Exposition and Comparison of Two Kinds of a Posteriori Analysis of Fault Trees

Ali Muhammad Ali Rushdi*, Muhammad Ahmad Al-Qwasmi
Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
*arushdi@kau.edu.sa

Abstract

Fault trees are top-down formal deductive analytic tools with diverse applications in many fields such as reliability, safety and security. Forward fault tree analysis (FTA) can be termed a priori analysis since it predicts the top-event probability in terms of basic-event probabilities. This paper offers a tutorial exposition and a detailed comparison of two kinds of backward or a posteriori FTA that are implemented in the probability domain and in the Boolean domain, respectively. For the probability-domain a posteriori FTA, it is assumed that the top event probability is known. For example, when the top event is presumed to have occurred, then it has a probability of one. The analysis proceeds recursively in the probability domain to assess the probabilities of lower events under certain realistic assumptions such as mutual exclusiveness or statistical independence of the input events for a specific gate, and with the utilization of educated guesses on certain ratios of probabilities of such events. This paper offers a detailed mathematical procedure for implementing this a posteriori FTA that makes the most of the concept of duality. The procedure is demonstrated via a detailed illustrative example. The paper also considers the a posteriori FTA in the Boolean domain. Such an analysis is available in the literature in terms of the very powerful tool of Bayesian Networks (BNs). We demonstrate here that in many cases this analysis is still possible via elementary faulttree manipulations that use the concept of a Boolean quotient to effectively implement Bayes’ Theorem in the Boolean domain. Again, a demonstrative example is given to illustrate the Boolean a posteriori FTA, explain its details, and show that the power of BNs is not really warranted in simple cases. A detailed comparison between the two kinds of a posteriori FTA is also given to identify their similarities and differences.

Keywords: Fault tree; a priori analysis; a posteriori analysis; probability domain; Boolean domain.

1. Introduction

Fault trees are top-down formal deductive analytic tools that have applications in many fields such as reliability, safety, and security, albeit sometimes they are used under a variety of unwarranted disguised names such as success trees, elicitation trees, attack trees, defense trees, etc. Conventional fault tree analysis (FTA) might be termed a forward, a priori, or predictive analysis since it obtains the top-event probability in terms of basic-event probabilities,
or more generally it decides the probability of any higher-level event in the tree in terms of the probabilities of its lower-level events ${ }^{[1-20]}$. The reverse type of FTA might be termed a backward, a posteriori, or diagnostic analysis. There are (at least) two kinds of this analysis, which are to be reviewed, analyzed, demonstrated, compared and interrelated in this paper.
The first kind of a posteriori FTA is due to Shooman ${ }^{[21,22]}$. In this kind of analysis, it is assumed that the top event has a known
probability, e.g., the top event could be considered to have actually occurred and hence possess a probability of one. The analysis proceeds recursively in the probability domain to assess the probabilities of lower events under certain realistic assumptions such as mutual exclusiveness or statistical independence of the input events for a specific gate, and utilization of educated guesses on certain ratios of probabilities of such events. By contrast, the second kind of a posteriori analysis, as reported by Bobbio, et al., ${ }^{[23]}$ and Langseth and Portinale ${ }^{[24]}$ is in essence a classical Bayesian analysis involving an equivalent of the Total Probability Theorem, and Bayes' Theorem ${ }^{[25]}$. A detailed comparison between the two kinds of a posteriori analysis is given in Table 1. Various aspects of the comparison in Table 1 will become clarified further as we proceed throughout this paper.

While Shooman ${ }^{[22]}$ restricted the a posteriori FTA to that of OR gates with Mutually Exclusive (ME) inputs, we extend the analysis to include both AND gates with Statistically Independent (SI) inputs and OR gates with either ME or SI inputs. We derive general solutions for all types of gates and conditions with arbitrary numbers of inputs. We also outline the solution of the general case based on the use of the InclusionExclusion Principle with simplifying assumptions other than the ME or SI assumptions.
The second kind of a posteriori analysis is typically conducted by mapping fault trees into the more powerful tool of Bayesian networks (BNs), which are known also (occasionally with minor differences) as belief nets, causal networks, probabilistic- dependence graphs, or influence diagrams. Bayesian networks have
better capabilities than standard fault trees, such as their capabilities to handle uncertainty, statistical dependence or multi-state behavior ${ }^{[23,}$ ${ }^{24,26-39]}$. However, the use of BNs in a posteriori FTA might not be warranted in many important problems that can still be handled via (the somewhat modest) capabilities of fault trees.
The organization of the remainder of this paper is as follows. Section 2 lists our notation, abbreviations and certain useful nomenclature. Section 3 presents the a posteriori analysis of fault trees in the probability domain. The main thesis of this section is that such an analysis necessitates only the a posteriori analysis of single gates. Therefore, section 3 discusses the general a posteriori analysis of single AND or OR gates, and then derives (under a variety of appropriate assumptions) a posteriori solution for an AND gate with SI inputs, an OR gate with ME inputs, and an OR gate with SI inputs. The results obtained are applied to a detailed fault-tree example. Section 4 treats the a posteriori analysis of fault trees in the Boolean domain. We demonstrate here that in many cases this analysis is possible via elementary fault-tree manipulations that use the concept of a Boolean quotient (known also as a Boolean ratio, subfunction or restriction) $)^{[40-52]}$ to implement Bayes’ Theorem effectively in the Boolean domain. Again, a demonstrative example is given to illustrate the Boolean a posteriori FTA and explain its details, and show that the power of BNs is not really warranted in simple cases. A detailed comparison between the two kinds of a posteriori FTA is also given with the hope of setting the stage on how they can be further interrelated and even combined. Section 5 concludes the paper and points out new directions for further research.

Table 1. Comparison of the two kinds of a posteriori analysis of fault trees.

	First kind	Second kind
Basic assumption	Expert guessing of certain ratios among probabilities of inputs of various gates.	Knowledge of basic-event a priori probabilities
Nature of relation considered	Local gate relations between the probabilities of the output and input of single gates	An overall tree relation between the top- event probability and basic-event probabilities
Forward analysis incorporated ?	No	Yes

2. Notation, Abbreviations and Nomenclature

A. Notation

$P(A)$	=	Probability of the event A.
r_{i}	=	Ratio of $P\left(A_{i}\right)$ to $P\left(A_{n}\right)$ for $i=1,2, \ldots, n, r_{n}=1$.
$E\{\ldots\}$	$=$	Expectation or expected value of a random variable $\{\ldots\}$.
e_{i}	=	A probabilistic event; input i of an AND or an OR gate.
a_{n}	=	A probabilistic event; output of an AND gate of n inputs.
o_{n}	=	A probabilistic event; output of an OR gate of n inputs.
R_{n-1}		Ratio of $P\left(\bigcup_{i=1}^{n-1} A_{i}\right)$ to $P\left(A_{n}\right)$.
e_{X}	$=$	A fault-tree event labelled by indicator variable X.
t_{i}	=	Ratio of $P\left(\bar{A}_{i}\right)$ to $P\left(\bar{A}_{n}\right)$ for $i=1,2, \ldots, n, t_{n}=1$.
T	=	Particular name for the indicator variable of the top event e_{T} of the fault tree.
X	=	Generic name for the indicator variable of a certain FT event e_{X}. This is a random Boolean (switching) variable such that: $X=1(\bar{X}=0)$ if the event e_{X} occurs, and $X=0(\bar{X}=1)$ if the event e_{X} does not occur.
$x=E\{X\}$	$=$	Expectation of the indicator variable X given by $x=E\{X\}=(1) P(X)+(0) P(\bar{X})=P(X)$ i.e., it is equal to the probability of occurrence of event e_{X}.

B. Abbreviations

FTA Fault-Tree Analysis,
ME Mutually Exclusive(ness),
SI Statistically Independent/Statistical Independence,
BN Bayesian Network.

C. Nomenclature

Forward (a priori or a predictive) fault tree analysis:
A fault-tree analysis in which the basic-event probabilities are known. The analysis chains forward to obtain higher-level event probabilities and terminates with a prediction of the top-event probability. This is the conventional fault-tree analysis, and it is what is meant when simply fault-tree analysis is mentioned.

Backward (a posteriori or diagnostic) fault tree analysis:

A fault-tree analysis in which the top-event probability is known. This analysis is mainly used when the top event is assumed to have occurred and hence has a probability of one.

A posteriori FTA of the first kind:

A fault-tree analysis that chains backward to obtain lower-level event probabilities (under certain realistic assumptions), and terminates with a knowledge of all basic-event probabilities. The analysis relies on the solution of algebraic equations expressing probabilities of the inputs of a certain gate in terms of the probability of its output. Such a solution proceeds recursively from the top gate (whose output has a known probability, typically one) to lower-level gates terminating at the leaf gates. Typically, the analysis relies on the expert guessing of certain ratios among probabilities of various gates.

A posteriori FTA of the second kind:

A fault-tree analysis that starts with a priori knowledge of basic-event probabilities, utilizes this knowledge in forward analysis to compute the top-event probability, and then (under the assumption that the top event has occurred) uses Bayes’ theorem to deduce the a posteriori basicevent probabilities.

Bayesian Network (BN):

A directed acyclic graph in which discrete random variables are assigned to each node, together with the conditional dependence on the parent nodes. Root nodes are nodes with no parents, and marginal prior probabilities are assigned to them. The main feature of a BN is that it is possible to include local conditional dependencies into the model, by directly specifying the causes that influence a given effect. Bayesian Networks ${ }^{[23,}{ }^{24]}$ are usually defined on discrete random variables, though some extensions have been proposed for extending the formalism to some form of continuous random variables. BN are more suitable to represent complex dependencies among components and to include uncertainty and multi-state behavior in modeling ${ }^{[23,24]}$.
Mapping BNs into FTs:
It is quite straightforward to map a given FT into an equivalent BN with binary nodes, where the FT's gates (with input and output events) are mapped into small BN fragments, whose combination produces the whole BN corresponding to the given FT. In other words,
the modular construction of an FT can be mapped into a modular construction of an equivalent BN . The modeling flexibility of the BN formalism can accommodate various kinds of statistical dependencies Uncertainties, and multi-state behavior that are difficult to include in the FT formalism ${ }^{[23,24]}$.
Reliability-Ready Expression (RRE): An expression in the switching (Boolean) domain, in which logically multiplied (ANDed) entities are statistically independent and logically added (ORed) entities are disjoint. Such an expression can be directly transformed, on a one-to-one basis, to the algebraic or probability domain by replacing switching (Boolean) indicators by their statistical expectations, and also replacing logical multiplication and addition (ANDing and ORing) by their arithmetic counterparts Rules for the conversion of a general switching (Boolean) expression into a PRE are provided in ${ }^{[8,9,52-56]}$.

Duality:

The dual of a switching function is obtained by complementing the function and all its
switching arguments (inverting both output and inputs) ${ }^{[56-58]}$.

3. The a Posteriori Analysis in the Probability domain

Since the a posteriori analysis of a fault tree can be accomplished in terms of that of single gates, this section is devoted to the a posteriori analysis of single AND or OR gates, first generally, and then subject to the Mutual Exclusiveness (ME) or Statistical Independence (SI) assumptions. The analysis technique is then demonstrated via a detailed numerical example.

3.1. General Analysis of AND and OR gates

The aim of this subsection is to discuss the general analysis of AND and OR gates, stress the utility of the concept of duality in such analysis, and point out the considerable reduction in complexity when the inputs are either Mutually Exclusive (ME) or Statistically Independent (SI).
The output a_{n} of an AND gate of n inputs $e_{1}, e_{2}, \ldots, e_{n}$ has a probability given in terms of conditional probabilities as ${ }^{[25]}$

$$
\begin{equation*}
P\left(a_{n}\right)=P\left(\bigcap_{i=1}^{n} e_{i}\right)=P\left(e_{1}\right) P\left(e_{2} \mid e_{1}\right) P\left(e_{3} \mid e_{1} e_{2}\right) \ldots P\left(e_{n} \mid e_{1} e_{2} \ldots e_{n-1}\right), \tag{1}
\end{equation*}
$$

while the output o_{n} of an OR gate of n inputs $e_{1}, e_{2}, \ldots, e_{n}$ has a probability given by the InclusionExclusion Principle ${ }^{[25,59,60]}$:
$P\left(o_{n}\right)=P\left(\bigcup_{i=1}^{n} e_{i}\right)=\sum_{i=1}^{n} P\left(e_{i}\right)-\sum \sum_{1 \leq i<j \leq n} P\left(e_{i} \cap e_{j}\right)+\sum \sum \sum_{1 \leq i<j<k \leq n} P\left(e_{i} \cap e_{j} \cap e_{k}\right)-\cdots+(-1)^{n-1} P\left(\bigcap_{i=1}^{n} e_{i}\right)$.

Note that (2) expresses the output of an OR gate in terms of the outputs of many binary or multiinput AND gates, which need to be expressed via (1) or extensions thereof. The AND and OR
gates are dual gates. Complementation of both inputs and output of one gate produces the other gate. This is the essence of the two De Morgan's laws, visually represented by Fig. 1, and mathematically given by

$$
\begin{equation*}
\left\{o_{n}=\bigcup_{i=1}^{n} e_{i}\right\} \Leftrightarrow\left\{\bar{o}_{\mathrm{n}}=\bigcap_{\mathrm{i}=1}^{\mathrm{n}} \overline{\mathrm{e}}_{\mathrm{i}}\right\}, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\left\{a_{n}=\bigcap_{i=1}^{n} e_{i}\right\} \Leftrightarrow\left\{\bar{a}_{n}=\bigcup_{i=1}^{n} \bar{e}_{i}\right\} . \tag{4}
\end{equation*}
$$

According to (3) and (4), the analysis of an AND (OR) gate can be converted to the dual analysis of an OR (AND) gate. Therefore, the analyst has a choice to analyze any given gate directly as is or indirectly in terms of its dual gate.

Fig. 1. Visual Interpretation of De Morgan's Laws.
The analysis of an AND gate via (1) requires the use of conditional probabilities, while the analysis of an OR gate via (2) involves an exponential number $\left(2^{n}-1\right)$ of terms, many of which necessitate the use of conditional is a considerable reduction in the complexity of the analysis when the events e_{i} are either Mutually-Exclusive (ME) or Statistically Independent (SI).
probabilities in expressions similar to (1). There
If the events e_{i} are ME, i.e., if

$$
\begin{equation*}
e_{i} \cap e_{j}=\emptyset \forall \mathrm{i} \text { and } \mathrm{j}, \tag{5}
\end{equation*}
$$

then (1) and (2) reduce respectively to

$$
\begin{align*}
& P\left(a_{n}\right)=0, \operatorname{ME} e_{i}, \tag{6}\\
& P\left(o_{n}\right)=P\left(\bigcup_{i=1}^{n} e_{i}\right)=\sum_{i=1}^{n} P\left(e_{i}\right), M E e_{i} . \tag{7}
\end{align*}
$$

If, instead the events e_{i} are SI, i.e., if

$$
\begin{equation*}
P\left(e_{i} \mid e_{j}\right)=P\left(e_{i}\right), \quad \forall i \text { and } \mathrm{j}, \tag{8}
\end{equation*}
$$

or equivalently, if

$$
\begin{equation*}
P\left(e_{i} \cap e_{j}\right)=P\left(e_{i}\right) P\left(e_{j}\right) \tag{9}
\end{equation*}
$$

then (1) and (2) reduce respectively to

$$
\begin{gather*}
\mathrm{P}\left(\mathrm{a}_{\mathrm{n}}\right)=\prod_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{P}\left(\mathrm{e}_{\mathrm{i}}\right), \text { SI } e_{i} . \tag{10}\\
P\left(o_{n}\right)=\sum_{i=1}^{n} P\left(e_{i}\right)-\sum \sum_{1 \leq i<j \leq n} P\left(e_{i}\right) P\left(e_{j}\right)+\sum \sum_{1 \leq i<j<k \leq n} P\left(e_{i}\right) P\left(e_{j}\right) P\left(e_{k}\right)-\cdots \\
+(-1)^{n-1} \prod_{i=1}^{n} P\left(e_{i}\right)=1-\prod_{i=1}^{n} \llbracket\left(1-\rrbracket P\left(e_{i}\right)\right), \text { SI } e_{i} . \tag{11}
\end{gather*}
$$

Note that (11) can also be obtained from (3) and (10) in the equivalent complementary form

$$
\begin{equation*}
P\left(\bar{o}_{n}\right)=\prod_{i=1}^{n} P\left(\bar{e}_{i}\right), S I e_{i} . \tag{12}
\end{equation*}
$$

3.2. Analysis of an AND gate with SI inputs

We assume that the probability of the output a_{n} of the AND gate is known, say S_{n}. This probability is exactly 1 if the event a_{n} is known to have occurred. Otherwise, it would be

$$
\begin{equation*}
\prod_{i=1}^{n} P\left(e_{i}\right)=S_{n}, \quad \text { SI } e_{i} . \tag{13}
\end{equation*}
$$

Following Shooman ${ }^{[9]}$, we assume that we can express each of the probabilities in (13) as a ratio r_{i} of the last probability among them $P\left(e_{n}\right)$, namely

$$
\begin{equation*}
P\left(e_{i}\right)=r_{i} P\left(e_{n}\right), 1 \leq i \leq n, \tag{14}
\end{equation*}
$$

where $r_{n}=1$. Substituting (14) in (13), we solve (13) for each of the probabilities $P\left(e_{i}\right)$ as

$$
\begin{equation*}
P\left(e_{i}\right)=r_{i}\left[\left(\prod_{j=1}^{n} r_{j}\right)^{-1} S_{n}\right]^{1 / n}, 1 \leq i \leq n, \quad \text { SI } e_{i} . \tag{15}
\end{equation*}
$$

3.3. Analysis of an OR gate with ME Inputs

The case studied in this subsection is the only case studied by Shooman ${ }^{[22]}$. Here, equation (7)
is applicable, and the probability of the output T_{n} of the OR gate is known, say S_{n}. Hence, equation (7) can be rewritten as:

$$
\begin{equation*}
\sum_{i=1}^{n} P\left(e_{i}\right)=S_{n}, M E \mathrm{e}_{\mathrm{i}} . \tag{16}
\end{equation*}
$$

Now, making the assumption (14) and substituting (14) in (16), we can solve (16) for each of the probabilities $P\left(e_{i}\right)$ as:

$$
\begin{equation*}
P\left(e_{i}\right)=S_{n} r_{i}\left[\sum_{j=1}^{n} r_{j}\right]^{-1} .1 \leq i \leq n, \quad M E e_{i} . \tag{17}
\end{equation*}
$$

Note that (17) for the ME inputs of OR has some resemblance with (15) for the SI inputs of AND.

3.4. Analysis of an OR gate with SI inputs

The OR gate with SI inputs is analyzed in a direct fashion in subsection 3.4.1 and is analyzed via its dual representation in subsection 3.4.2.

3.4.1. Direct Analysis

The output of an OR gate with n inputs can be written as:

$$
\begin{equation*}
o_{n}=\bigcup_{i=1}^{n} e_{i}=o_{n-1} \cup e_{n} \tag{18}
\end{equation*}
$$

Equation (22) has two solutions:
where

$$
\begin{equation*}
o_{n-1}=\bigcup_{i=1}^{n-1} e_{i} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
P\left(e_{n}\right)=\frac{1}{2 R_{n-1}}\left[\left(1+R_{n-1}\right) \mp \sqrt{D}\right], \tag{23}
\end{equation*}
$$

Since the event e_{n} is statistically independent of each of the events $e_{i}(1 \leq i \leq n-1)$, then it is also independent of their union o_{n-1}. The expression (18) allows the Inclusion-Exclusion Principle (2) to be rewritten as:

$$
\begin{equation*}
S_{n}=P\left(o_{n}\right)=P\left(o_{n-1}\right)+P\left(e_{n}\right)-P\left(o_{n-1}\right) P\left(e_{n}\right) . \tag{20}
\end{equation*}
$$

Now, we assume that we can express $P\left(o_{n-1}\right)$ as a ratio R_{n-1} of $P\left(e_{n}\right)$, i.e.

$$
\begin{equation*}
P\left(o_{n-1}\right)=R_{n-1} P\left(e_{n}\right), \tag{21}
\end{equation*}
$$

and hence obtain the following quadratic equation in $P\left(e_{n}\right)$

$$
\begin{align*}
R_{n-1}\left[P\left(e_{n}\right)\right]^{2}-\left(1+R_{n-1}\right) P\left(e_{n}\right)+S_{n}=0 & (22) \\
& P\left(e_{n}\right)=\frac{1}{2 R_{n-1}}\left[\left(1+R_{n-1}\right)+\sqrt{D}\right] \tag{26a}
\end{align*}
$$

probability and hence must be less than or equal to 1. Equation (24) indicates that the discriminant D is non-negative, and hence
both roots in (22) are real. Equation (24) also discriminant D is non-negative, and hence
both roots in (22) are real. Equation (24) also indicates that

$$
\begin{equation*}
\sqrt{D} \leq\left(1+R_{n-1}\right) \tag{25}
\end{equation*}
$$

and hence both roots in (23) are positive.
and hence both roots in (23) are positive.
However, we now reject the positive sign in (23) since it corresponds to the solution

$$
\begin{align*}
D=\left(1+R_{n-1}\right)^{2} & -4 R_{n-1} S_{n} \\
& =1+R^{2} n-1+2 R_{n-1}-4 R_{n-1} S_{n} \\
& \geq\left(2 R_{n-1}\right)+2 R_{n-1}-4 R_{n-1} S_{n} \\
& =4 R_{n-1}\left(1-S_{n}\right) \geq 0 . \tag{24}
\end{align*}
$$

In (24), we made use of the fact that S_{n} is a

$$
\begin{equation*}
P\left(o_{n-1}\right)=\frac{1}{2}\left[\left(1+R_{n-1}\right)+\sqrt{D}\right], \tag{26b}
\end{equation*}
$$

which corresponds to a probability $P\left(e_{n}\right)>1$ if $R_{n-1}<1$, and to a probability $P\left(o_{n-1}\right)>1$ if $R_{n-1}>1$. The only possibility of accepting the positive sign in (23) is the trivial case $R_{n-1}=1$, $S_{n}=1$ for which D is 0 and the two roots in (22) are equal. Hence, our final solution of (22) is

$$
\begin{align*}
P\left(e_{n}\right) & =\frac{1}{2 R_{n-1}}\left[\left(1+R_{n-1}\right)-\left(\left(1+R_{n-1}\right)^{2}-4 R_{n-1} S_{n}\right)^{\frac{1}{2}}\right], \tag{27a}\\
P\left(o_{n-1}\right) & =\frac{1}{2}\left[\left(1+R_{n-1}\right)-\left(\left(1+R_{n-1}\right)^{2}-4 R_{n-1} S_{n}\right)^{\frac{1}{2}}\right] . \tag{27b}
\end{align*}
$$

3.4.2. Dual Analysis

Now we use S_{n-1} to denote $P\left(o_{n-1}\right)$ and continue our work recursively to obtain the probabilities $\quad P\left(e_{n-1}\right), P\left(e_{n-2}\right), \ldots, P\left(e_{1}\right)$. Figure 2 summarizes the previous computations in flow-chart form.

An alternative analysis of an OR gate with SI inputs is possible via equation (12). Now, we assume that each of the probabilities of the complementary events in (12) is expressed as a ratio t_{i} of the last probability among them $P\left(\bar{e}_{n}\right)$, i.e.,

Fig. 2. Assigning probabilities for \mathbf{n} statistically-independent inputs of an OR gate given the probability of its output.

$$
\begin{equation*}
P\left(\bar{e}_{i}\right)=t_{i} P\left(\bar{e}_{n}\right), \quad 1 \leq i \leq n, \tag{28}
\end{equation*}
$$

where $t_{n}=1$. Equating the RHS of (12) to S_{n} and substituting (28) into the resulting equation, we can solve (12) for each of the complementary probabilities $P\left(\bar{e}_{i}\right)$ as

$$
\begin{equation*}
P\left(\bar{e}_{i}\right)=t_{i}\left[\left(\prod_{j=1}^{n} t_{j}\right)^{-1}\left(1-S_{n}\right)\right]^{1 / n}, 1 \leq i \leq n, \quad \text { SI } \bar{e}_{i} . \tag{29}
\end{equation*}
$$

In passing, we note that we used the assumption (28) to obtain a simple solution. Had we insisted on using the assumption (14), we would have obtained an nth - degree equation in each $P\left(e_{i}\right)$. The alternative (equally good) assumption in (28) saved us the trouble of solving an $n t h$ degree polynomial equation and the associated difficulty of selecting the appropriate root from a set of n roots.

Example 1:

Figure 3 displays a fault tree that combines all the special cases considered. It has an OR gate with three ME inputs, an AND gate with three SI inputs, and an OR gate with three SI inputs. Let us assume that the top event probability $P\left(o_{3}\right)$ is known to be $S_{3}=0.9$. We need to find all the basic-event probabilities. We start by estimating the probabilities of the events e_{1}, e_{2}, and e_{3} which are the ME inputs of the top OR gate. We now assume we know the following probability ratios.

Fig. 3. A simple example of a fault tree that has an OR gate with MI inputs, an AND gate with SI input and an OR gate with SI inputs.

$$
\begin{align*}
& r_{1}=P\left(e_{1}\right) / P\left(e_{3}\right)=0.2, \tag{30a}\\
& r_{2}=P\left(e_{2}\right) / P\left(e_{3}\right)=0.3 \tag{30b}\\
& r_{3}=P\left(e_{3}\right) / P\left(e_{3}\right)=1.0 \tag{30c}
\end{align*}
$$

Hence, according to (17), we obtain

$$
\begin{align*}
& P\left(e_{1}\right)=\frac{S_{3} r_{1}}{r_{1}+r_{2}+r_{3}}=\frac{(0.9)(0.2)}{0.2+0.3+1.0}=0.12, \tag{31a}\\
& P\left(e_{2}\right)=\frac{S_{3} r_{2}}{r_{1}+r_{2}+r_{3}}=0.18, \tag{31b}\\
& P\left(e_{3}\right)=\frac{S_{3} r_{3}}{r_{1}+r_{2}+r_{3}}=0.60, \tag{31c}
\end{align*}
$$

As expected $P\left(e_{1}\right), P\left(e_{2}\right)$ and $P\left(e_{3}\right)$ are in the ratio of 0.2:0.3:1.0 and add up to $S_{3}=0.9$. We now know the probability of the output e_{1} of the AND gate, and need to assess the probabilities of its inputs e_{4}, e_{5}, and e_{6}. Again we assume we know the following probability ratios.

$$
\begin{align*}
& r_{4}=P\left(e_{4}\right) / P\left(e_{6}\right)=0.4, \tag{32a}\\
& r_{5}=P\left(e_{5}\right) / P\left(e_{6}\right)=0.5, \tag{32b}\\
& r_{6}=P\left(e_{6}\right) / P\left(e_{6}\right)=1.0 . \tag{33c}
\end{align*}
$$

Hence , according to (15), we obtain

$$
\begin{aligned}
& P\left(e_{4}\right)=r_{4}\left[P\left(e_{1}\right) /\left(r_{4} r_{5} r_{6}\right)\right]^{\frac{1}{3}}=0.33737 \\
& P\left(e_{5}\right)=r_{5}\left[P\left(e_{1}\right) /\left(r_{4} r_{5} r_{6}\right)\right]^{\frac{1}{3}}=0.42172,(33 b) \\
& P\left(e_{6}\right)=r_{6}\left[P\left(e_{1}\right) /\left(r_{4} r_{5} r_{6}\right)\right]^{\frac{1}{3}}=0.84343 .(33 c)
\end{aligned}
$$

As expected $P\left(e_{4}\right), P\left(e_{5}\right)$ and $P\left(e_{6}\right)$ are (to within roundoff-errors) in the ratio 0.4: 0.5: 1.0 and their product is 0.12 . Likewise, we use our knowlodge of the probability of the output e_{3} of the OR gate with $S I$ inputs e_{7}, e_{8}, e_{9} to estimate the probabilities of these inputs. We use the dual analysis in Sec. 3.4.2, and starting with $P\left(\bar{e}_{3}\right)=$ 0.4 , we obtain $P\left(\bar{e}_{7}\right), P\left(\bar{e}_{8}\right)$ and $P\left(\bar{e}_{9}\right)$. We assume we know the probability ratios

$$
\begin{gather*}
t_{7}=P\left(\bar{e}_{7}\right) / P\left(\bar{e}_{9}\right)=0.6, \tag{34a}\\
t_{8}=P\left(\bar{e}_{8}\right) / P\left(\bar{e}_{9}\right)=0.7, \tag{34b}\\
t_{9}=P\left(\bar{e}_{9}\right) / P\left(\bar{e}_{9}\right)=1.0, \tag{34c}
\end{gather*}
$$

Hence, according to (29), we obtain

$$
\begin{aligned}
& P\left(\bar{e}_{7}\right)=t_{7}\left[P\left(\bar{e}_{3}\right) /\left(t_{7} t_{8} t_{9}\right)\right]^{\frac{1}{3}}=0.59032,(35 a) \\
& P\left(\bar{e}_{8}\right)=t_{8}\left[P\left(\bar{e}_{3}\right) /\left(t_{7} t_{8} t_{9}\right)\right]^{\frac{1}{3}}=0.68871,(35 b) \\
& P\left(\bar{e}_{9}\right)=t_{9}\left[P\left(\bar{e}_{3}\right) /\left(t_{7} t_{8} t_{9}\right)\right]^{\frac{1}{3}}=0.98387,(35 c)
\end{aligned}
$$

As expected, $P\left(\bar{e}_{7}\right), P\left(\bar{e}_{8}\right)$, and $P\left(\bar{e}_{9}\right)$ are (to within roundoff-error) in the ratio 0.6: 0.7: 1.0 and their product is 0.4 . The original probabilities are $P\left(e_{7}\right)=0.40968, P\left(e_{8}\right)=$ 0.31129 , and $P\left(e_{9}\right)=0.01613$.

4. The a Posteriori Analysis in the Boolean Domain

In this section, we demonstrate how to apply Bayes' theorem to achieve a posteriori FTA via manipulations in the Boolean domain. Let the top event be denoted by e_{T} and a basic event be denoted by e_{X}, then Bayes' Theorem ${ }^{[25]}$ states that

$$
\begin{equation*}
P\left\{e_{X} \mid e_{T}\right\}=P \underline{\left\{e_{T} \cap e_{X}\right\}} P\left\{e_{T}\right\} \tag{36}
\end{equation*}
$$

provided $P\left\{e_{T}\right\} \neq 0$. This theorem can be restated In terms of the indicator variables T and X of the events e_{T} and e_{X} when noting that the various probabilities in (36) can be rewritten as expectations, i.e.,

$$
\begin{align*}
& P\left\{e_{x} \mid e_{T}\right\}=E\{X \mid T\}, \tag{37a}\\
& P\left(e_{T} \cap e_{X}\right\}=E\{T \wedge X\}, \tag{37b}\\
& P\left\{e_{T} \mid e_{X}\right\}=E\{T \mid X\}, \tag{37c}
\end{align*}
$$

So that (36) can be rewritten as

$$
\begin{equation*}
P\left\{e_{X} \mid e_{T}\right\} \equiv E\{X \mid T\}=E\{T \wedge X\} / E\{T\} . \tag{38}
\end{equation*}
$$

Equation (38) is valid provided $E\{T\} \neq 0$. Now we can obtain the a posteriori probability $P\left\{e_{X} \mid e_{T}\right\}$ by pursuing the following steps:

1. Express T as a PRE (preferably the simplest possible) as a Boolean function of indicator variables (including X). Note that the job of forming a PRE is needed only once (at this initial step).
2. The indicator variable $(T \mid X)$ is the Boolean quotient of T with respect to X, i.e.

$$
\begin{equation*}
T \mid X=T / X=T]_{X=1} \tag{39}
\end{equation*}
$$

Further information on the Boolean quotient is given in Appendix A. Since T is in PRE form, each $(T \mid X)$, for any choice of X, is also in PRE form.
3. The indicator variable $(T \wedge X)$ is obtained via (A4) as

$$
\begin{equation*}
(T \wedge X)=X \wedge(T \mid X) \tag{40}
\end{equation*}
$$

Since ($T \mid X$) is independent of X and is in PRE form, then $X \wedge(T \mid X)$ is also in PRE form.
4. The expectations $E\{T \wedge X\}$ and $E\{T\}$ in the RHS of (38) are now obtained immediately as one -to- one
transformations of the PREs for $(T \wedge X)$ and (T).

The details of this method is now illustrated by applying it to a fault-tree example studied via Bayesian Networks by Bobbio, et al., ${ }^{[23]}$.

Example 2:

This example, originally taken from Malhotra and Trivedi ${ }^{[61]}$, deals with the fault tree shown in Fig. 4. Bobbio, et al., ${ }^{[23]}$ solve this example by mapping the fault tree into a Bayesian network. We will demonstrate that such a mapping is not really warranted since fault-tree techniques suffice in this case. The fault tree represents a redundant multiprocessor system, with a single bus N connecting two processors P_{1} and P_{2} having access to a local memory bank each (M_{1} and M_{2}), and through the bus to a shared memory bank M_{3}, so that if the local memory bank fails, the processor can use the shared one. Each processor is connected to a mirrored disk unit. If one of the disks fails, the processor switches on the mirror. The whole system is functional if the bus N is functional and one of the processing subsystems is functional. With a little abuse of notation, we are using the same upper-case uncomplemented literal to denote a component, and also to denote the indicator variable for its failure. We can write the indicator T for the top event as a disjunction of cutset failures as in (3) of Bobbio, et al., ${ }^{[23]}$, but if we do so, we lose the ability to utilize statistical independence among basic events and end up with a complicated expression for the top-event probability. Instead, we write T as

$$
\begin{equation*}
T=N \vee\left(S_{1} S_{2}\right) \tag{41}
\end{equation*}
$$

where S_{1} and S_{2} are given by

$$
\begin{align*}
& S_{1}=P_{1} \vee D_{11} D_{12} \vee M_{1} M_{3}, \tag{42}\\
& S_{2}=P_{2} \vee D_{21} D_{22} \vee M_{2} M_{3} \tag{43}
\end{align*}
$$

We note that S_{1} and S_{2} would have been statistically independent had there been no common element M_{3} between them. To circumvent this problem, we use a BooleanShannon expansion about M_{3} to obtain

$$
\begin{gather*}
S_{1} S_{2}=\bar{M}_{3}\left(S_{1} S_{2} \mid 0_{M_{3}}\right) \vee M_{3}\left(S_{1} S_{2} \mid 1_{M_{3}}\right) \\
=\bar{M}_{3}\left(P_{1} \vee D_{11} D_{12}\right)\left(P_{2} \vee D_{21} D_{22}\right) \\
\vee M_{3}\left(P_{1} \vee M_{1} \vee D_{11} D_{12}\right)\left(P_{2}\right. \\
\left.\vee M_{2} \vee D_{21} D_{22}\right), \tag{44}
\end{gather*}
$$

Note that (44) contains two disjoint parts, thanks to the appearance of \bar{M}_{3} in the first part and M_{3} in the second part. The subfuctions of $S_{1} S_{2}$ in the two parts now consist each of factored statistically independent entities. We substitute (44) into (41), and use disjointing techniques ${ }^{[2,8,}$

9, 53-59, 62-71] to convert the resulting expression into the Probability-Ready Expression

$$
\begin{align*}
T=N \vee \bar{N}(& \bar{M}_{3}\left(P_{1} \vee \bar{P}_{1} D_{11} D_{12}\right)\left(P_{2}\right. \\
& \left.\vee \bar{P}_{2} D_{21} D_{22}\right) \\
& \vee M_{3}\left(P_{1}\right. \\
& \left.\vee \bar{P}_{1}\left(M_{1} \vee \bar{M}_{1} D_{11} D_{12}\right)\right)\left(P_{2}\right. \\
& \vee \bar{P}_{2}\left(M_{2}\right. \\
& \left.\left.\left.\vee \bar{M}_{2} D_{21} D_{22}\right)\right)\right) . \tag{45}
\end{align*}
$$

The PRE (45) is converted, on a one-to-one basis, into the probability expression

$$
\begin{aligned}
& " t=n+(1-n)\left((1 - m _ { - } 3) \left(p_{-} 1+(1-\right.\right. \\
& \left.\left.p_{-} 1\right) d_{-} 11 d_{-} 12\right)\left(p_{-} 2+(1-\right. \\
& \left.\left.p _2\right) d_{_} 21 d_{_} 22\right)+m_{-} 3\left(p _!+(1-\right. \\
& \left.p _1\right)\left(m_{-} 1+\left(1-m_{-} 1\right) d_{-} 11 d_{-} 12\right)\left(p_{-} 2+(1-\right. \\
& \left.p _2\right)\left(m_{-} 2+\left(1-m_{-} 2\right) d _21 d_{-} 2\right) .
\end{aligned}
$$

Fig. 4. Fault Tree for a multiprocessor system (taken from ${ }^{[23]}$ and $^{[61]}$).

X	$T \mid X$
D_{11}	$N \vee \bar{N}\left(\bar{M}_{3}\left(P_{1} \vee \bar{P}_{1} D_{12}\right)\left(P_{2} \vee \bar{P}_{2} D_{21} D_{22}\right) \vee M_{3}\left(P_{1} \vee \bar{P}_{1}\left(M_{1} \vee \bar{M}_{1} D_{12}\right)\right)\left(P_{2} \vee \bar{P}_{2}\left(M_{2} \vee \bar{M}_{2} D_{21} D_{22}\right)\right)\right)$
P_{1}	$N \vee \bar{N}\left(\bar{M}_{3}\left(P_{2} \vee \bar{P}_{2} D_{21} D_{22}\right) \vee M_{3}\left(P_{2} \vee \bar{P}_{2}\left(M_{2} \vee \bar{M}_{2} D_{21} D_{22}\right)\right)\right)$
M_{1}	$N \vee \bar{N}\left(\bar{M}_{3}\left(P_{1} \vee \bar{P}_{1} D_{11} D_{12}\right)\left(P_{2} \vee \bar{P}_{2} D_{21} D_{22}\right) \vee M_{3}\left(P_{2} \vee \bar{P}_{2}\left(M_{2} \vee \bar{M}_{2} D_{21} D_{22}\right)\right)\right)$
M_{3}	$N \vee \bar{N}\left(P_{1} \vee \bar{P}_{1}\left(M_{1} \vee \bar{M}_{1} D_{11} D_{12}\right) \vee\left(P_{2} \vee \bar{P}_{2}\left(M_{2} \vee \bar{M}_{2} D_{21} D_{22}\right)\right)\right)$
N	1

Table 3. The a priori and a posteriori probabilities of component failures in Example 2.

Component \boldsymbol{X}	The a priori failure probabilities	The a posteriori failure probabilities of Bobbio, et al., ${ }^{\text {10] }}$	The a posteriori failure probabilities of (38)
D_{11}	$\boldsymbol{d}=0.32968$	0.98436	0.9978947
P_{1}	$\boldsymbol{P}=0.00025$	0.02252	0.0022937
M_{1}	$m=0.000015$	0.000015	0.0000150018
M_{3}	$m=0.000015$	0.000015	0.0000150034
N	$n=0.00001$	0.000081	0.0008425

Table 2 lists the conditional indicators or Boolean quotients (T/X), where X stands for $D_{11}, P_{1}, M_{1}, M_{3}$, and N. Table 3 shows the a priori failure probabilities assumed by Bobbio, et al., ${ }^{[23]}$, and the a posteriori failure probabilities computed by them via BayesianNetwork modelling. Table 3 also reports a
posteriori probabilities computed via (38), under the assumption of equal reliabilities for similar components, i.e., $d=d_{11}=d_{12}=d_{21}=d_{22}$, $P=P_{1}=P_{2}$, and $\quad m=m_{1}=m_{2}=m_{3}$. Thanks to (38), (40) and (46), one obtains

$$
\begin{gather*}
t=E\{T\}=n+(1-n)\left((1-m)\left(P+(1-P) d^{2}\right)^{2}+m(P\right. \\
\left.\left.+(1-P)\left(m+(1-m) d^{2}\right)^{2}\right)\right), \tag{47}
\end{gather*}
$$

$$
\begin{align*}
& E\{D \mid T\}=\left(\frac{d}{t}\right)\left(n+(1-n)\left((1-m)(P+(1-P) d)\left(P+(1-P) d^{2}\right)+m(P+(1-P)(m+(1-m) d)(P+\right.\right. \\
& \left.\left.\left.\left.(1-P)\left(m+(1-m) d^{2}\right)\right)\right)\right)\right), \tag{48}\\
& E\{P \mid T\}=\left(\frac{P}{t}\right)\left(n+(1-n)\left((1-m)\left(P+(1-P) d^{2}\right)+m\left(P+(1-P)\left(m+(1-m) d^{2}\right)\right)\right)\right), \tag{49}\\
& \quad E\left\{M_{1} \mid T\right\}=\left(\frac{m}{t}\right)\left(n+(1-n)\left((1-m)\left(P+(1-P) d^{2}\right)^{2}+m\left(P+(1-P)\left(m+(1-m) d^{2}\right)\right)\right)\right), \tag{50}
\end{align*}
$$

$$
\begin{gather*}
E\left\{M_{3} \mid T\right\}=\left(\frac{m}{t}\right)\left(n+(1-n)\left(P+(1-P)\left(m+(1-m) d^{2}\right)\right)^{2}\right) \tag{51}\\
E\{N \mid T\}=n / t \tag{52}
\end{gather*}
$$

In passing, we note that $E\left\{D_{11} \mid T\right\}=E\left\{D_{12} \mid T\right\}=E\left\{D_{21} \mid T\right\}=E\left\{D_{22} \mid T\right\}=E\{D \mid T\}, E\left\{P_{1} \mid T\right\}=$ $E\left\{P_{2} \mid T\right\}=E\{P \mid T\}$.
However, $E\left\{M_{1} \mid T\right\}=E\left\{M_{2} \mid T\right\} \neq E\left\{M_{3} \mid T\right\}$.

The results obtained in Table 3 are at best intriguing. We were expecting to obtain identical or at least approximately equal results in the second column of Table 3 (the a posteriori failure probabilities of Bobbio, et $a l .,{ }^{[23]}$), and the third column of Table 3 (the a posteriori failure probabilities computed herein via (38)). However, while the values for D_{11}, M_{1}, and M_{3} are somewhat reasonably similar, the values for each of P_{1} and N differ by one order of magnitude. We argue that our computations are based on a simple fault-tree model that exactly fits our needs, and hence it is preferable according to Ockham's
(Occam's) razor, which requires a model to retain the minimum of assumptions and details needed to capture all the essential features of what the model represents while excluding any extraneous or distracting features ${ }^{[72]}$. The details of our model are visible enough to allow an interested reader to check it by verifying the derivation of our equations and reproducing our numbers with a small calculator. In particular, our a posteriori failure probabilities can be easily seen to pass a simple check of satisfying the following conditional-probability equation derivable from (45).

$$
\begin{align*}
& 1=E\{T \mid T\}=E\{N \mid T\}+(1-E\{N \mid T\})\left((1 - E \{ M _ { - } 3 | T \}) \left(E\left\{P_{-} 1 \mid T\right\}+(1\right.\right. \\
& \left.\left.-E\left\{P _1 \mid T\right\}\right) E\left\{D_{-} 11 \mid T\right\} E\left\{D _12 \mid T\right\}\right)\left(E\left\{P _2 \mid T\right\}+(1\right. \\
& \left.\left.-E\left\{P_{-} 2 \mid T\right\}\right) E\left\{D_{-} 21 \mid T\right\} E\left\{D_{-} 22 \mid T\right\}\right)+E\left\{M_{-} 3 \mid T\right\}\left(E\left\{P_{-} 2 \mid T\right\}+\left(1-E\left\{P_{-} 2 \mid T\right\}\right)\left(E\left\{M_{-} 1 \mid T\right\}+(1\right.\right. \\
& \left.\left.-E\left\{M_{-} 1 \mid T\right\}\right) E\left\{D_{-} 11 \mid T\right\} E\left\{D_{-} 12 \mid T\right\}\right)\left(E \{ D _ 1 1 | T \} E \{ D _ 1 2 | T \} \left(E\left\{M_{-} 2 \mid T\right\}+(1\right.\right. \\
& \left.\left.\left.-E\left\{M_{-} 2 \mid T\right\}\right) E\left\{D_{-} 21 \mid T\right\} E\left\{D_{-} 22 \mid T\right\}\right)\right) \text {). } \tag{53}
\end{align*}
$$

derived (under a variety of appropriate assumptions) a posteriori solution for an AND gate with SI inputs, an OR gate with ME inputs, and an OR gate with SI inputs. The results obtained are applied to a detailed fault-tree example. In addition, we treated the a posteriori analysis of fault trees in the Boolean domain. We demonstrated that in many cases this analysis is possible via elementary fault-tree manipulations that use the concept of a Boolean quotient (known also as a Boolean ratio,
subfunction or restriction) to effectively implement Bayes’ Theorem in the Boolean domain. Again, a demonstrative example was given to illustrate the Boolean a posteriori FTA and explain its details, and show that the power of Bayesian networks (BNs) is not really warranted in many simple (albeit significant) cases. A detailed comparison between the two kinds of a posteriori FTA was also given to set the stage for explaining how these two kinds can be interrelated and even combined. The essential difference between the two kinds is that the first kind takes place in the probability domain and relies on educated guessing and solution of algebraic equations, while the second kind is a novel implementation of Bayes' Theorem in the Boolean domain, and acts occasionally as a suitable alternative to using the too-powerful technique of Bayesian networks. We stress herein that results obtained via the second kind of a posteriori FTA are much easier to verify and replicate than those obtained via Bayesian networks.
Further research is needed to utilize the two aforementioned kinds of a posteriori FTA in more practical situations, and to explore the possibility of existence of other kinds of a posteriori FTA. The comparison between the given two kinds of a posteriori FTA should be extended to further interrelate and even combine them. The implementation of Bayes' Theorem in the Boolean domain warrants further investigation, and opens new avenues for pedagogical and computational applications in probability theory and reliability engineering. An urgent issue to pursue is to solve many simple as well as complicated examples via both the second kind of a posteriori FTA and the Bayesian-network analysis to see if they do really agree or to identify reasons of disagreement between them and to locate where
discrepancy between them emerges.

Appendix A: Boolean Quotient

Let us define a literal to be a letter or its complement, where a letter is a constant or a variable. A Boolean term or product is a conjunction or ANDing of m literals in which no letter appears more than once. For $m=1$, a term is a single literal and for $\mathrm{m}=0$, a term is the constant 1. Note that, according to this definition the constant 0 is not a term. Given a Boolean function f and a term t, the Boolean quotient of f with respect to t, denoted by ($f /$ t), is defined to be the function formed from f by imposing the constraint $\{t=1\}$ explicitly ${ }^{[44]}$, i.e.

$$
\begin{equation*}
f / t=[f]_{t=1}, \tag{A1}
\end{equation*}
$$

The Boolean quotient is also known as a ratio $^{[40]}$, a subfunction ${ }^{[41, ~ 43, ~ 45-50]}$, or a restriction ${ }^{[42]}$. Brown ${ }^{[44]}$ lists and proves several useful properties of Boolean quotients, of which we reproduce the following ones:

$$
\begin{gather*}
f / 1=f \tag{A2}\\
f / s t=(f / s) / t=(f / t) / s, \text { for } s t \\
\neq 0,(A 3) \\
f \leq g \Rightarrow f / t \leq g / t
\end{gather*}
$$

\{for n-variable functions f and g and an mvariable term t with $m \leq n\}$, (A4)

$$
\begin{align*}
& t \wedge f=t \wedge(f / t) \tag{A5}\\
& \bar{t} \vee f=\bar{t} \vee(f / t) \tag{A6}\\
& t \wedge f \leq f / t \leq \bar{t} \vee f \tag{A7}
\end{align*}
$$

In this Appendix, we followed Brown ${ }^{[44]}$ in denoting a Boolean quotient by an inclined slash (f / t). However, in the main text we denote it by a vertical bar $(f \mid t)$ to stress the equivalent meaning of f conditioned by t or f given t.

References

[1] Shooman, M. L. The equivalence of reliability diagrams and fault-tree analysis. IEEE Transactions on Reliability, 19, (2): 74-75, (1970).
[2] Bennetts, R. G., On the analysis of fault trees, IEEE Transactions on Reliability, R-24, (3): 175-185, (1975).
[3] Henley, E. J. and Kumamoto, H., Reliability Engineering and Risk Assessment, Englewood Cliffs, NJ: Prentice Hall, (1981).
[4] Rushdi, A. M., Uncertainty analysis of fault-tree outputs, IEEE Transactions on Reliability, R-34, (5): 458-462, (1985).
[5] Rushdi, A. M. and Kafrawy, K. F., Uncertainty propagation in fault-tree analysis using an exact method of moments, Microelectronics and Reliability, 28: 945-965 (1988).
[6] Kafrawy, K. F. and Rushdi, A. M., Uncertainty analysis of fault trees with statistically correlated failure data, Microelectronics and Reliability, 30: 157-175, (1990).
[7] Rausand, M. and Hoyland, A., System Reliability Theory: Models, Statistical Methods, and Applications, 2nd Ed., Wiley, Hoboken, NJ, USA, (2004).
[8] Rushdi, A. M. and Ba-Rukab, O. M., A doublystochastic fault-tree assessment of the probabilities of security breaches in computer systems, Proceedings of the Second Saudi Science Conference, Part Four: Computer, Mathematics, and Statistics, Jeddah, Saudi Arabia, 1-17, (2005).
[9] Rushdi, A. M. and Ba-Rukab, O. M., Fault-tree modelling of computer system security, International Journal of Computer Mathematics, 82, (7): 805-819, (2005).
[10] Xing, L. and Amari, S. V., Fault tree analysis. In K. B. Misra (Editor), Handbook of Performability Engineering, Springer London, pp: 595-620, (2008).
[11] Contini, S., Fabbri, L. and Matuzas, V. A., novel method to apply importance and sensitivity analysis to multiple fault-trees, Journal of Loss Prevention in the Process Industries, 23(5): 574-584, (2010).
[12] Contini, S. and Matuzas, V., Analysis of large fault trees based on functional decomposition, Reliability Engineering \& System Safety, 96, (3): 383-390, (2011).
[13] Cha, S. and Yoo, J., A safety-focused verification using software fault trees, Future Generation Computer Systems, 28, (8): 1272-1282, (2012).
[14] Ruijters, E. and Stoelinga, M., Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools, Computer Science Review, 15: 29-62, (2015).
[15] Krčál, J. and Krčál, P., Scalable Analysis of Fault Trees with Dynamic Features, In 2015 45 ${ }^{\text {th }}$ Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp: 89-100, (2015).
[16] Deng, Y., Wang, H. and Guo, B., BDD algorithms based on modularization for fault tree analysis, Progress in Nuclear Energy, 85: 192-199, (2015).
[17] Amstutz, J., Parallel evaluation of fault tree expressions, pp: 117-128 in Jeffers, J. and Reinders, J. (Editors), High Performance Parallelism Pearls, Volume Two: Multicore and Many-core Programming Approaches, Morgan Kaufmann, Burlington, CA, USA, (2015).
[18] Makajic-Nikolic, D., Petrovic, N., Belic, A., Rokvic, M., Radakovic, J. A. and Tubic, V., The fault tree analysis of infectious medical waste management, Journal of Cleaner Production, 113: 365-373, (2016).
[19] Liu, P., Yang, L., Gao, Z., Li, S. and Gao, Y., Fault tree analysis combined with quantitative analysis for high-speed railway accidents, Safety Science, 79: 344-357, (2015).
[20] Hu, Y. N., Research on the application of fault tree analysis for building fire safety of hotels, Procedia Engineering, 135: 523-529, (2016).
[21] Shooman, M. L., Use of a posteriori fault trees for accident and terriorist investigation, Proceedings of the $22^{\text {nd }}$ International System Safety Conference, Aug. 2-6, Providence RI, USA (2004).
[22] Shooman, M. L., Terrorist risk evaluation using a posteriori fault trees, IEEE 2006 Annual Reliability and Maintainability Symposium (RAMS'06), pp: 450-455, (2006).
[23] Bobbio, A., Portinale, L., Minichino, M. and Ciancamerla, E., Improving the analysis of dependable systems by mapping fault trees into Bayesian networks, Reliability Engineering and System Safety, 71, (3): 249260, (2001).
[24] Langseth, H. and Portinale, L., Bayesian networks in reliability, Reliability Engineering and System Safety, 92: 92-108, (2007).
[25] Trivedi, K. S., Probability and Statistics with Reliability, Queuing, and Computer Science Applications, 2nd Ed., Prentice-Hall, Englewood Cliffs, NJ, USA, (2002).
[26] Heckermann D., Wellman, M. and Mamdani, A., Realworld applications of Bayesian networks, Communications of the ACM, 38, (3): 24-26, (1995).
[27] Poole N. and Zhang, L., Exploiting causal independence in Bayesian network inference, Journal of Artificial Intelligence Research, 5: 301-328, (1996).
[28] Torres-Toledano J. G. and Sucar, L. E., Bayesian networks for reliability analysis of complex systems, In: Proceedings of the 6th IberoAmerican conference on AI (IBERAMIA 98), Lecture notes in artificial intelligence, Berlin, Germany: Springer, 1484: 195-206, (1998).
[29] Portinale, L. and Bobbio, A., Bayesian networks for dependability analysis: An application to digital control reliability, Proceedings of the $15^{\text {th }}$ Conference on Uncertainty in Artificial Intelligence (UAI-99), pp: 5518, (1999).
[30] Bobbio, A., Portinale, L., Minichino, M. and Ciancamerla, E., Comparing fault trees and Bayesian networks for dependability analysis, pp: 310-322 in Computer Safety, Reliability and Security, Springer Berlin Heidelberg, (1999).
[31] Marsh, W. and Bearfield, G., Representing parameterised fault trees using Bayesian networks, pp: 120-133 in Computer Safety, Reliability, and Security, Springer Berlin Heidelberg, (2007)
[32] Hosseini, S. H. and Takahashi, M., Combining static/dynamic fault trees and event trees using Bayesian networks, pp: 93-99 in Computer Safety, Reliability, and Security, Springer Berlin Heidelberg, (2007).
[33] Marquez, D., Neil, M. and Fenton, N., Solving dynamic fault trees using a new hybrid Bayesian network inference algorithm. IEEE 2008 16th Mediterranean Conference on Control and Automation, pp: 609-614, (2008)
[34] Mengshoel, O. J., Darwiche, A. and Uckun, S., Sensor validation using Bayesian networks. In Proc. 9th International Symposium on Artificial Intelligence, Robotics, and Automation in Space (iSAIRAS-08), (2008).
[35] Khakzad, N., Khan, F. and Amyotte, P., Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches, Reliability Engineering \& System Safety, 96, (8): 925-932, (2011).
[36] Duan, R. X. and Zhou, H. L., A New fault diagnosis method based on fault tree and Bayesian networks, Energy Procedia, 17: 1376-1382, (2012).
[37] Kabir, S., Walker, M. and Papadopoulos, Y., Reliability Analysis of Dynamic Systems by Translating Temporal Fault Trees into Bayesian Networks, pp. 96-109 in ModelBased Safety and Assessment, pp: 96-109, Springer International Publishing, (2014).
[38] Wang, Y. and Sun, Q., Bayesian network technology to analyze fault trees, pp: 87-94 in Proceedings of the First Symposium on Aviation Maintenance and ManagementVolume II, Springer Berlin Heidelberg, (2014).
[39] Gribaudo, M., Iacono, M. and Marrone, S., Exploiting Bayesian Networks for the Analysis of Combined Attack Trees, Electronic Notes in Theoretical Computer Science, 310: 91-111, (2015).
[40] Ghazala, M. J., Irredundant disjunctive and conjunctive forms of a Boolean function, I.B.M. Journal of Research and Development, 1: 171-176, (1957).
[41] Reusch, B., Generation of prime implicants from subfunctions and a unifying approach to the covering problem, IEEE Transactions on Computers, C-24 (9): 924-930 (1975).
[42] Bryant, R., Graph-based algorithms for Boolean function manipulation, IEEE Transactions on Computers, C-35, (8): 677-691, (1986).
[43] Rushdi, A. M., Improved variable-entered Karnaugh map procedures, Computers and Electrical Engineering, 13, (1): 41-52, (1987).
[44] Brown, F. M., Boolean Reasoning: The Logic of Boolean Equations, Kluwer Academic Publishers, Boston, MA, USA (1990).
[45] Rushdi, A. M. and Al-Yahya, H. A., A Boolean minimization procedure using the variable-entered Karnaugh map and the generalized consensus concept,

International Journal of Electronics, 87, (7): 769-794, (2000).
[46] Rushdi, A. M., Prime-implicant extraction with the aid of the variable-entered Karnaugh map, Umm Al-Qura University Journal : Science, Medicine and Engineering, 13, (1): 53-74 (2001).
[47] Rushdi, A. M. and Al-Yahya, H. A., Further improved variable-entered Karnaugh map procedures for obtaining the irredundant forms of an incompletely-specified switching function, Journal of King Abdulaziz University: Engineering Sciences, 13, (1): 111-152, (2001).
[48] Rushdi, A. M., Using Variable-Entered Karnaugh Maps to Solve Boolean Equations, International Journal of Computer Mathematics, 78, (1): 23-38 (2001).
[49] Rushdi, A. M. and Al-Yahya, H. A., Derivation of the complete sum of a switching function with the aid of the variable-entered Karnaugh map, Journal of King Saud University: Engineering Sciences, 13, (2): 239-269, (2001).
[50] Rushdi, A. M. and Amashah, M. H., Using variableentered Karnaugh maps to produce compact parametric solutions of Boolean equations, International Journal of Computer Mathematics, 88, (15): 3136-3149 (2011).
[51] Crama, Y. and Hammer, P. L., Boolean Functions: Theory, Algorithms, and Applications, Cambridge University Press, Cambridge, United Kingdom (2011).
[52] Rushdi, A. M. A. and Alturki, A. M., Reliability of coherent threshold systems, Journal of Applied Sciences, 15, (3): 431-443, (2015).
[53] Rushdi, A. M. and Goda, A. S., Symbolic reliability analysis via Shannon's expansion and statistical independence, Microelectronics and Reliability, 25, (6): 1041-1053, (1985).
[54] Rushdi, A. M. and AbdulGhani, A. A., A comparison between reliability analyses based primarily on disjointness or statistical independence, Microelectronics and Reliability, 33: 965-978, (1993).
[55] Rushdi, A. M. A. and Hassan, A. K., Reliability of migration between habitat patches with heterogeneous ecological corridors, Ecological Modelling, 304: 1-10, (2015).
[56] Rushdi, A. M. A. and Hassan, A. K., An exposition of system reliability analysis with an ecological perspective, Ecological Indicators, 63: 282-295, (2016).
[57] Rushdi, A. M., Reliability of k-out-of-n Systems, Chapter 5 in K. B. Misra (Editor), New Trends in System Reliability Evaluation, Vol. 16, Fundamental Studies in Engineering, Elsevier Science Publishers, Amsterdam, The Netherlands, pp: 185-227, (1993).
[58] Rushdi, A. M., Partially-redundant systems: Examples, reliability, and life expectancy, International Magazine on Advances in Computer Science and Telecommunications, 1, (1): 1-13, (2010).
[59] Dohmen, K., Inclusion-exclusion and network reliability, Journal of Combinatorics, 5: 537-544, (1998).
[60] Dohmen, K., Inclusion-Exclusion: Which terms cancel, Archiv der Mathematik, 74(4): 314-316. (2000).
[61] Malhotra, M. and Trivedi, K., Dependability modeling using Petri-nets. IEEE Transactions on Reliability, 44, (3): 428-440, (1995).
[62] Hurley, R. B., Probability maps, IEEE Transactions on Reliability, R-12, (3): 39-44, (1963).
[63] Abraham, J. A., An improved algorithm for network reliability, IEEE Transactions on Reliability, R-28, (1): 58-61, (1979).
[64] Dotson, W. and Gobien, J., A new analysis technique for probabilistic graphs, IEEE Transactions on Circuits and Systems, CAS-26, (10): 855-865, (1979).
[65] Bennetts, R. G., Analysis of reliability block diagrams by Boolean techniques, IEEE Transactions on Reliability, R-31, (2): 159-166, (1982).
[66] Rushdi, A. M., Symbolic reliability analysis with the aid of variable-entered Karnaugh maps, IEEE Transactions on Reliability, R-32, (2): 134-139, (1983).
[67] Rushdi, A. M. and Al-Khateeb, D. L., A review of methods for system reliability analysis: A Karnaugh-map perspective, Proceedings of the First Saudi Engineering Conference, Jeddah, Saudi Arabia, 1:57-95, (1983).
[68] Schneeweiss, W. G., Disjoint Boolean products via Shannon's expansion, IEEE Transactions on Reliability, R-34, (4): 329-332, (1984).
[69] Heidtmann, K. D., Smaller sums of disjoint products by subproduct inversion, IEEE Transactions on Reliability, 39, (3): 305-311, (1989).
[70] Rushdi, A. M., Karnaugh map, Encyclopaedia of Mathematics, Supplement Volume I, M. Hazewinkel (Editor), Boston, Kluwer Academic Publishers, pp: 327328, (1997), Available at http://eom.springer.de/K/k110040. htm .
[71] Rushdi, A. M. A. and Ghaleb, F. A. M., The Walsh spectrum and the real transform of a switching function: A review with a Karnaugh-map perspective, Journal of Qassim University: Engineering and Computer Sciences, 7, (2): 73-112, (2015).
[72] Rushdi, A. M., Occam 's razor, KAU Engineering Magazine, 5, (1): 58-61, (2011).

استعراض ومقارنة نوعين من التحليل اللاحق لأشجار الأخطاء

علي محمد علي رشدي ومحمد أحد الثقواسمي

قسم الهندسة الكهربائبة وهندسة الحاسبات, كلية الحاسبات وتقنبة المعلودات،
جامعة الملك عبد/لعزبز, جذة, المدلكة العربية السعودية
arushdi@kau.edu.sa

المستخلص. إن أثنجار الأخطاء هي أدوات تحليلية للاستتباط المنظم من أعلى إلى أسفل، وهي تتتتع بتطبيقات متتوعة في العديد من المجالات مثل المعولية والسلامة والأمن. ويمكن تسمية التحليل الأمامي لأشـجار الأخطـاء بالتحليل المسبق لأنـه بيتوقع احتمال الحدث الأوجي لشجرة الأخطاء بدلالـة احتمالات أحداثها الأساسية. نقدم ورقة البحث هذه استعراضنًا تعليميًا ومقارنة تفصيلية لنوعين من التحليل الخلفي أو اللاحق (البَعدي) لأشتجار الأخطاء يتم تنفيذهما في الميدان الاحتمالي والميدان المنطقي (البولاني) على التوالي. نفترض في حالـة التحليل اللاحق لأشـجار الأخطاء في الميدان الاحتمـالي كون احتمـال الحدث
 النحليـل قدمًا بصـورة معـاودة في الميدان الاحتمـالي لنقدير احتمـالات الأحداث الأدنـى في إطـار بعض الافتراضات الواقعية، متل: النتافي أو الاسنقال الإحصائي لأحداث المدخلات لبوابة منطقية محددة، ومع الاستفادة من تخمينات حصيفة لقيم نسب معينـة بين احتمالات مثل هذه الأحداث. تقدم هذه الورقة إجراءً رياضيًا مفصـلاً لتنفيذ هذا التحليل اللاحق لأشـجار الأخطاء يعظم الانتفاع بمفهوم المزاوجة. ويتجلى هذا الإجراء من خال مثال توضيحي مفصل. تدرس الورقة أيضًا التحليل اللاحق لأشجار الأخطاء في الميدان المنطقي. وهذا التحليل متوفر في أدبيات الموضوع في صورة أداة قوية جدًا نعرف باسم الشبكات الباييزية. نظهر هنا أنه في كثير من الحالات يظل هذا التحليل مدكنًا عن طريق معالجات أولية لأثجار الأخطاء تستخدم مفهوم خـارج القسمة البولاني (المنطقي) للتتفيذ الفعال لنظريـة بـاييز في الميدان المنطقي. ومرة أخرى، يتم إعطاء مثال نوضيحي لبيـان التحليل اللاحق لأشـجار الأخطـاء في الميدان المنطقي، وشرح تفاصيله، وإظهار أن اللجوء لقوة الثبكات الباييزية ليس له ما يبرره حقًا في الحالات البسيطة. نورد مقارنـة تفصيلية بين نوعي التحليل اللاحق لأشجار الأخطاء لإيضاح أوجه الشبه وأوجه الاختلاف بينهما. الكلمات الدالة: شجرة الأخطـاء، التحليل المسبق، التحليل اللاحق (البَعدي)، الميدان الاحتمـلي، الميدان المنطقي (البولاني).

