JKAU: Comp. IT. Sci., Vol. 8 No. 1, pp: 11 - 18 (1440 AH./ 2019 A.D.)
Doi: 10.4197/Comp. 8-1.2

Build Power Profiling Tool for Modern CPUs

Naif Aljabri and Osama Abulnaja

Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi

Arabia

naljabry0001@stu.kau.edu.sa

Abstract. Reduce the application power consumption is one of the main challenges for the HPC
community. Code power profilers are very important for researchers to identify the performance
bottlenecks and power consumption for their code. Most of the modern CPUs are equipped with a
built-in sensor to allow researchers and HPC engineers to estimate the power consumption of the
running applications. To estimate the power consumption for any piece of code running on CPU,
you need to eliminate the confounding factors as possible and run the code many times until the
average converge. The reason for that is the environment, which has the OS and other processes
and services running at the same time with your code and may report incorrect power readings. In
this paper, we build a power profiler tool, which saves the researcher time by running and
profiling different pieces of code with different types of workloads, and keeps running until the
average converge. Furthermore, we identify and eliminate the environment confounding factor
which saves the researcher time and gives a realistic result for power consumption experiments.

Keywords: Power, Profiler, CPU, Average converge, Confounding factors.

1. Introduction

Power consumption is the main obstacle to
scale the current HPC petascale computing
power to reach the next exascale generation.
The most powerful supercomputer in the world
consumes about 15 megawatts of power ™. To
reach the next generation of exascale
computing power in reasonable power budget,
we need a lot of effort from architecture
designers and software programmers. Most of
the modern CPUs are equipped with power
sensors to allow the programmers to estimate
their code power consumption.

With code profilers, we can identify the
power efficient code building blocks and
algorithms and use it to build a power efficient

11

HPC applications. CPU environment is very
complicated for power estimation experiments.
The OS and other processes are running side-
by-side with your code which may affect the
accuracy of the results. One of the best
practices in power estimations experiments to
avoid the environment noise is to run your
code many times until the average converge.
It's very difficult to estimate how many times
you need to run your code to reach the average
converge. We need to run the code hundreds of
times and calculate the accumulated average
for each run. Furthermore we need to eliminate
as possible the environment confounding
factors. Without eliminating these factors, the
experiment process will take a lot of time from
the researcher to reach the estimated average.

12 Naif Aljabri and Osama Abulnaja

In this paper, we propose a power
profiler tool which automatically runs many
pieces of code until the average converge. The
proposed profiler can deal with any number of
code blocks or algorithms automatically. It is
select the code block or algorithm from the
queue, then start many sessions and read the
power sensors and calculate the accumulated
average for each session. The profiler capable
to run any number of sessions automatically
until the average converges for each code block
or algorithm. All the data saved in memory
during the run and after the session terminated
all the data saved in the database for reference.
The profiler will stop the experiments
automatically when reach the average converge
and starts the next code block or algorithm in
the queue. Furthermore, we identify and
propose several environment confounding
factors and how to eliminate these factors to
avoid nose in the experiment results.

This paper is organized as follows.
Section 1l briefly lists the related work. In
Section Ill, the proposed profiler is given,
followed by the environment confounding
factors in Section V. The results and
discussion are given in Section V. Finally, the
conclusion and futures works are given in
Section VI.

2. Related Work

There are many profilers used by
researchers to estimate the power consumption
in the CPU environment. Some of these
profiles are system-wide profilers (not for a
specific piece of code). Also, some of them can
be used to profile a piece of code but it doesn't
support the automated sessions, running until
the average converge or deal with many pieces
of code. Here we list some of these profiles.

Intel VTune Amplifier @ is a
commercial performance profiling tool. It's
developed by Intel and supports most of the
modern Intel processors. It supports the

analysis of function, instruction or source code.
It supports also the energy profiling for system-
wide.

Oprofile 1, it's a kernel based profiler
that profiles Linux applications. The samples
are taken at fixed interval time. Oprofile is
defaulted to configure because it requires a
copy of the source code for the exact Linux
kernel.

Qprof ¥ it's Linux based profiler that
collects the samples in real time for any exe
file. The user must configure a number of
environment variables for sampling. It can
support function or instruction level profiling.

Perfsuite ™, is a Linux based profiler
used to profile Linux applications using the
psrun command. Its use specific API to
perform sampling for the application. After the
end of executions all the profile data saved in
XML file.

Gprof [is a cross-platform profiler for
function level sampling. It can collect a wide
range of functions based metrics. Its use the
augmenting compiler component to insert the
monitoring functions into the targeted
application.

3. Proposed Profiler

We developed our own profiler to
perform power consumption experiments for
any code block or algorithm running on
modern multicore CPUs. The main features of
our profiler are:

e Deal with any a number of exe files,
just compile your code blocks or algorithms,
then pass all the exe file names and location to
the profiler.

e Select the number of experiments you
want to perform or each exe file.

e For each experiment, the profiler will
run each exe file many times and collect the
power sensors readings periodically and

Build Power Profiling Tool for Modern CPUs 13

calculate the accumulative average until
average converge for two decimal places, then
write the results to the database.

e Each round of run and each experiment
are identified by a unique number, to be easy
for the researcher to filter and classify the
results to perform statistical calculations on the
data.

eIn case of the CPU temperature
increased due to heavy utilization of CPU, the
profiler will hold the next run and wait for the
CPU temperature to return to the normal state
then resume the next run. This very important
feature because if the CPU temperature
increased, the power consumption readings
will increase and give unrealistic results. The
researcher can define the normal temperature
degree in the settings of the profiler before
starts the experiments. The normal temperature
is different from CPU to other based on the
ambient temperature or the CPU manufactural
specifications.

e Shows live results for each run and the
progress of the experiment during the profiling
process.

e Shows live sensors reading for CPU
type and model, CPU temperature, voltage,
power, load and clock cycles. Also, its
calculate the execution time to be used to
calculate the energy consumption for any exe
file. All these data also saved in the database.
The researcher may need this information
when running the experiments on more than
CPU type to know what is the data belongs to
each CPU type.

We developed our profiler using Visual
Studio C# 2010 under Windows 7 64-bit
environment. To run each exe file session we
use the BackgroundWorker tool. The
backgroundWorkerl DoWork() function used
to run the exe file. In the same time, we run the
Timer() function to read the CPU power sensor

periodically during the run. Once the run
finished, the BackgroundWorker tool invokes
the backgroundWorkerl RunWorkerCompleted()
function and stop the sensors reading and write
all the readings to the database. The average
power consumption for the exe file saved in the
averages array. The profiler keeps running the
same exe file many times until the power
average converges in the averages array.
Finally, the profiler writes all the averages
array to the database. Also, we give the user
the ability to give the experiment name and the
experiment number in the profile settings
before the start the experiments. All this
information saved in the database when the
profiler writes the samples and the power
averages in the database. We don't need to
create a new database for each experiment. The
user can differentiate between the experiments
names, numbers and CPU type from the
database.

We use the Open Hardware Monitor
library to read the CPU sensors periodically.
Open Hardware Monitor library is an open
source library that supports most hardware
monitoring chips found on today’s mainboards 1,
Figures 1&2 show how the proposed profiler
works.

4. Environment Confounding Factors

Profiling experiments in modern
multicore CPUs are very complicated. There
are many processes and services running at the
same time with your code during the profiling
process and affect your result by incorrect
values from the sensors. These confounding
factors must be eliminated as possible to give
realistic sensors values. In this section, we will
list the confounding factors in the modern
multicore CPUs and how to eliminate them as
possible. Eliminating these factors will give
more realistic and save days of the running of
your code to reach the average converge. At
the beginning of our experiments we spent

14 Naif Aljabri and Osama Abulnaja

weeks to reach the average converge for the
average power consumption, and then after
months of research about the CPU environment
we successfully eliminated most of these
factors and save weeks of time and most of our
experiments done in the same day.

Write the experment
name and number
N—————
Lexe Run Profiler
dexe ——
! Run 1% exe file ‘

Prepare exe files

SEETTTTE—
| Read CPU sensors with
sampling rate of 100 ms

Write the sample datato |
database and add the average
power consumption to the

\ average amay

Ye g | N
(Run next exe fle] i [Reach the a‘:{agc |2y
| comverge |

Run 1*exe file again

dexe |

Fig. 1. The flowchart of the proposed pofiler.
e B =] [=lax

CPU: Intel Xeon E5-2640 0

Experiment Setting

Temp —— 41°C

Bxperiment No. 1
Volage mm— No.of Runs 100
FOWE — nwW Code Pattem Epressions

] T Min. CPU Temp. 57

Cock —— 2494 MHz Stop

Copy.

Running fElse Pattem

Round: 100

Max=42 Exetmax=6342 Fmax=163 Exetm=257 Pwravg=5694 61
Dats Saved

Running fElse Pattem....

Round: 59

Fig. 2. The proposed profiler picture.
A. CPU Power Management

This is one of the new features in the
modern multicore CPU. Every CPU equipped
with a voltage regulator and if CPU utilization
increased power management tool will
decrease the CPU clock cycles and reduce the
power through the voltage regulator. In this
case, you will read incorrect power values for

your code. We need to disable this feature from
the BIOS before you run your code to avoid
incorrect power values [,

B. Hyper-Threading

The feature of hyperthreading allows
each physical core to work as two virtual core
to the OS. There are duplicated components
with each physical core to store the program
stat and switch to another program for a slice
of time. During the run of your program — if
the hyperthreading feature is enabled — the
CPU sensor will read the power values of your
program and any other program running on the
two virtual cores which may add noise to your
results. You need to disable this feature to deal
with one physical core and read the correct
power values for your program !,

C. Context Switching

The context switching is not a new feature
in the modern CPUs. It's also used in the old
CPUs. The idea of this feature is to allow to
programs to share the time with any physical
core. For example, if your program is running on
core 1 after some time it may switch to another
physical core and complete the running. We can
eliminate the context switching by using the Set
Affinity command. This command allows you to
choose one physical core to run your program
and prevent your program from switching to any
other physical core. Also with this command, we
can set the affinity of any program or process
running on the CPU to work on a set of cores for
example core 3-8 and keep core 1 for your
program without any interrupt from any other
program or process to use your program core.
This will give your results a perfect accuracy and
reduce the number of runs to reach the average
converge of the power averages .

D. Neighbor Core Effect

The effect of the neighbor physical core
is validated by many researchers "%. The
neighbor core temperature may affect the core

Build Power Profiling Tool for Modern CPUs 15

temperature and increase the temperature of the
core and increase the time of the experiment.
Our profiler is designed to repeat the run in
normal core temperature if the core
temperature exceeded the normal temperature,
the profiler will hold the next run and resume
after the core gets cold and reach the normal
temperature. Our experiments if we use core 1
for our program we keep core 2 always idle by
using the Set Affinity command. For example,
if we have CPU with 8 physical cores, we set
the affinity of our program to core 1 and set the
affinity for other programs and processes to
core 3-8 and keep core 2 idle.

E. OS Processes and Services

In the CPU environment, there are
hundreds of processes and services running to
operate the OS functions. All these processes
and services use all the CPU cores and may
affect the reading of power values from the
sensors. We can set the affinity to all these
services and processes to use the other cores
that affect our program running. You can't set
the affinity for all the OS processes and
services because some of these processes and
services are protected by the OS and need
some privilege to set their affinity. But at least
you can eliminate most of them and move them
to other cores.

F. Program Threads

In some cases, your program may contain
many threads. Even if you set the affinity of
your program to run in a specific core, your
program threads may move to other cores
during the run. You need to use the command
Set Thread affinity before your run your exe
file to avoid incorrect readings for your
program even if you set the affinity of your exe
file to run on a specific core.

G. Data Load Effect

If your program work with a large data
set size the best practice for the programmers is

to separate them in another file to keep your
exe file small and easy to run. After your exe
file loaded in the memory, it will read the data
from the data file and load it to the memory.
This operation consumes a lot of power from
the CPU. Data movement from Disk to
memory based on many studies is the most
power consumption operation in the modern
CPU environment ™. In this case, if your data
are separate, when your exe file starts running
by the profiler it will read large power values
and add some noise to your results. The best
way to avoid this large power values during
your experiments is to embed your data inside
your exe file. Your exe file becomes larger but
the OS will take the function of loading the
data to the memory before the profiler starts
reading the power values from the sensors.
Your exe file will not be ready for running
before the OS load all the data to the memory.

H. Compiler Optimization Effect

To make your program more efficient
when running on some CPU types, the
compiler may translate some of your code
blocks to different statements. For example, if
you want to measure the power consumption
for For Loop Statement. The profiler, in some
cases, changes your For Loop statement to
sequential code. This operation called loop
unrolling. In this case, during the run of your
exe file, the profiler will read the power values
of sequential statements instead of your
original For Loop statement and give untrusted
results. You need to disable the compiler
optimization option before you compile your
exe file to avoid this issue.

I. Ambient Temperature

Ambient temperature is the air
temperature inside the lab used to perform the
power consumption experiments. We need to
maintain the appropriate ambient temperature
for the lab during the run of the power profiling
experiments. Keep the lab cold as much as

16 Naif Aljabri and Osama Abulnaja

possible to keep the CPU in normal
temperature when performing the workload. If
the air temperature is not cold enough to keep
the CPU and other components at normal
temperature, the experiments will take a very
long time to finish 2.

All the above confounding factors will
give a very ideal environment for the power
profiling experiments, give more realistic
results and reduce the experiment time. We use
the proposed profiler and these environment
setting to obtain the results for some algorithms
power consumption estimation for two
published papers 2304,

5. Results and Discussion

We use the proposed profiler and the
environment setting to measure the average
power consumption for the generic mergesort
algorithm and the optimized 3-way partitioning
quicksort algorithms. The dataset size for the
two algorithms is one million integer numbers.
The dataset numbers were generated randomly
using the rand() % RAND_MAX; function. The
same dataset was used for both algorithms and
embedded inside the exe file. We use the HPC
machine FUJITSU CELSIUS M720 with
Sandy Bridge architecture Intel Xeon CPU E5-
2640 Chip (2.50 GHz, 6 Physical Cores). The
OS is Microsoft Windows 7 Professional x64-
based and the Physical Memory 8.00 GB. We
use the algorithms code in ™. The code was
written using C++ language and compiled
using GCC 64-bit compiler. We disable the
compiler optimization options and we set the
affinity for the program and thread to core
number O and set the affinity of the other OS
processes and services to core 2-5 and we keep
the neighbor core 1 idle to avoid the
temperature effect to core 0. The ambient
temperature in average was 20 °C. We pass the
two exe files to the proposed profiler and
obtained the power consumption results for
each algorithm. The average converge was

detected in less than 300 runs. Table 1 shows
the obtained average power consumption or
each algorithm.

Table 1. Algorithms average power consumption.

Average Power
Datase (Watt)
t Size Merges | Quicksor | Mergeso | Quickso
ort t rt rt

1M 11.92 13.26 12.41 10.93

Average Time (ms)

We notice from the table that mergesort
consumes less power than the optimized 3-way
partitioning quicksort algorithm. In terms of
speed, quicksort was faster than mergesort.
During the history of algorithms, most of the
algorithms researchers and developers optimize
the algorithms for speed. This optimization
adds more complexity to the algorithms, which
makes the algorithm finish faster but consume
more power. One of the main obstacles facing
the HPC community these days is power
consumption. The experiments of power
consumption for algorithms and code blocks
are very important to identify the efficient
algorithms and code blocks for HPC in terms
of power consumption.

6. Conclusions and Future Work

In this paper, we proposed a power
profiler for power consumptions experiments
in modern multicore CPU environment. The
profiler has many features that make the
perpetration and collecting of results easier for
the researches. We also identify the power
consumption experiments confounding factors
and how to eliminate these factors to give
accurate and realistic power values from the
CPU sensors. The optimization of algorithms
and code blocks makes them faster and
complex. This complexity will affect the
algorithms and code blocks power
consumption in many cases.

The main objective of this study is to
build a CPU power profiler tool which
maintains the ideal environment to improve the

Build Power Profiling Tool for Modern CPUs 17

accuracy of algorithms and code block power
consumption estimation.

We improve the environment by
eliminating most of the confounding factors in
power estimation experiments to give more
accurate and realistic power values from the
CPU sensor.

In the future, we will continue improve
the profiler tool and identifying more confound
factors in other environments like Linux. Also,
we will use the new generation of power
efficient Intel CPUs architectures like Haswell,
Broadwell and Skylake Chips or customizable
chips like FPGA (Field Programmable Gate
Array), to evaluate many algorithms and code
blocks power consumption.

Acknowledgment

This work has been supported by the
Deanship of Scientific Research (DSR), King
Abdulaziz University (KAU) under grant No.
1-611-1433/HiCi.

References

[1] Top500.0rg. (2018). November 2017 list of TOP500
Supercomputer Sites. [online] Available at:
https://www.top500.org/lists/2017/11/ [Accessed 22 Apr.
2018].

2] Software.intel.com. (2018). Documentation for Intel®
VTune™ Amplifier XE | Intel® Software. [online]
Available at: https://software.intel.com/en-us/intel-
vtune-amplifier-xe-support/documentation [Accessed 22
Apr. 2018].

[3] Oprofile.sourceforge.net. (2018). OProfile manual.
[online] Available at: http://oprofile.sourceforge.net/
doc/index.html [Accessed 22 Apr. 2018].

[4] SourceForge. (2018). QProf. [online] Available at:

(5]

(6]

[7]

(8]

(9]

[10]

(11]

(12]

[13]

[14]

[15]

https://sourceforge.net/projects/qprof/ [Accessed 22 Apr.
2018].

Perfsuite.ncsa.illinois.edu. (2018). PerfSuite. [online]
Available at: http://perfsuite.ncsa.illinois.edu/ [Accessed
22 Apr. 2018].

Sourceware.org. (2018). GNU gprof: Top. [online]
Auvailable at: http://sourceware.org/binutils/docs/
gprof/index.html [Accessed 22 Apr. 2018].

Openhardwaremonitor.org. (2018). Open Hardware
Monitor. [online] Available at:
http://openhardwaremonitor.org [Accessed 22 Apr.
2018].

David, H., Gorbatov, E., Hanebutte, U., Khanna, R.
and Le, C., "RAPL: Memory power estimation and
capping.” In: ACM/IEEE International Symposium on
Low-Power Electronics and Design, pp:. 189{194, 2010.

Zecena, l., "Energy consumption analysis of parallel
algorithms running on multicore systems and GPUs",
MSc., Texas State University-San Marcos, pl, August
2013.

Liu, G., Fan, M. and Quan, G., "Neighbor-aware
dynamic thermal management for multi-core platform,"”
In: Proceedings of the Conference on Design,
Automation, and Test in Europe, pp. 187-192, 2012.

David, H. Gorbatov, E., Hanebutte, U., Khanna, R.
and Le, C. "RAPL: Memory power estimation and
capping.” In: ACM/IEEE International Symposium on
Low-Power Electronics and Design, pp: 189-194, 2010.

Aliaga, J. 1., Barreda, M., Dolz, M. F., Martin, A. F,,
Mayo, R. and Quintana-Orti, E. S., “Assessing the
impact of the CPU power-saving modes on the task-
parallel solution of sparse linear systems,” Clust.
Comput., 17(4) : 1335-1348, 2014.

Al-Hashimi, M., Saleh, M., Abulnaja, O. and Aljabri,
N., "Evaluation of control loop statements power
efficiency: An experimental study”, Informatics and
Systems (INFOS), 2014 9th International Conference on,
Cairo, pp: 45-48 2014.

Al-Hashimi, M., Saleh, M., Abulnaja, O. and Aljabri,
N., “On the power characteristics of mergesort: An
empirical study,” In: Advanced Control Circuits Systems
(ACCS) Systems & 2017 Intl Conf on New Paradigms in
Electronics & Information Technology (PEIT), 2017 Intl
Conf on. IEEE, pp: 172-178, 2017.

Sedgewick, R. and Wayne, K., Algorithms, 4th ed.
Addison-Wesley Professional, 2011.

18

Naif Aljabri and Osama Abulnaja

Aaall 43S el dalleal) cilas) d8UAN DUl uld 3100 ¢ Ly

il o) Aabud 5 gplad) AL

Logend] Ly pell iSLaall csaa ¢ jujellue Sllol) dnals «Cologleal) 4uidiy Colusladl £u0S

arushdi@kau.edu.sa

ainal Lyl lbaatll aal aal ikl 8 Gl Dlgiu) Qs ey el
Clilial st pfalll LD age ey dmayd) il 48Ul @Dlgind (sl .HPC
ApSall dallaall Cilasy aliae Gagad W clia Al syl 28D oDlgiuly oI5
28 Glapkall 28Ul $Dlgin) pafh HPC owdigay finlll 7 Lewll ede jladinl e
Aallaall Basy o Jamy Gomand) 3880 (e eia (Y Adlal)l oDl | Jal)
@ Ge 33e B Jiadiy GISLY)) (el Jalse (e paliill) bk (A58l
Gleadlly cillaally Jsriill s Ly Al A8l) sa Gl 8l Colehall Jangia iy
s el o M5 el Lalall Loyl 5yl po gl a3 Jexd S gAY
Oo Conld) g i) A8 oDl (uld 3lal sl g8 A5l o2 8 amaa e
O A danll pas (e Ailida)il e Linay it 28U DU (ulds Janii Pl
Lee il o (lyelil) dalse Albls aaaty agis celld o 30le 3ol Jangia iy

Al Dlginl lad) dpadly daii ey (Calldl cdy 5

Jal s eyl dan sia 40 S yall Aallaal) 0a g cIDEWY) (bl (A8l - L lide)) ClalS/
e

