
JKAU: Comp. IT. Sci., Vol. 8 No. 1, pp: 11 – 18 (1440 A.H. / 2019 A.D.) 

Doi: 10.4197/Comp. 8-1.2 

 

11 

Build Power Profiling Tool for Modern CPUs   

Naif Aljabri and Osama Abulnaja 

Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi 

Arabia 

naljabry0001@stu.kau.edu.sa 

Abstract. Reduce the application power consumption is one of the main challenges for the HPC 

community. Code power profilers are very important for researchers to identify the performance 

bottlenecks and power consumption for their code. Most of the modern CPUs are equipped with a 

built-in sensor to allow researchers and HPC engineers to estimate the power consumption of the 

running applications. To estimate the power consumption for any piece of code running on CPU, 

you need to eliminate the confounding factors as possible and run the code many times until the 

average converge. The reason for that is the environment, which has the OS and other processes 

and services running at the same time with your code and may report incorrect power readings. In 

this paper, we build a power profiler tool, which saves the researcher time by running and 

profiling different pieces of code with different types of workloads, and keeps running until the 

average converge. Furthermore, we identify and eliminate the environment confounding factor 

which saves the researcher time and gives a realistic result for power consumption experiments. 

Keywords: Power, Profiler, CPU, Average converge, Confounding factors. 

1. Introduction 

Power consumption is the main obstacle to 

scale the current HPC petascale computing 

power to reach the next exascale generation. 

The most powerful supercomputer in the world 

consumes about 15 megawatts of power 
[1]

. To 

reach the next generation of exascale 

computing power in reasonable power budget, 

we need a lot of effort from architecture 

designers and software programmers. Most of 

the modern CPUs are equipped with power 

sensors to allow the programmers to estimate 

their code power consumption. 

With code profilers, we can identify the 

power efficient code building blocks and 

algorithms and use it to build a power efficient 

HPC applications. CPU environment is very 

complicated for power estimation experiments. 

The OS and other processes are running side-

by-side with your code which may affect the 

accuracy of the results. One of the best 

practices in power estimations experiments to 

avoid the environment noise is to run your 

code many times until the average converge. 

It's very difficult to estimate how many times 

you need to run your code to reach the average 

converge. We need to run the code hundreds of 

times and calculate the accumulated average 

for each run. Furthermore we need to eliminate 

as possible the environment confounding 

factors. Without eliminating these factors, the 

experiment process will take a lot of time from 

the researcher to reach the estimated average.   



12                                              Naif Aljabri and Osama Abulnaja  

 

In this paper, we propose a power 

profiler tool which automatically runs many 

pieces of code until the average converge. The 

proposed profiler can deal with any number of 

code blocks or algorithms automatically. It is 

select the code block or algorithm from the 

queue, then start many sessions and read the 

power sensors and calculate the accumulated 

average for each session. The profiler capable 

to run any number of sessions automatically 

until the average converges for each code block 

or algorithm. All the data saved in memory 

during the run and after the session terminated 

all the data saved in the database for reference. 

The profiler will stop the experiments 

automatically when reach the average converge 

and starts the next code block or algorithm in 

the queue. Furthermore, we identify and 

propose several environment confounding 

factors and how to eliminate these factors to 

avoid nose in the experiment results. 

This paper is organized as follows. 

Section II briefly lists the related work. In 

Section III, the proposed profiler is given, 

followed by the environment confounding 

factors in Section IV. The results and 

discussion are given in Section V. Finally, the 

conclusion and futures works are given in 

Section VI. 

2. Related Work 

There are many profilers used by 

researchers to estimate the power consumption 

in the CPU environment. Some of these 

profiles are system-wide profilers (not for a 

specific piece of code). Also, some of them can 

be used to profile a piece of code but it doesn't 

support the automated sessions, running until 

the average converge or deal with many pieces 

of code. Here we list some of these profiles. 

Intel VTune Amplifier 
[2]

, is a 

commercial performance profiling tool. It's 

developed by Intel and supports most of the 

modern Intel processors. It supports the 

analysis of function, instruction or source code. 

It supports also the energy profiling for system-

wide.  

Oprofile 
[3]

, it's a kernel based profiler 

that profiles Linux applications. The samples 

are taken at fixed interval time. Oprofile is 

defaulted to configure because it requires a 

copy of the source code for the exact Linux 

kernel. 

Qprof 
[4]

, it's Linux based profiler that 

collects the samples in real time for any exe 

file.  The user must configure a number of 

environment variables for sampling. It can 

support function or instruction level profiling. 

Perfsuite 
[5]

, is a Linux based profiler 

used to profile Linux applications using the 

psrun command. Its use specific API to 

perform sampling for the application. After the 

end of executions all the profile data saved in 

XML file. 

Gprof 
[6]

, is a cross-platform profiler for 

function level sampling. It can collect a wide 

range of functions based metrics. Its use the 

augmenting compiler component to insert the 

monitoring functions into the targeted 

application. 

3. Proposed Profiler 

We developed our own profiler to 

perform power consumption experiments for 

any code block or algorithm running on 

modern multicore CPUs. The main features of 

our profiler are: 

 Deal with any a number of exe files, 

just compile your code blocks or algorithms, 

then pass all the exe file names and location to 

the profiler. 

 Select the number of experiments you 

want to perform or each exe file.  

 For each experiment, the profiler will 

run each exe file many times and collect the 

power sensors readings periodically and 



Build Power Profiling Tool for Modern CPUs                                                                                  13 

 

calculate the accumulative average until 

average converge for two decimal places, then 

write the results to the database. 

 Each round of run and each experiment 

are identified by a unique number, to be easy 

for the researcher to filter and classify the 

results to perform statistical calculations on the 

data. 

 In case of the CPU temperature 

increased due to heavy utilization of CPU, the 

profiler will hold the next run and wait for the 

CPU temperature to return to the normal state 

then resume the next run. This very important 

feature because if the CPU temperature 

increased, the power consumption readings 

will increase and give unrealistic results. The 

researcher can define the normal temperature 

degree in the settings of the profiler before 

starts the experiments. The normal temperature 

is different from CPU to other based on the 

ambient temperature or the CPU manufactural 

specifications. 

 Shows live results for each run and the 

progress of the experiment during the profiling 

process.  

 Shows live sensors reading for CPU 

type and model, CPU temperature, voltage, 

power, load and clock cycles. Also, its 

calculate the execution time to be used to 

calculate the energy consumption for any exe 

file. All these data also saved in the database. 

The researcher may need this information 

when running the experiments on more than 

CPU type to know what is the data belongs to 

each CPU type. 

We developed our profiler using Visual 

Studio C# 2010 under Windows 7 64-bit 

environment. To run each exe file session we 

use the BackgroundWorker tool. The 

backgroundWorker1_DoWork() function used 

to run the exe file. In the same time, we run the 

Timer() function to read the CPU power sensor 

periodically during the run. Once the run 

finished, the BackgroundWorker tool invokes 

the backgroundWorker1_RunWorkerCompleted() 

function and stop the sensors reading and write 

all the readings to the database. The average 

power consumption for the exe file saved in the 

averages array. The profiler keeps running the 

same exe file many times until the power 

average converges in the averages array. 

Finally, the profiler writes all the averages 

array to the database. Also, we give the user 

the ability to give the experiment name and the 

experiment number in the profile settings 

before the start the experiments. All this 

information saved in the database when the 

profiler writes the samples and the power 

averages in the database. We don't need to 

create a new database for each experiment. The 

user can differentiate between the experiments 

names, numbers and CPU type from the 

database. 

We use the Open Hardware Monitor 

library to read the CPU sensors periodically. 

Open Hardware Monitor library is an open 

source library that supports most hardware 

monitoring chips found on today’s mainboards 
[7]

. 

Figures 1&2 show how the proposed profiler 

works. 

4. Environment Confounding Factors 

Profiling experiments in modern 

multicore CPUs are very complicated. There 

are many processes and services running at the 

same time with your code during the profiling 

process and affect your result by incorrect 

values from the sensors. These confounding 

factors must be eliminated as possible to give 

realistic sensors values. In this section, we will 

list the confounding factors in the modern 

multicore CPUs and how to eliminate them as 

possible. Eliminating these factors will give 

more realistic and save days of the running of 

your code to reach the average converge. At 

the beginning of our experiments we spent 



14                                              Naif Aljabri and Osama Abulnaja  

 

weeks to reach the average converge for the 

average power consumption, and then after 

months of research about the CPU environment 

we successfully eliminated most of these 

factors and save weeks of time and most of our 

experiments done in the same day. 

 

Fig. 1. The flowchart of the proposed pofiler. 

 

Fig. 2. The proposed profiler picture. 

A. CPU Power Management  

This is one of the new features in the 

modern multicore CPU. Every CPU equipped 

with a voltage regulator and if CPU utilization 

increased power management tool will 

decrease the CPU clock cycles and reduce the 

power through the voltage regulator. In this 

case, you will read incorrect power values for 

your code. We need to disable this feature from 

the BIOS before you run your code to avoid 

incorrect power values 
[8]

. 

B. Hyper-Threading 

The feature of hyperthreading allows 

each physical core to work as two virtual core 

to the OS. There are duplicated components 

with each physical core to store the program 

stat and switch to another program for a slice 

of time. During the run of your program – if 

the hyperthreading feature is enabled – the 

CPU sensor will read the power values of your 

program and any other program running on the 

two virtual cores which may add noise to your 

results. You need to disable this feature to deal 

with one physical core and read the correct 

power values for your program
 [9]

. 

C. Context Switching 

The context switching is not a new feature 

in the modern CPUs. It's also used in the old 

CPUs. The idea of this feature is to allow to 

programs to share the time with any physical 

core. For example, if your program is running on 

core 1 after some time it may switch to another 

physical core and complete the running. We can 

eliminate the context switching by using the Set 

Affinity command. This command allows you to 

choose one physical core to run your program 

and prevent your program from switching to any 

other physical core. Also with this command, we 

can set the affinity of any program or process 

running on the CPU to work on a set of cores for 

example core 3-8 and keep core 1 for your 

program without any interrupt from any other 

program or process to use your program core. 

This will give your results a perfect accuracy and 

reduce the number of runs to reach the average 

converge of the power averages 
[9]

. 

D. Neighbor Core Effect 

The effect of the neighbor physical core 

is validated by many researchers 
[10]

. The 

neighbor core temperature may affect the core 

 



Build Power Profiling Tool for Modern CPUs                                                                                  15 

 

temperature and increase the temperature of the 

core and increase the time of the experiment. 

Our profiler is designed to repeat the run in 

normal core temperature if the core 

temperature exceeded the normal temperature, 

the profiler will hold the next run and resume 

after the core gets cold and reach the normal 

temperature. Our experiments if we use core 1 

for our program we keep core 2 always idle by 

using the Set Affinity command. For example, 

if we have CPU with 8 physical cores, we set 

the affinity of our program to core 1 and set the 

affinity for other programs and processes to 

core 3-8 and keep core 2 idle. 

E. OS Processes and Services 

In the CPU environment, there are 

hundreds of processes and services running to 

operate the OS functions. All these processes 

and services use all the CPU cores and may 

affect the reading of power values from the 

sensors. We can set the affinity to all these 

services and processes to use the other cores 

that affect our program running. You can't set 

the affinity for all the OS processes and 

services because some of these processes and 

services are protected by the OS and need 

some privilege to set their affinity. But at least 

you can eliminate most of them and move them 

to other cores. 

F. Program Threads 

In some cases, your program may contain 

many threads. Even if you set the affinity of 

your program to run in a specific core, your 

program threads may move to other cores 

during the run. You need to use the command 

Set Thread affinity before your run your exe 

file to avoid incorrect readings for your 

program even if you set the affinity of your exe 

file to run on a specific core. 

G. Data Load Effect 

If your program work with a large data 

set size the best practice for the programmers is 

to separate them in another file to keep your 

exe file small and easy to run. After your exe 

file loaded in the memory, it will read the data 

from the data file and load it to the memory. 

This operation consumes a lot of power from 

the CPU. Data movement from Disk to 

memory based on many studies is the most 

power consumption operation in the modern 

CPU environment 
[11]

.  In this case, if your data 

are separate, when your exe file starts running 

by the profiler it will read large power values 

and add some noise to your results. The best 

way to avoid this large power values during 

your experiments is to embed your data inside 

your exe file. Your exe file becomes larger but 

the OS will take the function of loading the 

data to the memory before the profiler starts 

reading the power values from the sensors. 

Your exe file will not be ready for running 

before the OS load all the data to the memory. 

H. Compiler Optimization Effect 

To make your program more efficient 

when running on some CPU types, the 

compiler may translate some of your code 

blocks to different statements. For example, if 

you want to measure the power consumption 

for For Loop Statement. The profiler, in some 

cases, changes your For Loop statement to 

sequential code. This operation called loop 

unrolling. In this case, during the run of your 

exe file, the profiler will read the power values 

of sequential statements instead of your 

original For Loop statement and give untrusted 

results. You need to disable the compiler 

optimization option before you compile your 

exe file to avoid this issue. 

I. Ambient Temperature 

Ambient temperature is the air 

temperature inside the lab used to perform the 

power consumption experiments. We need to 

maintain the appropriate ambient temperature 

for the lab during the run of the power profiling 

experiments. Keep the lab cold as much as 



16                                              Naif Aljabri and Osama Abulnaja  

 

possible to keep the CPU in normal 

temperature when performing the workload. If 

the air temperature is not cold enough to keep 

the CPU and other components at normal 

temperature, the experiments will take a very 

long time to finish 
[12]

. 

All the above confounding factors will 

give a very ideal environment for the power 

profiling experiments, give more realistic 

results and reduce the experiment time. We use 

the proposed profiler and these environment 

setting to obtain the results for some algorithms 

power consumption estimation for two 

published papers
 [13],[14]

. 

5. Results and Discussion 

We use the proposed profiler and the 

environment setting to measure the average 

power consumption for the generic mergesort 

algorithm and the optimized 3-way partitioning 

quicksort algorithms. The dataset size for the 

two algorithms is one million integer numbers. 

The dataset numbers were generated randomly 

using the rand() % RAND_MAX; function. The 

same dataset was used for both algorithms and 

embedded inside the exe file. We use the HPC 

machine FUJITSU CELSIUS M720 with 

Sandy Bridge architecture Intel Xeon CPU E5-

2640 Chip (2.50 GHz, 6 Physical Cores). The 

OS is Microsoft Windows 7 Professional x64-

based and the Physical Memory 8.00 GB. We 

use the algorithms code in 
[15]

. The code was 

written using C++ language and compiled 

using GCC 64-bit compiler. We disable the 

compiler optimization options and we set the 

affinity for the program and thread to core 

number 0 and set the affinity of the other OS 

processes and services to core 2-5 and we keep 

the neighbor core 1 idle to avoid the 

temperature effect to core 0. The ambient 

temperature in average was 20 °C. We pass the 

two exe files to the proposed profiler and 

obtained the power consumption results for 

each algorithm. The average converge was 

detected in less than 300 runs. Table 1 shows 

the obtained average power consumption or 

each algorithm.  

Table 1. Algorithms  average power consumption.   

Datase

t Size 

Average Power 

(Watt) 
Average Time (ms) 

Merges

ort 

Quicksor

t 

Mergeso

rt 

Quickso

rt 

1 M 11.92 13.26 12.41 10.93 

We notice from the table that mergesort 

consumes less power than the optimized 3-way 

partitioning quicksort algorithm. In terms of 

speed, quicksort was faster than mergesort. 

During the history of algorithms, most of the 

algorithms researchers and developers optimize 

the algorithms for speed. This optimization 

adds more complexity to the algorithms, which 

makes the algorithm finish faster but consume 

more power. One of the main obstacles facing 

the HPC community these days is power 

consumption. The experiments of power 

consumption for algorithms and code blocks 

are very important to identify the efficient 

algorithms and code blocks for HPC in terms 

of power consumption. 

6. Conclusions and Future Work 

In this paper, we proposed a power 

profiler for power consumptions experiments 

in modern multicore CPU environment. The 

profiler has many features that make the 

perpetration and collecting of results easier for 

the researches. We also identify the power 

consumption experiments confounding factors 

and how to eliminate these factors to give 

accurate and realistic power values from the 

CPU sensors. The optimization of algorithms 

and code blocks makes them faster and 

complex. This complexity will affect the 

algorithms and code blocks power 

consumption in many cases.  

The main objective of this study is to 

build a CPU power profiler tool which 

maintains the ideal environment to improve the 



Build Power Profiling Tool for Modern CPUs                                                                                  17 

 

accuracy of algorithms and code block power 

consumption estimation.  

We improve the environment by 

eliminating most of the confounding factors in 

power estimation experiments to give more 

accurate and realistic power values from the 

CPU sensor.  

In the future, we will continue improve 

the profiler tool and identifying more confound 

factors in other environments like Linux. Also, 

we will use the new generation of power 

efficient Intel CPUs architectures like Haswell, 

Broadwell and Skylake Chips or customizable 

chips like FPGA (Field Programmable Gate 

Array), to evaluate many algorithms and code 

blocks power consumption. 

Acknowledgment 

This work has been supported by the 

Deanship of Scientific Research (DSR), King 

Abdulaziz University (KAU) under grant No. 

1-611-1433/HiCi. 

References 

[1] Top500.org. (2018). November 2017 list of TOP500 
Supercomputer Sites. [online] Available at: 
https://www.top500.org/lists/2017/11/ [Accessed 22 Apr. 
2018]. 

[2] Software.intel.com. (2018). Documentation for Intel® 
VTune™ Amplifier XE | Intel® Software. [online] 
Available at: https://software.intel.com/en-us/intel-
vtune-amplifier-xe-support/documentation [Accessed 22 
Apr. 2018]. 

[3] Oprofile.sourceforge.net. (2018). OProfile manual. 
[online] Available at: http://oprofile.sourceforge.net/ 
doc/index.html [Accessed 22 Apr. 2018]. 

[4] SourceForge. (2018). QProf. [online] Available at: 

https://sourceforge.net/projects/qprof/ [Accessed 22 Apr. 
2018]. 

[5] Perfsuite.ncsa.illinois.edu. (2018). PerfSuite. [online] 
Available at: http://perfsuite.ncsa.illinois.edu/ [Accessed 
22 Apr. 2018]. 

[6] Sourceware.org. (2018). GNU gprof: Top. [online] 
Available at: http://sourceware.org/binutils/docs/ 
gprof/index.html [Accessed 22 Apr. 2018]. 

[7] Openhardwaremonitor.org. (2018). Open Hardware 
Monitor. [online] Available at: 
http://openhardwaremonitor.org [Accessed 22 Apr. 
2018]. 

[8] David, H., Gorbatov, E., Hanebutte, U., Khanna, R. 
and Le, C., "RAPL: Memory power estimation and 
capping." In: ACM/IEEE International Symposium on 
Low-Power Electronics and Design, pp:. 189{194, 2010. 

[9] Zecena, I., "Energy consumption analysis of parallel 
algorithms running on multicore systems and GPUs", 
MSc., Texas State University-San Marcos, p1, August 
2013. 

[10] Liu, G., Fan, M. and Quan, G., "Neighbor-aware 
dynamic thermal management for multi-core platform," 
In: Proceedings of the Conference on Design, 
Automation, and Test in Europe, pp. 187–192, 2012. 

[11] David, H. Gorbatov, E., Hanebutte, U., Khanna, R. 
and Le, C. "RAPL: Memory power estimation and 
capping." In: ACM/IEEE International Symposium on 
Low-Power Electronics and Design, pp: 189-194, 2010. 

[12] Aliaga, J. I., Barreda, M., Dolz, M. F., Martín, A. F., 
Mayo, R. and Quintana-Ortí, E. S., “Assessing the 
impact of the CPU power-saving modes on the task-
parallel solution of sparse linear systems,” Clust. 
Comput., 17(4) : 1335–1348, 2014. 

[13] Al-Hashimi, M., Saleh, M., Abulnaja, O. and Aljabri, 
N., "Evaluation of control loop statements power 
efficiency: An experimental study", Informatics and 
Systems (INFOS), 2014 9th International Conference on, 
Cairo, pp: 45-48 2014. 

[14] Al-Hashimi, M., Saleh, M., Abulnaja, O. and Aljabri, 
N., “On the power characteristics of mergesort: An 
empirical study,” In: Advanced Control Circuits Systems 
(ACCS) Systems & 2017 Intl Conf on New Paradigms in 
Electronics & Information Technology (PEIT), 2017 Intl 
Conf on. IEEE, pp: 172–178, 2017. 

[15] Sedgewick, R. and Wayne, K., Algorithms, 4th ed. 
Addison-Wesley Professional, 2011. 

 

 
 

 
 

 

 
 

 



18                                              Naif Aljabri and Osama Abulnaja  

 

 

 

 بناء أداة قياس استهلاك الطاقة لوحدات المعالجة المركزية الحديثة
 سامة ابو النجاأ ونايف الجابري 

 المممكة العربية السعودية ،جدة ،كمية الحاسبات وتقنية المعمومات، جامعة الممك عبدالعزيز
arushdi@kau.edu.sa 

هم التحديات الرئيسة لمجتمع أحد أيعتبر تقميل استهلاك الطاقة في التطبيقات . المستخمص
HPC قياس استهلاك الطاقة لمشيفرات البرمجية يعتبر مهم لمغاية لمباحثين لتحديد اختناقات .

الأداء واستهلاك الطاقة لمشيفرة البرمجية. حديثا، تم تجهيز معظم وحدات المعالجة المركزية 
بتقدير استهلاك الطاقة لمتطبيقات قيد  HPCبجهاز استشعار مدمج لمسماح لمباحثين ومهندسي 

يل. لتقدير استهلاك الطاقة لأي جزء من الشفرة البرمجية يعمل عمى وحدة المعالجة التشغ
المركزية، تحتاج إلى التخمص من عوامل التشويش قدر الإمكان وتشغيل الشفرة عدة مرات حتى 
يستقر متوسط القراءات. والسبب في ذلك هو البيئة التي بها نظام التشغيل والعمميات والخدمات 

وقد تسبب قراءات طاقة  ،بك ةي تعمل في نفس الوقت مع الشيفرة البرمجية الخاصالأخرى الت
غير صحيحة. في هذه الورقة، نقوم ببناء أداة قياس استهلاك الطاقة التي توفر وقت الباحث من 

ن ألى إخلال تشغيل وقياس استهلاك الطاقة لشيفرات برمجية عمى أنواع مختمفة من حجم العمل 
زالة عوامل التشويش عمى التجربةيستقر متوسط ال مما  ،قراءة. علاوة عمى ذلك، نقوم بتحديد وا 
 .ويعطي نتيجة واقعية لتجارب استهلاك الطاقة ،يوفر وقت الباحث
، وحدة المعالجة المركزية، متىسط التقارب، عىامل قياس الاستهلاكالطاقة،  :الكلمات المفتاحية

 .التشىيش

 

 

 

 

 

 

 

 

 

 

 

 

 

 


