
JKAU: Comp. IT. Sci., Vol. 8 No. 2, pp: 1 – 12 (1440 A.H. / 2019 A.D.) 

Doi: 10.4197/Comp. 8-2.1 

 

1 

Communication and Computation Aware Task Scheduling Framework for 

Heterogeneous Computing   

Suhelah Sandokji and Fathy Eassa 

Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi 

Arabia 

ssandokji0001@stu.kau.edu.sa 

Abstract. The heterogeneous Computing (HC) is the promised paradigm for high performance 

computing. In HC the vastly different architectures and programming models of each type of the 

computing unit, present several challenges in achieving collaborative computing. Task scheduling 

is the main critical aspect in managing these challenges. In this paper, a Communication and 

Computation Aware task scheduler framework (CCATSF) is introduced. The proposed task 

scheduling framework consist of four parts; the first of which is the resource monitor, the second 

is the resources manager, the third is the task scheduler and the fourth the dispatcher. We also 

introduce DVR-HEFT algorithm a new hybrid task scheduling algorithm, on which the 

framework is based. Our results indicate that CCATSF framework based on algorithm is able to 

reduce the scheduler's makespan without increasing the algorithm's time complicity. 

Keywords:  Heterogeneous computing algorithm; Static task scheduling; Dynamic task scheduling; 

heterogeneous computing; DAG scheduling; Random job generator, task scheduling 

framework. 

1. Introduction 

Much scientific research ever more Needs the 

use of massive computation-intensive 

applications that increasingly require high-

performance computing systems (HPCS) 

effective and timely execution. Many 

researchers consider heterogeneous computing 

system (HCS) as the outrigger for the new 

generation of HPCS [1,2]. In an HCS, a number 

of compute devices will all be interconnected 

via a high-speed network, distinguished by 

different capabilities and fitted with specific 

computing units. Every type of heterogeneous 

computing unit meets a memory or computing 

intensive requirement of one type of 

application. The short cut way for leveraging 

the advantage of each type of the spectrum 

collection of the computing resources is best fit 

scheduling. The scheduler framework consists 

of several modules and levels for achieving two 

purposes, first modules partition the submitted 

job into tasks, after split the job into tasks, the 

next modules map or schedule them on the 

available heterogenous processing units in a 

way that achieves the minimum time-span and 

uses resources efficiently, in order for the job to 

be executed [1,2]. The algorithms used for 

mapping the tasks specifically into the best-fit 

computing resources are the task scheduling 

and allocating algorithms. In our previos work 
[1,2] , we found that task scheduling is the mean 

critical aspect in managing the challenges of 



2                                               Suhelah Sandokji and Fathy Eassa 

optimizing the performance in HCS. We also 

found that insufficient scheduling of tasks on 

computational resource limits the advantage of 

parallelism. In fact, unsuccessful scheduling 

algorithms weaken the advantage of powerful 

hardware devices.  In order to solve the 

scheduling and allocation problems, scheduling 

algorithms strive to reduce the application 

executions by allocating tasks appropriately to 

processors in a way that effectively exploits the 

parallelism of resources to perform and execute 

the task in the earliest completion time. It also 

minimizes the scheduling algorithm's own 

latency and overhead pre-processing 

computation. We are therefore incorporating in 

our last work the hybrid scheduling algorithm 

dynamic variant heterogenous early finish time 

(DVR HEFT) [3]. 

 

Fig. 1. Heterogenous computing advantages. 

In In this paper, we are continuing our 

DVR HEFT algorithm research and 

development with the introduction of the Task 

Scheduler (CCATSF). There are four 

components of CCATSF. The first part is the 

resource manager, the second part is the 

scheduler of task and the third the dispatcher. 

The resource monitor uses and explore the 

system's resources continuously, gathers the 

metadata of computers and constantly updates 

the metadata. The task scheduler lays mapping 

tasks   based on an enhanced version of the 

Heterogeneous Earliest Finish Time (HEFT) 

heuristic, a directed acyclic graph (DAG) 

scheduling algorithm. The output of this 

module is the task scheduling list which is the 

input of the fourth part, the dispatcher. The 

later module allocates the tasks to the available 

resources based on the output of the scheduler 

layer. In this paper, we continue our research 

in improving the HEFT algorith  
The following section illustrates the 

problem formulation of the task scheduling, 

followed by an overview of the related 

algorithms. The random work generator used 

to produce the DAGs of the experiment is also 

explained. Then the suggested architecture for 

CCATSF and the proposed algorithm for DVR 

HEFT. Our work will then be evaluated in 

depth and the results obtained will be 

addressed using the Radom work generator.  

Table1. Example DAG.  

Tasks P1 P2 P3 

T1 21 20 35 

T2 21 17 17 

T3 31 27 42 

T4 6 10 4 

T5 29 27 35 

T6 26 17 24 

T7 13 24 29 

T8 29 23 36 

T9 15 21 8 

T10 13 16 33 

 

Fig. 2. Example for DAG. Schedule. 

              

Heterogenous 

computing 

Computing 

intensive 

Application 

 +  

GPUs Cores 

Huge number of 

cores 

Low frequency 

CPUs cores 

Big Cache size 

Few number of 

cores 



Communication and Computation Aware Task Scheduling Framework for Heterogeneous Computing                                    3 

2. Related Work 

A. Task Scheduling Problem 

We analyzed the static scheduling  on 

the Set P of processors in a heterogeneous 

framework for single application tasks .Table 

1 and Fig. 2 illustrate  the example for DAG 

graph's tasks and communications that is 

expected to be: 

1. There are P processors required for 

executing the assignments tasks.  

2. The processors are not shared during 

the performance of the job.  

3. The tasks and the job parameters are 

not exposed to dynamic overhead; instead, 

operating at compiling times, making it more 

desirable to continue with the static algorithm 

process.  

The directional acyclic graph  DAG  is 

used to represent the job tasks. The graph , G (V, 

E) is typically shown with a Set V  for tasks 

while E set is the  communication cost . A 

weight is use for all edges of Set E edges  

represents the computation time The weight of 

the edges. The precedence is the predecessor’s 

tasks that should be finished prior to the 

execution of the pointed task. The schedule 

algorithm needs to achieve two purposes: The 

first one, is to enable the scheduler, to list tasks 

in a way, that meets the requirements of the 

precedence task . The second one, is to adjust, 

and map, tasks to the most appropriate, and 

sufficient processing unit. First, we analyze the 

state of the art algorithms that in this 

comparative study were our target considering 

previous problems, then we introduce the 

proposed improvement algorithm. 

B.  State-of-the-Art Algorithms  

In the Fig. 3 we classified the DAG 

scheduling algorithms. Indeed two forms of 

task scheduling algorithms exist in the task 

scheduling frameworks: static and dynamic. 

The static scheduling, which Precisely occurs 

at the compile time, is usually used when the 

program characteristics are known prior to the 

execution time. Static scheduling algorithms 

can be divided into two wide groups: the first 

group is the heuristic-based and the second 

group is a guided random search-based 

algorithm (GRS). The heuristic-based 

algorithms produce approximate solutions, 

which mostly come with polynomial time 

complexity but are effective solutions. In 

contrast to the second type, guided random 

search-based algorithms (GRS), which 

produce an approximate solution, can be 

improved by including more iterations. 

Therefore, these algorithm types are more 

expensive [7]. Some of the GRS algorithms are 

Generic Algorithm [8], Simulated Annealing[9], 

Local Search Technique[10]. The heuristic-

based group is divided into three subgroups: 

clustering [11,12] list scheduling [13,14,15]  and 

duplication [16,17,18] . The duplication heuristics 

main advantage is to introduce the minimum 

make spans. But cost both energy and time 

complicity. Clustering heuristics is usually 

recommended for homogeneous systems. List 

scheduling heuristics, in contrast to the 

previous algorithms, generate the most 

efficient schedules, minimize the makespan, 

and their time complexity is quadratic with 

respect to the number of tasks. Generally, the 

list scheduling algorithms [4,5,6,13, 14, 15,19,20] 

involve two stages that they go through in 

order to schedule the tasks. 

Here we illustrate with more details the 

state-of-the-art list scheduling algorithms:  

1) Predict Earliest Finish Time (PEFT) 

algorithm  

This algorithm involves two steps: 

prioritizing the tasks and selecting the 

processor units. PEFT algorithm [6] combines 

two approaches: the optimistic cost table 

(OCT) and the lookahead. The OCT is 



4                                               Suhelah Sandokji and Fathy Eassa 

represented by a matrix that saves the tasks' 

and processor's units information. OCT (ti,pk) 

defined the look ahead part of the task's ti 

children and the EFT of the task's ti children, 

in case that processing unit pk is selected for 

task ti. In the first step of PEFT, the priorities 

of tasks are assigned via a sorted average of 

OCTs on each processing unit. In the second 

step, a processing unit for a task is chosen 

from the calculation of task optimistic EFT 

computing from the minimum summation of 

OCTs and EFT. Similar to HEFT, PEFT 

allocates tasks to processing units via an 

insertion-based policy. PEFT complexity is 

(𝑝.(|𝑉 | + |𝐸|) + (|𝑉 |2.𝑝)). 

 

 

Fig. 3. Classification for DAG task scheduling. 

2) Heterogeneous Earliest Finish Time 

(HEFT) algorithm 

HEFT HEFT algorithm is resembling to 

the PEFT algorithm which includes two 

stages[4]: the upward rank of tasks for 

prioritizing tasks is determined in the first step. 

Using the related communication and 

computation costs an upward rank of tasks is 

computed. The upward rank for each task is 

the highest distance from the beginning task to 

the exit task The first phase output is a list of 

tasks that are ordered in a decreasing order 

corresponding to their values of upward rank 

The tasks are assigned to an appropriate 

processor in the second stage, which 

minimizes the early finishing time for each 

task. Using the insertion policy the HEFT 

algorithm insert tasks in the earliest idle time 

slot. The algorithm complexity is (|𝑉 |2.𝑝).      

3) Lookahead scheduling algorithm  

The Lookahead [5] is considered an 

optimized version of HEFT algorithm.  In 

HEFT's  second phase, the processor selection 

strategy is improved by including the 

Lookahead approach. The Lookahead is a 

calculation that aims to reduce the EFT on 

each processing units to the current task and 

the task's children. Based on the output of the 

Lookahead calculation, the processing unit is 

selected. For example, if the algorithm at the 

step chooses the processor unit for Task t, the 

Lookahead calculation iterates over all 



Communication and Computation Aware Task Scheduling Framework for Heterogeneous Computing                                    5 

available processing units for computing EFT 

of t's children tasks on all processing units. 

Finally, task t will be allocated on the 

computing unit that decreases the highest EFT 

for all its children which were allocated using 

HEFT. The Lookahead calculation is iterated 

for every child of Task t by enhancing the 

levels analyzed. The drawback of this 

algorithm is increasing the time complexity of 

HEFT algorithm by a factor of r × c. In the 

worst case, the time complexity of the 

Lookahead algorithm is (|𝑉 |4.𝑝3), where r is 

the number of resources and c is the average 

number of children per task. 

3. The Proposed DVR HEFT Algorithm 

In this part, the algorithm that our 

proposed framework is based on is introduced. 

The algorithm consists of two parts: static and 

dynamic.  

A. The Static Part 

 The input is DAG in the static section. 

The first step, like all static algorithms, 

calculates the objectives of the tasks. The 

upward rank of tasks is evaluated as the 

prioritizing phase in the HEFT algorithm. 

Using the following equation, the upward rank 

of a task I is defined recursively: 

ranku (i)={f(wi
i 
)+max

∀j∈Si
(avr(ci,j)+ranku(j))} (1) 

where: wi defined the task's i computation cost, 

Si, the task's i immediate successors set. Ci,j is 

the taski—taskj communication cost. 

Assumption: when i and j allocated on the 

same machine, communication cost is zero. 

The function f(wi
i 
) produces the task 

weight value. This value is dependent on the 

task's computation cost on each processor. In 

the HEFT algorithm, f(Wi) function is 

calculated using the average of the 

computation time on each machine.  

f(Wi) = avr.(wp1,wp2,….wpn-1,wpn)                  (2) 

such that P={p1,p2,..pn} where P is the  set of 

processors. 

Nonetheless, usually the values on which 

the weights are dependent cannot be 

considered constant in a heterogeneous context 
[22]. This is due to the HPC system resources' 

indeterministic actions. Likewise, the values 

weighing the nodes cannot be constant as well. 

Hence, the task's measurement cost can vary 

depending on the efficiency and performance 

of the system the task is running on. 

Consequently, there are a variety of different 

methods to measure the weight of the node in 

the heterogeneous setting. Therefore, the 

scheme for determining a Wi node's weight 

could be obtained as an ad hock option which 

may boost the execution time in some cases, 

but does not necessarily improve other cases. 

As a consequence, we expected three schemes 

to measure the tasks ' upward rating.  

1. We weigh the tasks based on the 

average of their corresponding execution time 

across all machines, similar to heft algorithm, 

Eq. (1). 

f(Wi) = avr.(wp1,wp2,….wpn-1,wpn)          (2)            

2. It can also be obtained using the best 

case 

f(Wi) = Min(wp1,wp2,….wpn-1,wpn)                (3) 

3. weigh using the worst case. 

f(Wi) = Max(wp1,wp2,….wpn-1,wpn)               (4) 

Each scheme provides a different task 

list in order. As a consequence, the 

consistency of the schedule generated will 

increase if you had several rank feature 

choices (and the values it returns). 

 

 



6                                               Suhelah Sandokji and Fathy Eassa 

Algorithm1: Pseudocode DVR-HEFT algorithm 

1. DVR HEFT Algorithm  
2. Define wi,EFT,taskID,ranku,P,t  
3. Input int ranku,wi,EFT,PID,taskID 
4. Output mapping PID,taskID 
5. Begin algorithm  
6. #the static part of the algorithm  
7. for each task compute tasks ranku 
8.  f(wi)=Min(wp1..wpn )  
9.  rank tasks using the ranku as list1 
10.   for each task compute tasks ranku 
f(wi)=Max(wp1:wpn)     rank tasks using the ranku  as list2 
11.  for each task compute tasks ranku f(wi)= 
avr.(wp1:wpn ) rank tasks using the ranku as list 3 
12. End Do parallel 
13. For all generated rank tasks list: list1, list2, list3 do 
14. while there are unscheduled tasks do 
15.  t ← unscheduled task with highest ranku 
16. For each pi∈ P //P set of the processors 
17.  schedule t  on Pi using HEFT   
18. End For , 
19. End while 
20.  compute EFT of exit task// this step generate EFT 
1 for //list1,EFT2for list2,EFT3 for list3 . 
21. selected scheduler find min(EFT1,EFT2,EFT3)  
22. end for 
23. Turn to low energy consume mode  
24. End for 
25. End algorithm 

Therefore, we propose that HEFT's 

output and performance can be enhanced by 

considering the upward rank of the three 

variants in the mission prioritization level. 

Next we evaluate the make span of the 

schedules that each scheme generates and take 

the shortest schedule list of make span and set 

it as the schedule chosen. This may raise the 

algorithm's cost somewhat, but it's a 

worthwhile trade-off. To increase the 

algorithm's execution speed, we measure the 

upward rank version of the tasks concurrently 

using the three schemes and then implement 

the second HEFT level of resource selection. 

So we pick between them the optimal 

schedule, i.e. the schedule that gives the 

earliest finish time  
The Dynamic Part 

The algorithm's second part, the complex 

part is the dynamic .In some instances, as in 

real-time applications and variable workload, 

assignments are sent at runtime. Nevertheless, 

the properties of computer nodes will 

dynamically alter in reality, especially in 

situations where worker nodes are shared with 

other users of the system. This case, requires a 

dynamic algorithm. Contrary to static 

scheduling, dynamic task scheduling makes 

decisions regarding work assignments at 

runtime, allowing computing to adapt to 

changes in the computing environment, such 

as the processing power of a single node being 

stopped by other machine users, since the 

workload size under scheduling, which greatly 

increased the need for a powerful dynamic 

algorithm, is not a triple The researchers found 

out in [ 23]  that static algorithms do not always 

have a detrimental impact on performance. 

Dynamic characteristics can actually improve 

dynamic algorithms whereas dynamic 

algorithms can be improved by dynamic 

characteristics. So we're mixing and 

combining VR-HEFT algorithm with features 

that enable the scheduler to receive tasks at run 

time and schedule them efficiently.  
Every processor has a list of tasks at 

runtime. When the task predecessor finished 

execution and task dependencies are fulfilled, 

the work is queued in the queue of a processor 

named "ready tasks list" to be sent to the cores 

later. The functions are implemented using the 

HEFT software insertion police[3]. 

4. The Proposed Communication and 

Computation Aware Task Scheduler 

Framework (CCATSF)   

In this paper, a Communication and 

Computation Aware task scheduler framework 

(CCATSF) is introduced (Fig. 4). The 

architecture for CCATSF is made up of four 

layers. It receives the DAG tasks forming the 

layer of decomposition, which is out of the 

paper's reach. We present a high-level 

scheduler in this paper. The high level consists 



Communication and Computation Aware Task Scheduling Framework for Heterogeneous Computing                                    7 

of four sections, the resource manager being 

the first, the task scheduler being the second, 

and the dispatcher or allocator being the third. 

The resource manager examines continuously 

the resources in the network, gathers metadata 

from the computing resources, and constantly 

updates the metadata. The task scheduler 

receives the cores statues meta data used to 

schedule tasks based on an improved version 

of the heuristic Heterogeneous Earliest Finish 

Time (HEFT), a directed acyclic graph. If one 

of the processors is idle the new task is 

assigned to the idle processor that follows the 

restrictions of insertion procedure. If there is 

no idle processor the task is added as the tail of 

one of the processor's queue that entered the 

earliest execution time through the dispatcher 

module. When there is more than one 

processor option, the algorithm determines the 

average early completion time of the job for 

each processor pi, then it is placed as the tail 

of the processor's pi ready queue that would be 

chosen to reach the earliest completion time. 

5. Experiment and Results 

Based on the proposed DRV HEFT 

algorithm, we perform multiple tests to test the 

proposed design. We also equate DVR HEFT 

algorithms with state-of - the-art list 

algorithms, traditional HEFT algorithms, 

Lookahead and PEFT in three experimental 

sets utilizing two metrics[4], scheduling length 

ratio (SLR) and efficiency. The tests carried 

out on the basis of a random job generator.  
 Random Graph Generator 

This is on progress research. We are 

therefore performing the analysis using a 

simulator on the DAG. In our previous work 

we implement a random DAG generation 

program and generate graphs. The graphs have 

single of both entry and exit nodes. Also the 

graphs have multiple levels that are created 

gradually. Each level randomly contains a 

range from 2 to half the remaining nodes. 

 

Fig. 4. Communication Computation Aware task 

scheduling frame work CCATSF. 

In the experiments, we used the 

following parameters with deferent values to 

generate random graphs with different shapes: 
Tasks number = [10, 20, 30, 40, 50, 60, 70, 80, 

90, 100,200,300,400,500] 

𝑓(define the Hight and weight of DAG) = 

[0.1, 0.4, 0.8] 

Computation Communication Ratio  

CCR = [0.5, 1, 10] 

(range of computation ration on processors) = 

[0.1, 0.5, 1] 

Processors = [4, 8, 16, 32] 

Task size range = [40-100, 350-500] 

The low level scheduler

accelerator Scheduler accelerator Allocator  

The Meduem layer 

CPUs cores  Scheduler CPUs cores Allocator 

The High level scheduler
DVR HEFT  
Scheduler 

Resource 
Allocator

Resources Meta 
Data Collectors 

Resource 
Monitor 

Decomposed Job Layer  



8                                               Suhelah Sandokji and Fathy Eassa 

The previous parameters produced 1512 

different graphs based on their combination. 

We generated 5 DAG from each. We 

implemented the four algorithms PEFT, 

HEFT, Lookahead and the improved version 

of HEF; DVR-HEFT. Next we present the 

experiments that we conducted and their 

results. 

1. Experiment 1 

In the experiment1, for the four 

algorithms, we calculated the SLR as Fig. 5 

displays the SLR average on the number of 

DAG nodes.  

We observed that VR -HEFT algorithm 

has continuously improve HEFT algorithm by 

an average of 13% to 60 tasks, then it has risen 

to 15% and then again has decreased to less 

than 7% to 500 tasks where it has reached 5%. 

Unlike Lookahead, another HEFT-improved 

algorithm, we find that lookahead is better 

than VR-HEFT, till 40 nodes then both are 

similar. Then VR-HEFT have better 

performance after 80 nodes. At 500 node, the 

worst lookahead result is. 

2. Experiment 2 

Experiment 2 evaluate the SLR as function 

of CCR, Fig. 5, we have noticed that the 

performance is improved by growing the 

communication cost especially when the CCR 

ratio is more than 1. Even we found that both 

PEFT. HEFT and DVR-HEFT have a common, 

while the communication cost is low (0.5) it is 

better than Lookahead. Apart from DVR, the 

communication-to-computation ratio of the 

HEFT algorithm is over 0.5. Contrast, if the CCR 

is of 10 the average performance of DVR HEFT, 

PEFT and lookahead is equally improved.  

 

3.  Experement 3 

In the third experiment, we measured the 

efficiency while using a deferential number of 

processors. The consequence of this 

experiment is shown in Fig. 6. We found that 

DVR-HEFT increases performance as a 

function of the number of processors as will 

as the lookahead algorithm do. At the same 

time it is greater than PEFT and HEFT. The 

efficiency of the algorithm is dependent on the 

performance and the number of processors 

used in the computation. If the load is 

balanced and the efficiency increased, there is 

no need to improve the performance. 

Lookahead is more efficient than PEFT, 

thereby improving the efficiency even if PEFT 

performance is higher. DVR HEFT, though, 

increase efficiency also it increases. Next we 

discuss the results. 

4. Discussion Results 

Many experiments were performed to 

evaluate the algorithm of DVR-HEFT; 

the CCATSF system relies on the new 

algorithm. The experiments show that DVR-

HEFT enhances the HEFT algorithm better 

than the previous HEFT, optimizing 

algorithms with the lowest difficulty of 

quadratic time. We propose DVR HEFT as a 

hybrid algorithm to prioritize the tasks and 

schedule them by mapping them based on the 

earliest finishing time to available resources.  

It also assigns runtime activities to unused 

cores and switches the processor state to the 

lowest energy usage if there are no ready jobs. 

Our proposed framework CCATSF framework 

evaluation is dependent on the random job 

generator as it is ideal for the number of tasks 

necessary to the difficulty and complex 

nature of high performance and heterogeneous 

 computing. Since this work remains 

underway, these studies based on evaluated 



Communication and Computation Aware Task Scheduling Framework for Heterogeneous Computing                                    9 

experiments  combining with our observations 

stressed the important 

effect of the task size and number in the tasks 

on the output of the algorithm. It also 

emphasized the impact of the communication 

that can be resolved by our proposed 

algorithm. To justify the reliability of both the 

DVR HEFT algorithm and the CCATSF 

framework, we will also test it based on the 

actual implementation tasks and real 

applications. 
 

 

 

 

 

 

Fig. 5. Average SLR as Function of DAG size.  

 

Fig. 6. Average of SLR as a function of CCR. 

0

1

2

3

4

5

6

0.5 1 10

SL
R

 A
ve

ra
ge

 

CCR

Average SLR for random graphs as a function of CCR.

VR-HEFT HEFT

PEFT Lookahead



10                                               Suhelah Sandokji and Fathy Eassa 

 

Fig. 7. Average of effeiciency as a function of number of processor. 
 

 

6. Conclusion and Future Work 

In this paper In this paper we present the 

CCATSF frame work of the task scheduler. 

The framework is based on a improved version 

that is hybrid algorithm for  scheduing  DAG; 

Dynamic Variant Rank HEFT (DVR-HEFT). 

We first enhance HEFT by implementing the 

hybrid DVR-HEFT algorithm, one of the most 

frequently cited state-of - the-art scheduling 

algorithms. Furthermore, based on the 

proposed DVR HEFT algorithm, we proposed 

the CCATSF task scheduler system. Our 

efficiency is focused on reducing the time of 

communication and the time of computation. 

As a consequence, we will reduce energy use. 

The system can also reduce energy use by 

maximizing resource utilization. In order to 

evaluate the CCATSF framework and compare 

the DVR HEFT algorithm to HEFT and some 

of the state-of - the-art static DAG scheduling 

algorithms, several experiments were 

undertaken depending on random job 

generator. The results show that DVR-HEFT 

enhances the HEFT algorithm and is superior 

to the Lookahead algorithm, especially when 

there are more than 100 tasks as in HPC and 

HCS are needed. DVR HEFT algorithm 

performance improved continuously by an 

average of 13% until it exceeded 60 tasks and 

then fell to 15% and declined again to less 

than 7% until it had 500 tasks, hitting 5.0%. 

We concluded that DVR-HEFT improves 

HEFT algorithm more effectively than 

previous HEFT, improving algorithms beside 

it have a less time complexity. Our next step in 

our ongoing research is to use actual 

applications to evaluate the CCATSF 

framework on more scalable and variety 

heterogeneous resources.  

Acknowledgements 

This Paper contains the results and 

findings of a research project that is funded by 

King Abdulaziz City for Science and 

Technology (KACST) (Grant no.1-17-02-009-

0012). 

References 

[1] Sandokji, S. and Eassa, F. (2018) “Task Scheduling 

Frameworks for Heterogeneous Computing Toward 

Exascale”, International Journal of Advanced Computer 

Science and Applications (IJACSA), 9(10), 

http://dx.doi.org/10.14569/IJACSA.2018.091029 

http://dx.doi.org/10.14569/IJACSA.2018.091029


Communication and Computation Aware Task Scheduling Framework for Heterogeneous Computing                                    11 

 

[2] Sandokji, S., Essa, F. and Fadel, M. (2015) "A survey 

of techniques for warp scheduling in GPUs," 2015 IEEE 

Seventh International Conference on Intelligent 

Computing and Information Systems (ICICIS), Cairo: pp. 

600-606. 

[3] Sandokji S., Eassa F. (2019)"Dynamic Variant Rank 

HEFT Task Scheduling algorithm"16th International 

Conference On Learning and Technology Conference 

2019(LT19) Jeddah KSA. 

[4] Topcuoglu, H., Hariri, S. and Wu, M. (2002) 

“Performance-Effective and Low-Complexity Task 

Scheduling for Heterogeneous Computing,”, IEEE Trans. 

Parallel and Distributed Systems, 13(3): 260-274, Mar. 

[5] Bittencourt, L.F., Sakellariou, R. and Madeira, 

E.R.M. (2010) “DAG Scheduling Using a Lookahead 

Variant of the Heterogeneous Earliest Finish Time 

Algorithm,” Proc. 18th Euromicro Int’l Conf.Parallel, 

Distributed and Network-Based Processing (PDP ’10), 

pp: 27-34. 

[6] Arabnejad, H. and Barbosa, J. G. (2014) List 

scheduling algorithm for heterogeneous systems by an 

optimistic cost table. IEEE Transactions on Parallel and 

Distributed Systems, 25(3): 682–694. 

[7] Fraser, A. S. (1957) Simulation of genetic systems by 

automatic digital computers. II: Effects of linkage on 

rates under selection, Austral. J. Biol. Sci., 10:492-499. 

[8] McCall, J. (2005) Genetic algorithms for modelling and 

optimisation, Journal of Computational and Applied 

Mathematics, 184(1): 205-222, ISSN 0377-0427. 

[9] Van Laarhoven, P. J. M. and Aarts, E. H. L. (1987) 

"Simulated annealing", Simulated Annealing: Theory and 

applications. Springer, Dordrecht, pp: 7-15. 

[10] Schaffer, J. D. (1987) "Some effects of selection 

procedures on hyperplane sampling by genetic 

algorithms", Genetic Algorithms and Simulated 

Annealing, pp: 89-103. 

[11] Moscato, P. and Schaerf, A. (1998) "Local search 

techniques for scheduling problems", Notes of the tutorial 

given at the 13th European Conference on Artificial 

Intelligence, ECAI. 

[12] Cirou, B. and Jeannot, E. (2001) “Triplet: A Clustering 

Scheduling Algorithm for Heterogeneous Systems”, 

Proc. Int’l Conf. Parallel Processing Workshops, pp: 

231-236. 

[13] Kwok, Yu-K. and Ahmad, I. (1996) Dynamic critical-

path scheduling: An effective technique for allocating 

task graphs to multiprocessors. IEEE Transactions on 

Parallel and Distributed Systems, 7 (5): 506-521 

[14] Boeres, C., Filho, J.V. and Rebello, V.E.F. (2004) “A 

Cluster-Based Strategy for Scheduling Task on 

Heterogeneous Processors”, Proc. 16th Symp. Computer 

Architecture and High Performance Computing, pp: 214-

221. 

[15] Wu, M-Y. and Gajski, D. D. (1990) Hypertool: A 

programming aid for message-passing systems. IEEE 

Transactions on Parallel and Distributed Systems, 1 (3): 

330-343. 

[16] Yang, T. and Gerasoulis, A. (1994) DSC: Scheduling 

parallel tasks on an unbounded number of processors. 

IEEE Transactions on Parallel and Distributed Systems, 5 

(9): 951-967. 

[17] Kanemitsu, H., Hanada, M. and Nakazato, H. (2016) 

Clustering-based task scheduling in a large number of 

heterogeneous processors. IEEE Transactions on Parallel 

and Distributed Systems, 27 (11): 3144-3157. 

[18] Sarkar, V. (1987) Partitioning and scheduling parallel 

programs for execution on multiprocessors. Technical 

Report. Stanford Univ., CA (USA). 

[19] Hu, M., Luo, J., Wang, Y. and Veeravalli, B. (2017) 

Adaptive Scheduling of Task Graphs with Dynamic 

Resilience. IEEE Trans. Comput, 66 (1): 17–23. 

[20] Kwok, Yu-K. and Ahmad, I. (1999) Static scheduling 

algorithms for allocating directed task graphs to 

multiprocessors. ACM Computing Surveys (CSUR), 31 

(4): 406-471. 

[21] Tang, X., Li, K., Liao, G. and Li, R. (2010) List 

scheduling with duplication for heterogeneous computing 

systems. Journal of parallel and distributed computing, 

70 (4): 323-329. 

[22] Henan, Z. and Sakellariou, R. (2003) "An experimental 

investigation into the rank function of the heterogeneous 

earliest finish time scheduling algorithm", European 

Conference on Parallel Processing. Springer, Berlin, 

Heidelberg. 

[23] Agullo, E., Beaumont, O., Eyraud-Dubois L. and 

Kumar, S. (2016) "Are Static Schedules so Bad? A Case 

Study on Cholesky Factorization", 2016 IEEE 

International Parallel and Distributed Processing 

Symposium (IPDPS), Chicago, IL, pp: 1021-1030. 

doi: 10.1109/IPDPS.2016.90. 
 

 

 



12                                               Suhelah Sandokji and Fathy Eassa 

 

 متجانسة الإطار عمل لتوزيع المهام لتسريع المعالجة والتواصل بين وحدات التنفيذ غير 
  فتحي البرعي عيسى و سهيلة محمد صندقجي

 المملكة العربية السعودية ،جدة ،كلية الحاسبات وتقنية المعلومات، جامعة الملك عبدالعزيز
ssandokji0001@stu.kau.edu.sa 

 حيث للحوسبة عالية الأداء.  ةعدا ( هي النموذج الو HC. الحوسبة غير المتجانسة )المستخلص
تحديات عديدة ، الحوسبة اتلكل نوع من أنواع وحد ،ونماذج البرمجة المختلفةي البنفيها  تمثل

في تحقيق الحوسبة التعاونية. جدولة المهام هي الجانب الحاسم الرئيسي في إدارة هذه التحديات. 
يتكون إطار و (. CCATSFعمل جدولة مهام الاتصال والحساب ) نظامفي هذه الورقة، تم تقديم 

لها هو رصد الموارد، والثاني هو مدير الموارد، والثالث جدولة المهام المقترح من أربعة أجزاء؛ أو 
خوارزمية جدولة مهمة  DVR-HEFTهو جدولة المهام والرابع المرسل. نقدم أيضًا خوارزمية 
استنادًا إلى خوارزمية  CCATSF نظاممختلطة، والتي يستند إليها الإطار. تشير نتائجنا إلى أن 

DVR-HEFT  وإنجاز المهام.ولة الجد عملية تسريعقادر على 

جدولة المهام  ،المبدئية مامهالجدولة  ،: خوارزمية الحوسبة غير المتجانسةالكلمات المفتاحية 
 .عمل جدولة المهام نظام ،الحوسبة غير المتجانسة ،الديناميكية

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


