

Theorem: 2.2. [18] Let \(x > 0\) and \(\alpha \in \mathbb{R}^+ \setminus \{0\}\). Then, the following equality holds:
\[
\left(I_q^\alpha C D_q^p f \right)(x) = f(x) - \sum_{k=0}^{[\alpha]-1} \frac{x^k}{\Gamma_q(k+1)} (D_q^k f)(0).
\]

Definition: 2.4. Let \(X\) be a real Banach space. A nonempty closed convex set \(P \subset X\) is called cone of \(X\) if it satisfies the following conditions

1. \(x \in P, \sigma \geq 0\) Implies \(\sigma x \in P\);
2. \(x \in P, -x \in P\) Implies \(x = 0\)

Definition: 2.5. An operator is called completely continuous if it is continuous and maps bounded sets into precompact sets.

Theorem: 2.3. [10,15] Let \(X\) be a Banach space and \(P \subset X\) is a cone in \(X\). Assume that \(\Omega_1\) and \(\Omega_2\) are open subsets in \(X\) of with \(0 \in \Omega_1\) and \(\overline{\Omega_1} \subset \Omega_2\). Let \(T: P \cap (\overline{\Omega_2} \setminus \Omega_1) \to P\) be completely continuous operator. In addition suppose either:

H1: \(\|Tu\| \leq \|u\|, u \in P \cap \partial \Omega_1\) and \(\|Tu\| \geq \|u\|, u \in P \cap \partial \Omega_2\) or
H2: \(\|Tu\| \leq \|u\|, u \in P \cap \partial \Omega_2\) and \(\|Tu\| \geq \|u\|, u \in P \cap \partial \Omega_1\),

holds. Then \(T\) has a fixed point in \(P \cap (\overline{\Omega_2} \setminus \Omega_1)\).

3. GREEN FUNCTIONS AND THEIR PROPERTIES:

Lemma: 3.1. Let \(y \in C[0,1]\), then the boundary value problem
\[
D_q^n u_2(t) + y(t) = 0, \quad 0 < t < 1,
\]
\[
u_2(0) = D_q^2 u_2(0) = D_q^3 u_2(0) = \ldots = D_q^{n-1} u_2(0) = 0, D_q^n u_2(1) = 0,
\]
has a unique solution.

\[u_2 (t) = \int_0^1 G_2 (t, qs) y(s) \, d_q s, \]

where

\[
G_2 (t, s) = \begin{cases}
\frac{(t-qs)^{n-2}}{\Gamma_q (n-1)} - \frac{(t-s)^{n-1}}{\Gamma_q (n)}, & 0 \leq s \leq t \leq 1, \\
\frac{t (1-s)^{n-2}}{\Gamma_q (n-1)}, & 0 \leq t \leq s \leq 1.
\end{cases}
\]

Proof: We may apply Lemma 2.1 and Theorem 2.2, we see that

\[u_2 (t) = u_2 (0) + \frac{D_q u_2 (0)}{\Gamma_q (2)} t + \frac{D_q^2 u_2 (0)}{\Gamma_q (3)} t^2 + \frac{D_q^3 u_2 (0)}{\Gamma_q (4)} t^3 + \ldots + \frac{D_q^{n-1} u_2 (0)}{\Gamma_q (n)} t^{n-1} - I_q^a y (t). \]

By using the boundary conditions \(u_2 (0) = D_q^2 u_2 (0) = D_q^3 u_2 (0) = \ldots = D_q^{n-1} u_2 (0) = 0 \), we get

\[u_2 (t) = B_2 t - \int_0^t \frac{(t-qs)^{n-1}}{\Gamma_q (n)} y(s) \, d_q s. \]

Differentiating both sides of (8) one obtain, with the help (6) and (7),

\[(D_q^2 u_2) (t) = B_2 - \int_0^t \frac{(n-1) \Gamma_q (t-qs)^{n-2}}{\Gamma_q (n)} y(s) \, d_q s. \]

then by the condition \(D_q^2 u_2 (1) = 0 \), we have

\[B_2 = \frac{1}{\int_0^1 \frac{(1-qs)^{n-2}}{\Gamma_q (n-1)} y(s) \, d_q s}, \]

the proof is complete.

Lemma 3.2. Function \(G_2 \) defined above satisfies the following conditions:

\[G_2 (t, qs) \geq 0 \text{ and } G_2 (t, qs) \leq G_2 (1, qs), \quad 0 \leq t, s \leq 1, \]

(9)

\[G_2 (t, qs) \geq \eta_2 (t) G_2 (1, qs), \quad 0 \leq t, s \leq 1 \quad \text{with} \quad \eta_2 (t) = t. \]

(10)

Proof: We start by defining two functions

\[g_1 (t, s) = \frac{t (1-s)^{n-2}}{\Gamma_q (n-1)} - \frac{(t-s)^{n-1}}{\Gamma_q (n)}, \quad 0 \leq s \leq t \leq 1, \]

and

\[g_2 (t, s) = \frac{t (1-s)^{n-2}}{\Gamma_q (n-1)}, \quad 0 \leq t \leq s \leq 1. \]

It is clear that \(g_2 (t, qs) \geq 0 \). Now, \(g_1 (0, qs) = 0 \) and, in view of Remark 2.1, for \(t \neq 0 \)
\[g_1(t, qs) = \frac{(1-qs)^{n-2} - (t-qs)^{n-1}}{\Gamma_q(n-1)} \geq 0, \]

therefore, \(G_2(t, qs) \geq 0 \). Moreover, for fixed \(s \in [0, 1] \),

\[D_q^\alpha g_1(t, qs) = \frac{(1-qs)^{n-2} - (t-qs)^{n-1}}{\Gamma_q(n-1)} \geq 0, \]

i.e., \(g_1(t, qs) \) is an increasing function of \(t \). Obviously, \(G_2(t, qs) \) is increasing in \(t \), therefore \(G_2(t, qs) \) is an increasing function of \(t \) for fixed \(s \in [0, 1] \). This concludes the proof of (9).

Suppose now that \(t \geq qs \), then

\[G_2(t, qs) = \frac{t(1-qs)^{n-2} - (t-qs)^{n-1}}{\Gamma_q(n-1)} \geq 0. \]

If \(t \leq qs \), then

\[G_2(t, qs) = \frac{t(1-qs)^{n-2} - (t-qs)^{n-1}}{\Gamma_q(n-1)} = t, \]

and this finishes the proof of (10).

Lemma 3.3. Let \(y \in C[0, 1] \), then the q-boundary value problem

\[D_q^\alpha u_3(t) + y(t) = 0, \quad 0 < t < 1, \]

\[u_3(0) = D_q u_3(0) = D_q^2 u_3(0) = \ldots = D_q^{n-2} u_3(0) = 0, D_q u_3(1) = 0, \]

has a unique solution

\[u_3(t) = \int_0^t G_3(t, qs) y(s) d_q s. \]
where
\[
G_3(t, s) = \begin{cases}
\frac{t^{n-1} (1-s)^{n-2}}{\Gamma_q(n)} - \frac{(t-s)^{n-1}}{\Gamma_q(n)}, & 0 \leq s \leq t \leq 1, \\
\frac{t^{n-1} (1-s)^{n-2}}{\Gamma_q(n)}, & 0 \leq t \leq s \leq 1.
\end{cases}
\]

Proof: We may apply Lemma 2.1 and Theorem 2.2, we see that
\[
u_3(t) = \frac{D_q u_3(0)}{\Gamma_q(2)} t + \frac{D_q^2 u_3(0)}{\Gamma_q(3)} t^2 + \ldots + \frac{D_q^{n-1} u_3(0)}{\Gamma_q(n)} t^{n-1} - \int_0^t y(s) \, dq_s.
\]
By using the boundary conditions \(u_3(0) = D_q u_3(0) = D_q^2 u_3(0) = \ldots = D_q^{n-2} u_3(0) = 0 \), we get
\[
u_3(t) = B_3 t^{n-1} \int_0^t \frac{(t-qs)^{n-2}}{\Gamma_q(n)} y(s) \, dq_s.
\]
Differentiating both sides of (11) one obtain, with the help (6) and (7),
\[
(D_q \nu_3)(t) = B_3 \left[n-1 \right] t^{n-2} - \int_0^t \frac{[n-1]_q (t-qs)^{n-2}}{\Gamma_q(n)} y(s) \, dq_s,
\]
then by the condition \(D_q \nu_3(1) = 0 \), we have
\[
B_3 = \int_0^1 \frac{(1-qs)^{n-2}}{\Gamma_q(n)} y(s) \, dq_s,
\]
the proof is complete.

Lemma: 3.4. Function \(G_3 \) defined above satisfies the following conditions:
\[
G_3(t, qs) \geq 0 \text{ and } G_3(t, qs) \leq G_3(1, qs), \quad 0 \leq t, s \leq 1,
\]
\[
G_3(t, qs) \geq \eta_3(t) G_3(1, qs), \quad 0 \leq t, s \leq 1 \quad \text{with} \quad \eta_3(t) = t^{n-1}.
\]

Proof: We start by defining two functions
\[
g_3(t, s) = \frac{t^{n-1} (1-s)^{n-2}}{\Gamma_q(n)} - \frac{(t-s)^{n-1}}{\Gamma_q(n)}, \quad 0 \leq s \leq t \leq 1,
\]
and
\[
g_4(t, s) = \frac{t^{n-1} (1-s)^{n-2}}{\Gamma_q(n)}, \quad 0 \leq t \leq s \leq 1.
\]
It is clear that \(g_4(t, qs) \geq 0 \). Now, \(g_3(0, qs) = 0 \) and, in view of Remark 2.1, for \(t \neq 0 \)
\[
g_3(t, qs) \geq \frac{t^{n-1} (1-qs)^{n-2}}{\Gamma_q(n)} - \frac{(t-qs)^{n-1}}{\Gamma_q(n)}
\]
\[\geq \frac{t^{n-1} (1-qs)^{n-2}}{\Gamma_q(n)} - \frac{t^{n-1} (1-qs)^{n-2}}{\Gamma_q(n)}
\]
\[= \frac{t^{n-1}}{\Gamma_q(n)} \left[(1-qs)^{n-2} - (1-qs)^{n-2} \right] \geq 0,
\]

\(\copyright 2010, \text{UAMA. All Rights Reserved} \)
therefore, \(G_3(t, qs) \geq 0 \). Moreover, for fixed \(s \in [0, 1] \),

\[
\begin{align*}
\quad & \frac{tD_q g_3(t, qs)}{\Gamma_q(n)} = \frac{[n-1]_q t^{n-2} (1-qs)^{n-2} - [n-1]_q (t-qs)^{n-2}}{\Gamma_q(n)} \\
\geq & \frac{[n-1]_q t^{n-2} (1-qs)^{n-2} - [n-1]_q t^{n-2} (1-qs)^{n-2}}{\Gamma_q(n)} = 0,
\end{align*}
\]

i.e., \(g_3(t, qs) \) is an increasing function of \(t \). Obviously, \(g_4(t, qs) \) is increasing in \(t \), therefore \(G_3(t, qs) \) is an increasing function of \(t \) for fixed \(s \in [0, 1] \). This concludes the proof of (12).

Suppose now that \(t \geq qs \). Then

\[
\begin{align*}
\frac{G_3(t, qs)}{G_3(1, qs)} = & \frac{t^{n-1}(1-qs)^{n-2} - (t-qs)^{n-1}}{(1-qs)^{n-2} - (1-qs)^{n-1}} \\
\geq & \frac{t^{n-1}(1-qs)^{n-2} - t^{n-1}(1-qs)^{n-1}}{(1-qs)^{n-2} - (1-qs)^{n-1}} = t^{n-1}.
\end{align*}
\]

If \(t \leq qs \). Then

\[
\begin{align*}
\frac{G_3(t, qs)}{G_3(1, qs)} = & \frac{t^{n-1}(1-qs)^{n-2}/\Gamma_q(n)}{G_3(1, qs)} \\
> & \frac{t^{n-1}(1-qs)^{n-2}/\Gamma_q(n)}{G_3(1, qs)} = t^{n-1},
\end{align*}
\]

and this finishes the proof of (13).

Lemma 3.5. Let \(y \in C[0, 1] \), then the q-boundary value problem

\[
D_q^n u_4(t) + y(t) = 0, \quad 0 < t < 1,
\]

\[
u_4(0) = D_q u_4(0) = D_q^2 u_4(0) = \ldots = D_q^{n-2} u_4(0) = 0, D_q^2 u_4(1) = 0,
\]

has a unique solution

\[
u_4(t) = \int_0^1 G_4(t, qs) y(s) d_q s,
\]

where

\[
G_4(t, s) = \begin{cases}
\frac{t^{n-1}(1-s)^{n-3}}{\Gamma_q(n)} - \frac{(t-s)^{n-1}}{\Gamma_q(n)}, & 0 \leq s \leq t < 1, \\
\frac{t^{n-1}(1-s)^{n-3}}{\Gamma_q(n)}, & 0 < t \leq s \leq 1.
\end{cases}
\]

The proof of Lemma 3.5 is very similar to that of Lemma 3.3 and therefore omitted.
Lemma 3.6. Function \(G_4 \) defined above satisfies the following conditions:

\[
G_4(t, qs) \geq 0 \quad \text{and} \quad G_4(t, qs) \leq G_4(1, qs), \quad 0 \leq t, s \leq 1, \quad (14)
\]

\[
G_4(t, qs) \geq \eta_4(t)G_4(1, qs), \quad 0 \leq t, s \leq 1 \quad \text{with} \quad \eta_4(t) = t^{n-1}. \quad (15)
\]

Proof: We start by defining two functions

\[
g_5(t, s) = \frac{t^{n-1}(1-s)^{n-3}}{\Gamma_q(n)} - \frac{(t-s)^{n-1}}{\Gamma_q(n)}, \quad 0 \leq s \leq t \leq 1,
\]

and

\[
g_6(t, s) = \frac{t^{n-1}(1-s)^{n-3}}{\Gamma_q(n)}, \quad 0 \leq t \leq s \leq 1.
\]

It is clear that \(g_5(t, qs) \geq 0 \). Now, \(g_5(0, qs) = 0 \) and, in view of Remark 2.1, for \(t \neq 0 \)

\[
g_5(t, qs) = \frac{t^{n-1}(1-qs)^{n-3}}{\Gamma_q(n)} - \frac{(t-qs)^{n-1}}{\Gamma_q(n)}
\]

\[
\geq \frac{t^{n-1}(1-qs)^{n-3}}{\Gamma_q(n)} - \frac{t^{n-1}(1-qs)^{n-1}}{\Gamma_q(n)}
\]

\[
= \frac{t^{n-1}}{\Gamma_q(n)}[(1-qs)^{n-3} - (1-qs)^{n-1}] \geq 0,
\]

therefore, \(G_4(t, qs) \geq 0 \). Moreover, for fixed \(s \in [0, 1] \),

\[
D_qg_5(t, qs) = \frac{[n-1]_q t^{n-2} (1-qs)^{n-3} - [n-1]_q (t-qs)^{n-2}}{\Gamma_q(n)}
\]

\[
\geq \frac{t^{n-2} (1-qs)^{n-3} - t^{n-2} (1-qs)^{n-2}}{\Gamma_q(n-1)}
\]

\[
= \frac{t^{n-2}}{\Gamma_q(n-1)}[(1-qs)^{n-3} - (1-qs)^{n-2}] \geq 0,
\]

i.e., \(g_5(t, qs) \) is an increasing function of \(t \). Obviously, \(g_5(t, qs) \) is increasing in \(t \), therefore \(G_4(t, qs) \) is an increasing function of \(t \) for fixed \(s \in [0, 1] \). This concludes the proof of (14).

Suppose now that \(t \geq qs \), Then

\[
\frac{G_4(t, qs)}{G_4(1, qs)} = \frac{t^{n-1}(1-qs)^{n-3} - (t-qs)^{n-1}}{(1-qs)^{n-3} - (1-qs)^{n-1}}
\]

\[
\geq \frac{t^{n-1}(1-qs)^{n-3} - t^{n-1}(1-qs)^{n-1}}{(1-qs)^{n-3} - (1-qs)^{n-1}} = t^{n-1}.
\]

If \(t \leq qs \), Then
Moustafa El-Shahed and Maryam Al-Yami*/Positive solutions of boundary value problems for nth order q-differential equations/

\[G_a(t,qs) = \frac{t^{-1}(1-qs)^{n-3}/\Gamma_q(n)}{G_a(1,qs)} \]
\[\frac{t^{-1}(1-qs)^{n-3}/\Gamma_q(n)}{G_a(1,qs)} > \frac{(1-qs)^{n-3}/\Gamma_q(n)}{(1-qs)^{n-3}/\Gamma_q(n)} = t^{-1}, \]

and this finishes the proof of (15).

4. Main results:
In this section, we will apply Krasnoselskii’s fixed point theorem to the eigenvalue problem (1), (i) (i=2,3,4).

Remark: 3.1: If we let $0 < \tau < 1$, then
\[\min_{t \in [\tau,1]} G_i(t,qs) \geq \eta_i(\tau)G_i(1,qs), \quad \text{for} \quad s \in [0,1]. \] \hspace{1cm} (16)

Let $X = C[0,1]$ be the Banach space endowed with norm $\|u_i\| = \max_{t \in [\tau,1]} |u_i(t)|$. Let $\tau = q^n$ for a given $n \in \mathbb{N}$ and define the cone $P \subset X$ by
\[P = \left\{ u_i \in X : u_i(t) \geq 0, \min_{t \in [\tau,1]} u_i(t) \geq \eta_i(\tau)\|u_i\| \right\}. \]

Remark: 3.2: It follows from the non-negativeness and continuity of G_i, a and f that the operator $T : P \to X$ defined by
\[Tu_i(t) = \lambda \int_{0}^{t} G_i(t,qs) a(s)f(u_i(s))dqs, \]
is completely continuous. Moreover, for $u_i \in P, (Tu_i(t)) \geq 0$ on $[0,1]$ and
\[\min_{t \in [\tau,1]} (Tu_i)(t) = \min_{t \in [\tau,1]} \lambda \int_{0}^{t} G_i(t,qs) a(s)f(u_i(s))dqs \]
\[\geq \eta_i(\tau) \int_{0}^{t} G_i(1,qs) a(s)f(u_i(s))dqs \]
\[= \eta_i(\tau)\|Tu_i\|, \]
that is, $T(P) \subset P$.

For our purposes, let us define two constants
\[\gamma = \lambda \int_{0}^{1} G_i(1,qs) a(s)dqs^{-1} \quad \text{and} \quad \beta = \eta_i(\tau)\lambda \int_{\tau}^{1} G_i(1,qs) a(s)dqs^{-1}. \]

Our existence result is now presented.

Theorem: 3.1. Let $\tau = q^n$ with $n \in \mathbb{N}$. Suppose that $f(u_i)$ is a nonnegative continuous function on $[0,1] \times [0,\infty)$. If there exist two positive constants $R > r > 0$ such that
\[\max_{(s,u_i) \in [0,1] \times [0,r]} f(u_i(t)) \leq \gamma u_i, \] \hspace{1cm} (17)
\[\min_{(s,u_i) \in [\tau,1] \times [\eta_i(\tau)R,R]} f(u_i(t)) \geq \beta u_i, \] \hspace{1cm} (18)
then problem (1)–(4) has a solution \(u_i \) satisfying \(u_i(t) > 0 \) for \(t \in (0,1) \).

Proof: Since the operator \(T : P \to X \) is completely continuous we only have to show that the operator equation \(u_i = Tu_i \) has a solution satisfying \(u_i(t) > 0 \) for \(t \in (0,1) \).

Let \(\Omega_i = \{ u_i \in X : \| u_i \| < r \} \). For \(u_i \in P \cap \partial \Omega_i \), we have \(0 \leq u_i(t) \leq r \) on \([0,1] \). Using (9),(12),(14) and (17) we obtain,

\[
\| Tu_i \| = \max_{t \in [0,1]} \int_0^1 G_i(t,qs) a(s) f(u_i(s))d_q s \\
\leq \lambda \int_0^1 G_i(1,qs) a(s) \max_{(r,u_i) \in [0,1]} f(u_i(s))d_q s \\
\leq r \int_0^1 G_i(1,qs) a(s)d_q s \\
= r = \| u_i \|.
\]

Let \(\Omega_2 = \{ u_i \in X : \| u_i \| < R \} \). For \(u_i \in P \cap \partial \Omega_2 \), we have \(\eta_i(\tau) R \leq u_i(t) \leq R \) on \([\tau,1] \). Using (16) and (18), and the fact that \(\tau = q^n[9] \), we obtain

\[
\| Tu_i \| = \max_{t \in [0,1]} \int_0^1 G_i(t,qs) a(s) f(u_i(s))d_q s \\
\geq \lambda \int_\tau^1 G_i(1,qs) a(s) \min_{(r,u_i) \in [\tau,1]} f(u_i(s))d_q s \\
\geq \beta \eta_i(\tau) R \lambda \int_0^1 G_i(1,qs) a(s)d_q s \\
= R = \| u_i \|.
\]

Now, Theorem 3.1 assures the existence of a fixed point \(u_i \) of \(T \) such that \(r \leq \| u_i \| \leq R \). To finish the proof, note that by (10),(13) and (15)

\[
u_i(t) = \lambda \int_0^1 G_i(t,qs) a(s) f(u_i(s))d_q s \\
\geq \eta_i(t) \lambda \int_0^1 G_i(1,qs) a(s) f(u_i(s))d_q s \\
= \eta_i(t) \| u_i \|,
\]

which implies that \(u_i(t) \geq \eta_i(t) r \). Therefore, \(u_i(t) > 0 \) for \(t \in (0,1) \) and the proof is done.

References:
