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Abstract. Fault trees are top-down formal deductive analytic tools with diverse applications in many fields 
such as reliability, safety and security. Forward fault tree analysis (FTA) can be termed a priori analysis since 
it predicts the top-event probability in terms of basic-event probabilities. This paper offers a tutorial 
exposition and a detailed comparison of two kinds of backward or a posteriori FTA that are implemented in 
the probability domain and in the Boolean domain, respectively. For the probability-domain  a posteriori 
FTA, it is assumed that the top event probability is known. For example, when the top event is presumed to 
have occurred, then it has a probability of one. The analysis proceeds recursively in the probability domain to 
assess the probabilities of lower events under certain realistic assumptions such as mutual exclusiveness or 
statistical independence of the input events for a specific gate, and with the utilization of educated guesses on 
certain ratios of probabilities of such events. This paper offers a detailed mathematical procedure for 
implementing this a posteriori FTA that makes the most of the concept of duality. The procedure is 
demonstrated via a detailed illustrative example. The paper also considers the a posteriori FTA in the 
Boolean domain. Such an analysis is available in the literature in terms of the very powerful tool of Bayesian 
Networks (BNs). We demonstrate here that in many cases this analysis is still possible via elementary fault-
tree manipulations that use the concept of a Boolean quotient to effectively implement Bayes’ Theorem in the 
Boolean domain. Again, a demonstrative example is given to illustrate the Boolean a posteriori FTA, explain 
its details, and show that the power of BNs is not really warranted in simple cases. A detailed comparison 
between the two kinds of a posteriori FTA is also given to identify their similarities and differences. 
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1. Introduction 

Fault trees are top-down formal deductive 
analytic tools that have applications in many 
fields such as reliability, safety, and security, 
albeit sometimes they are used under a variety 
of unwarranted disguised names such as success 
trees, elicitation trees, attack trees, defense trees, 
etc. Conventional fault tree analysis (FTA) 
might be termed a forward, a  priori, or 
predictive analysis since it obtains the top-event 
probability in terms of basic-event probabilities, 

or more generally it decides the probability of 
any higher-level event in the tree in terms of the 
probabilities of its lower-level events[1-20]. The 
reverse type of FTA might be termed a 
backward, a posteriori, or diagnostic analysis. 
There are (at least) two kinds of this analysis, 
which are to be reviewed, analyzed, 
demonstrated, compared and interrelated in this 
paper. 

The first kind of a posteriori FTA is due to 
Shooman[21, 22]. In this kind of analysis, it is 
assumed that the top event has a known 
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probability, e.g., the top event could be 
considered to have actually occurred and hence 
possess a probability of one. The analysis 
proceeds recursively in the probability domain 
to assess the probabilities of lower events under 
certain realistic assumptions such as mutual 
exclusiveness or statistical independence of the 
input events for a specific gate, and utilization 
of educated guesses on certain ratios of 
probabilities of such events. By contrast, the 
second kind of a posteriori analysis, as reported 
by Bobbio, et al.,[23] and Langseth and 
Portinale[24] is in essence a classical Bayesian 
analysis involving an equivalent of the Total 
Probability Theorem, and Bayes' Theorem[25]. 
A detailed comparison between the two kinds 
of a posteriori analysis is given in Table 1. 
Various aspects of the comparison in Table 1 
will become clarified further as we proceed 
throughout this paper. 

   While Shooman[22] restricted the a 
posteriori FTA to that of OR gates with 
Mutually Exclusive (ME) inputs, we extend 
the analysis to include both AND gates with 
Statistically Independent (SI) inputs and OR 
gates with either ME or SI inputs. We derive 
general solutions for all types of gates and 
conditions with arbitrary numbers of inputs. 
We also outline the solution of the general 
case based on the use of the Inclusion-
Exclusion Principle with simplifying 
assumptions other than the ME or SI 
assumptions. 

The second kind of a posteriori analysis is 
typically conducted by mapping fault trees into 
the more powerful tool of Bayesian networks 
(BNs), which are known also (occasionally with 
minor differences) as belief nets, causal 
networks, probabilistic- dependence graphs, or 
influence diagrams. Bayesian networks have 

better capabilities than standard fault trees, such 
as their capabilities to handle uncertainty, 
statistical dependence or multi-state behavior [23, 

24, 26-39]. However, the use of BNs in a posteriori 
FTA might not be warranted in many important 
problems that can still be handled via (the 
somewhat modest) capabilities of fault trees. 

The organization of the remainder of this 
paper is as follows. Section 2 lists our notation, 
abbreviations and certain useful nomenclature. 
Section 3 presents the a posteriori analysis of 
fault trees in the probability domain. The main 
thesis of this section is that such an analysis 
necessitates only the a posteriori analysis of 
single gates. Therefore, section 3 discusses the 
general a posteriori analysis of single AND or 
OR gates, and then derives (under a variety of 
appropriate assumptions) a posteriori solution 
for an AND gate with SI inputs, an OR gate 
with ME inputs, and an OR gate with SI inputs. 
The results obtained are applied to a detailed 
fault-tree example. Section 4 treats the a 
posteriori analysis of fault trees in the Boolean 
domain. We demonstrate here that in many 
cases this analysis is possible via elementary 
fault-tree manipulations that use the concept of a 
Boolean quotient (known also as a Boolean 
ratio, subfunction or restriction)[40-52] to 
implement Bayes’ Theorem effectively in the 
Boolean domain. Again, a demonstrative 
example is given to illustrate the Boolean a 
posteriori FTA and explain its details, and show 
that the power of BNs is not really warranted in 
simple cases. A detailed comparison between 
the two kinds of a posteriori FTA is also given 
with the hope of setting the stage on how they 
can be further interrelated and even combined. 
Section 5 concludes the paper and points out 
new directions for further research. 
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Table 1. Comparison of the two kinds of a posteriori analysis of fault trees. 
 

 First kind  Second kind 

Basic assumption 
Expert guessing of certain ratios among 
probabilities of inputs of various gates. 

Knowledge of basic-event a priori  
probabilities 

Nature of relation considered  
Local gate relations between the 

probabilities of the output and input of single 
gates  

An overall tree relation between the top-
event probability and basic-event 

probabilities 

Forward analysis incorporated ? No Yes  

Mathematics needed  
Solution of algebraic equations (essentially 

quadratic equations) 

Classical Bayesian analysis involving  an 
equivalent of the Total Probability Theorem, 

and Bayes’ Theorem 

Implementation via Bayesian Networks No 
Possible (Necessary only to avoid 

limitations of FTAs) 

Utility as an aid to a priori analysis  Yes No 

Utility as an aid to guessing input probability 
ratios 

No Yes 

Typical applications Forensic analysis of terrorist attacks Diagnosis of safety-critical systems 

Seminal work Shooman[22] Bobbio, et al.,[23]; Langseth and Portinale[24] 

2. Notation, Abbreviations and Nomenclature 

A. Notation ܲ(ܣ) = Probability of the event A. ݎ = Ratio of ܲ(ܣ) to ܲ(ܣ) for ݅ = 1,2, … , ݊, ݎ = 1. …}	ܧ  } = Expectation or expected value of a random variable {…}. ݁ = A probabilistic event; input ݅ of an AND or an OR gate. ܽ = A probabilistic event; output of an AND gate of n inputs.  = A probabilistic event; output of an OR gate of n inputs. ܴିଵ = ܴܽ݅ݐ	݂	ܲ ൬ራ ିଵୀଵܣ ൰ ݐ ݅ for (ܣ̅)ܲ to (ܣ̅)ܲ  = Ratio ofݐ .ܺ  = A fault-tree event labelled by indicator variable݁ .(ܣ)ܲ = 1, 2, … ,			݊, ݐ = 1.
 ܶ = Particular name for the indicator variable of the top event ்݁ of the fault 
tree. ܺ = Generic name for the indicator variable of a certain FT event ݁. This is a 
random Boolean (switching) variable such that: 
 ܺ = 1	( തܺ = 0) if the event ݁ occurs,	and  ܺ = 0	( തܺ = 1) if the event ݁ does not occur. ݔ = ݔ Expectation of the indicator variable ܺ given by = {ܺ}ܧ = {ܺ}ܧ = (1)ܲ(ܺ) + (0)ܲ( തܺ) = ܲ(ܺ), 
i.e., it is equal to the probability of occurrence of event ݁. 
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B. Abbreviations 

FTA Fault-Tree Analysis, 

ME Mutually Exclusive(ness), 

SI Statistically Independent/Statistical Independence, 

BN Bayesian Network. 

C. Nomenclature 

Forward (a priori or a predictive) fault tree 
analysis:  
A fault-tree analysis in which the basic-event 

probabilities are known. The analysis chains 
forward to obtain higher-level event 
probabilities and terminates with a prediction of 
the top-event probability. This is the 
conventional fault-tree analysis, and it is what is 
meant when simply fault-tree analysis is 
mentioned.  
Backward ( a posteriori or diagnostic ) fault 
tree analysis:  
A fault-tree analysis in which the top-event 
probability is known. This analysis is mainly 
used when the top event is assumed to have 
occurred and hence has a probability of one.  
A posteriori FTA of the first kind:  
A fault-tree analysis that chains backward to 
obtain lower-level event probabilities (under 
certain realistic assumptions), and terminates 
with a knowledge of all basic-event 
probabilities. The analysis relies on the solution 
of algebraic equations expressing probabilities 
of the inputs of a certain gate in terms of the 
probability of its output. Such a solution 
proceeds recursively from the top gate (whose 
output has a known probability, typically one) to 
lower-level gates terminating at the leaf gates. 
Typically, the analysis relies on the expert 
guessing of certain ratios among probabilities of 
various gates. 
 

A posteriori FTA of the second kind:  
A fault-tree analysis that starts with a priori 
knowledge of basic-event probabilities, utilizes 
this knowledge in forward analysis to compute 
the top-event probability, and then (under the 
assumption that the top event has occurred) uses 
Bayes’ theorem to deduce the a posteriori basic-
event probabilities. 
Bayesian Network (BN):  
A directed acyclic graph in which discrete 
random variables are assigned to each node, 
together with the conditional dependence on the 
parent nodes. Root nodes are nodes with no 
parents, and marginal prior probabilities are 
assigned to them. The main feature of a BN is 
that it is possible to include local conditional 
dependencies into the model, by directly 
specifying the causes that influence a given 
effect. Bayesian Networks[23, 24] are usually 
defined on discrete random variables, though 
some extensions have been proposed for 
extending the formalism to some form of 
continuous random variables. BN are more 
suitable to represent complex dependencies 
among components and to include uncertainty 
and multi-state behavior in modeling[23, 24]. 
Mapping BNs into FTs:  
It is quite straightforward to map a given FT 
into an equivalent BN with binary nodes, where 
the FT’s gates (with input and output events) are 
mapped into small BN fragments, whose 
combination produces the whole BN 
corresponding to the given FT. In other words, 
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the modular construction of an FT can be 
mapped into a modular construction of an 
equivalent BN. The modeling flexibility of the 
BN formalism can accommodate various kinds 
of statistical dependencies Uncertainties, and 
multi-state behavior that are difficult to include 
in the FT formalism[23, 24]. 
Reliability-Ready Expression (RRE): An 
expression in the switching (Boolean) domain, 
in which logically multiplied (ANDed) entities 
are statistically independent and logically added 
(ORed) entities are disjoint. Such an expression 
can be directly transformed, on a one-to-one 
basis,  to the algebraic or probability domain by 
replacing switching (Boolean) indicators by 
their statistical expectations, and also replacing 
logical multiplication and addition (ANDing 
and ORing) by their arithmetic counterparts  
Rules for the conversion of a general switching 
(Boolean) expression into a PRE are provided 
in[8, 9, 52-56]. 
Duality:  
The dual of a switching function is obtained by 
complementing the function and all its 

switching arguments (inverting both output and 
inputs)[56-58]. 

3. The a Posteriori Analysis in the 
Probability domain 

Since the a posteriori analysis of a fault tree 
can be accomplished in terms of that of single 
gates, this section is devoted to the a posteriori 
analysis of single AND or OR gates, first 
generally, and then subject to the Mutual 
Exclusiveness (ME) or Statistical Independence 
(SI)  assumptions. The analysis technique is 
then demonstrated via a detailed numerical 
example. 
3.1. General Analysis of AND and OR gates  

The aim of this subsection is to discuss the 
general analysis of AND and OR gates, stress 
the utility of the concept of duality in such 
analysis, and point out the considerable 
reduction in complexity when the inputs are 
either Mutually Exclusive (ME) or Statistically 
Independent (SI). 
The output ܽ of an AND gate of ݊ inputs ݁ଵ, ݁ଶ, … , ݁ has a probability given in terms of 
conditional probabilities as[25] P(a୬) = P ൬ሩ e୧୬୧ୀଵ ൰ = P(eଵ)P(eଶ|eଵ)P(eଷ|eଵeଶ)…P(e୬|eଵeଶ … e୬ିଵ),																																																							(1) 

 
while the output  of an OR gate of 	݊ inputs ݁ଵ, ݁ଶ, … , ݁ has a probability given by the Inclusion-

Exclusion Principle[25, 59, 60]: 
()ܲ  = ܲ ൭ራ݁

ୀଵ ൱ = 	 ܲ(݁)ୀଵ − ܲ൫݁ 	∩ ݁൯ଵஸழஸ + ܲ൫݁ ∩ ݁ ∩ ݁൯ଵஸழழஸ − ⋯+ (−1)ିଵ	ܲ ൬ሩ ݁ୀଵ ൰.																						(2) 
Note that (2) expresses the output of an OR gate 
in terms of the outputs of many binary or multi-
input AND gates, which need to be expressed 
via (1) or extensions thereof. The AND and OR 

gates are dual gates. Complementation of both 
inputs and output of one gate produces the other 
gate. This is the essence of the two De Morgan’s 
laws, visually represented by Fig. 1, and 
mathematically given by 

 ൜o୬ =ራ 	e୧୬୧ୀଵ ൠ 	⇔ ൜oത୬ =ሩ 	eത୧୬୧ୀଵ ൠ,						(3) 
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 ൜a୬ =ሩ 	e୧୬୧ୀଵ ൠ ⇔ ൜aത୬ =ራ 	eത୧୬୧ୀଵ ൠ.									(4) 
 

According to (3) and (4), the analysis of an AND (OR) gate can be converted to the dual analysis of 
an OR (AND) gate. Therefore, the analyst has a choice to analyze any given gate directly as is or 
indirectly in terms of its dual gate. 
 

 
 

Fig. 1.  Visual Interpretation of De Morgan’s Laws. 
 
The analysis of an AND gate via (1) requires the
 use of conditional probabilities, while the 
analysis of an OR gate via (2) involves an 
exponential number (2 − 1) of terms, many of 
which necessitate the use of conditional 
probabilities in expressions similar to (1). There 

is a considerable reduction in the complexity of 
the analysis when the events e୧ are either 
Mutually-Exclusive (ME) or Statistically 
Independent (SI). 

 
If the events e୧ are ME, i.e., if ݁ 	∩ 	 ݁ = ∅		∀	i and	j,																																										(5) 
then (1) and (2) reduce respectively to ܲ(ܽ) = 0,		ME	݁,																																														(6) 

()ܲ  = ܲ ൭ራ݁
ୀଵ ൱ =ܲ(݁)

ୀଵ  (7)									.݁	ܧܯ,
If, instead the events ݁ are SI, i.e., if 

ܱ

݁ଵ ݁ଶ ݁ ݁ଵ ݁ଶ ݁

തܱ 

ܽ
݁ଵ ݁ଶ ݁ 

തܽ 

݁ଵ ݁ଶ ݁ 
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 ܲ൫݁| ݁൯ = ܲ(݁),				∀	݅	and j,																																											(8) 
or equivalently, if ܲ൫݁ ∩ ݁൯ = ܲ(݁)	ܲ൫ ݁൯,																																																(9) 

 
then (1) and (2) reduce respectively to 

 P(a୬) =ෑ P(e୧)୬୧ୀଵ  (10)																																							.݁	ܫܵ			,
()ܲ =ܲ(݁)

ୀଵ −  ܲ(݁)ܲ൫ ݁൯ଵஸழஸ +  ܲ(݁)ܲ൫ ݁൯ܲ(݁)ଵஸழழஸ − ⋯
+ (−1)ିଵ 	ෑܲ(݁)

ୀଵ = 1 −ෑ〖(1 −〗ܲ(݁)൯
ୀଵ ,  (11)																																																												.݁	ܫܵ

Note that (11) can also be obtained from (3) and (10) in the equivalent complementary form ܲ(̅) =ෑ ܲ(݁̅)ୀଵ ,  (12)																																										.݁	ܫܵ
3.2. Analysis of an AND gate with SI inputs 

We assume that the probability of the output ܽ of the AND gate is known, say ܵ. This 
probability is exactly 1 if the event ܽ is known 
to have occurred. Otherwise, it would be 

available through expert estimation or through a 
posteriori analysis of higher-level gates. Since 
the inputs of the AND gate are SI, equation (10) 
is applicable and reduces to  

 ෑ ܲ(݁) = ܵୀଵ ,  (13)																																																.݁	ܫܵ
Following Shooman[9], we assume that we can express each of the probabilities in (13) as a ratio ݎ 
of the last probability among them ܲ(݁), namely  
 ܲ(݁) = ,ܲ(݁)	ݎ 1 ≤ ݅ ≤ ݊,																																																	(14) 
 
where ݎ = 1. Substituting (14) in (13), we solve (13) for each of the probabilities ܲ(݁) as  
 	ܲ(݁) = ݎ 	ቆෑ ୀଵݎ ቇିଵ ܵ൩ଵ/ , 1 ≤ ݅ ≤  (15)			.݁	ܫܵ				,	݊
 
3.3. Analysis of an OR gate with ME Inputs 
The case studied in this subsection is the only 
case studied by Shooman[22]. Here, equation (7) 

is applicable, and the probability of the output ܶ of the OR gate is known, say ܵ. Hence, 
equation (7) can be rewritten as: 
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  ܲ(݁)ୀଵ = 	ܵ,ܧܯ	e୧.																																																(16) 
 

Now, making the assumption (14) and substituting (14) in (16), we can solve (16) for each of the 
probabilities ܲ(݁) as: 
 ܲ(݁) = ܵ	ݎ 		ቈ ୀଵ	ݎ ିଵ .		1 ≤ ݅ ≤  	(17)											.݁	ܧܯ			,݊
 
Note that (17) for the ME inputs of 
OR has some resemblance with (15) for the SI inputs of AND. 
3.4.  Analysis of an OR gate with SI inputs 

The OR gate with SI inputs is analyzed in a direct fashion in subsection 3.4.1 and is analyzed via its 
dual representation in subsection 3.4.2. 
3.4.1. Direct Analysis 

The output of an OR gate with ݊ inputs can be written as:  = 	ራ ݁ୀଵ = ିଵ	 ∪	݁	,															(18) 
where  ିଵ = 	ራ ݁ିଵୀଵ 	.																																		(19) 
 
Since the event ݁ is statistically independent 
of each of the events ݁	(1 ≤ ݅ ≤ ݊ − 1), then 
it is also independent of their union ିଵ. The 
expression (18) allows the Inclusion-Exclusion 
Principle (2) to be rewritten as:  
 ܵ = ()ܲ = (ିଵ)ܲ + ܲ(݁) −  (20)		.(݁)ܲ(ିଵ)ܲ
 
Now, we assume that we can express ܲ(ିଵ) 
as a ratio ܴିଵ	of ܲ(݁), i.e. 
 

(ିଵ)ܲ  = ܴିଵ	ܲ(݁),																						(21) 
 
and hence obtain the following quadratic 
equation in ܲ(݁) 
 ܴିଵሾܲ(݁)ሿଶ − (1 + ܴିଵ)ܲ(݁) +	ܵ = 0.		(22) 

 
Equation (22) has two solutions: 
 ܲ(݁) = 12ܴିଵ 	ൣ(1 + ܴିଵ) ∓ ,൧ܦ√ (23) 
 
where the discriminant ܦ is  
ܦ  = (1 + ܴିଵ)ଶ − 4ܴିଵܵ 		= 	 1 + ܴଶିଵ + 2ܴିଵ − 4ܴିଵܵ 	≥ (2ܴିଵ) + 2ܴିଵ − 4ܴିଵܵ 	= 4ܴିଵ(1 − ܵ) ≥ 0.																		(24) 

 

In (24), we made use of the fact that ܵ is a 
probability and hence must be less than or 
equal to 1. Equation (24) indicates that the 
discriminant ܦ is non-negative, and hence 
both roots in (22) are real. Equation (24) also 
indicates that  √ܦ ≤ (1 + ܴିଵ),																																		(25) 
and hence both roots in (23) are positive. 
However, we now reject the positive sign in 
(23) since it corresponds to the solution ܲ(݁) = 12ܴିଵ 	ൣ(1 + ܴିଵ) +  (26ܽ)																																					൧,ܦ√
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(ିଵ)ܲ  = 12	ൣ(1 + ܴିଵ) +  (26ܾ)																																											൧,ܦ√
which corresponds to a probability ܲ(݁) > 1 if ܴିଵ < 1, and to a probability ܲ(ିଵ) > 1 if ܴିଵ > 1. The only possibility of accepting the positive sign in (23) is the trivial case ܴିଵ = 1, ܵ = 1 for which ܦ is 0 and the two roots in (22) are equal. Hence, our final solution of (22) is  ܲ(݁) = 12ܴିଵ 	(1 + ܴିଵ) − ((1 + ܴିଵ)ଶ − 4ܴିଵܵ)ଵଶ൨ , (27ܽ) 
(ିଵ)ܲ  = 12	(1 + ܴିଵ) − ((1 + ܴିଵ)ଶ − 4ܴିଵܵ)ଵଶ൨.													(27ܾ) 

 
Now we use ܵିଵ to denote ܲ(ିଵ) and 
continue our work recursively to obtain the 
probabilities ܲ(݁ିଵ), ܲ(݁ିଶ), … , ܲ(݁ଵ). 
Figure 2 summarizes the previous 
computations in flow-chart form. 
 

3.4.2. Dual Analysis 
An alternative analysis of an OR gate with SI 

inputs is possible via equation (12). Now, we 
assume that each of the probabilities of the 
complementary events in (12) is expressed as a 
ratio ݐ of the last probability among them ܲ(݁̅), i.e.,  

 
 

Fig. 2.  Assigning probabilities for n statistically-independent inputs of an OR gate given the probability of its output. ܲ(݁̅) = 1			ܲ(݁̅),	ݐ ≤ ݅ ≤ ݊,																																																													(28) 

For  Pr{(ܣଵ ∪ ଶܣ ∪ … ∪ (ିଵܣ ∪ ܣ }.   
Use the quadratic formula with Pr{ܣଵ ∪ ଶܣ ∪ … {ିଵܣ∪ = ିଵPrݎ  to obtain {ܣ}

Start 

(݇ = 1, 2, … , (݊ − 1)), ܵRead for (݊ ≥  ݎ ,(1

Pr{ܣଵ ∪ ଶܣ ∪ … ∪ ିଵܣ ∪ ܣ } = ܵ 
Consider 

݊ = 1 Stop 
{}ܚ۾  =  ࡿ

No {݊ > 1} 
Yes 

Value of Pr{ܣଵ ଶܣ	∪ 	∪ … ∪ ିଵܣ } = ܵିଵ Pr{ܣ } = ܲ 
Value for 

݊ ≔ ݊ − 1 Stop 
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where ݐ = 1. Equating the RHS of (12) to ܵ and substituting (28) into the resulting equation, we can 
solve (12) for each of the complementary probabilities ܲ(݁̅) as  
 ܲ(݁̅) = 	 ݐ 	ቆෑ ୀଵݐ ቇିଵ (1 − ܵ)൩ଵ/ , 1 ≤ ݅ ≤ ݊,				SI ݁̅.												(29) 
 

In passing, we note that we used the 
assumption (28) to obtain a simple solution. Had 
we insisted on using the assumption (14), we 
would have obtained an ݊th – degree equation 
in each ܲ(݁). The alternative (equally good) 
assumption in (28) saved us the trouble of 
solving an ݊th degree polynomial equation and 
the associated difficulty of selecting the 
appropriate root from a set of  ݊ roots.   
 
 

Example 1:  
Figure 3 displays a fault tree that combines 

all the special cases considered. It has an OR 
gate with three ME inputs, an AND gate with 
three SI inputs, and an OR gate with three SI 
inputs. Let us assume that the top event 
probability ܲ(ଷ) is known to be ܵଷ = 0.9. We 
need to find all the basic-event probabilities. We 
start by estimating the probabilities of the events ݁ଵ, ݁ଶ,	and	݁ଷ which are the ME inputs of the 
top OR gate. We now assume we know the 
following probability ratios.  

 
 

 
 

Fig. 3. A simple example of a fault tree that has an OR gate with MI inputs, an AND gate with SI input and an OR gate with 
SI inputs. ݎଵ = ܲ(݁ଵ)/ܲ(݁ଷ) 	= ଶݎ (30ܽ)																																																																,0.2 = ܲ(݁ଶ)/ܲ(݁ଷ) 	= ଷݎ (30ܾ)																																																																,0.3 = ܲ(݁ଷ)/ܲ(݁ଷ) 	= 1.0.																																																																(30ܿ) 

 
Hence, according to (17), we obtain 

 ଷ



 Exposition and Comparison of Two Kinds of a Posteriori Analysis of Fault Trees 65 
 
 ܲ(݁ଵ) = ܵଷݎଵݎଵ + ଶݎ + ଷݎ = (0.9)(0.2)0.2 + 0.3 + 1.0 	= 0.12,																					(31ܽ) 
 ܲ(݁ଶ) = ܵଷݎଶݎଵ + ଶݎ + ଷݎ = 0.18,																																																								(31ܾ) 
 ܲ(݁ଷ) = ܵଷݎଷݎଵ + ଶݎ + ଷݎ = 0.60,																																																											(31ܿ) 
As expected ܲ(݁ଵ), ܲ(݁ଶ)	and	ܲ(݁ଷ) are in the 
ratio of 0.2: 0.3: 1.0	and add up to ܵଷ = 0.9. We now know the probability of the 
output ݁ଵof the AND gate, and need to assess 
the probabilities of its inputs ݁ସ, ݁ହ,	and	݁. 
Again we assume we know the following 
probability ratios. 
ସݎ  = ܲ(݁ସ)/ܲ(݁) 	= ହݎ (32ܽ)																		,0.4 = ܲ(݁ହ)/ܲ(݁) 	= ݎ (32ܾ)																		,0.5 = ܲ(݁)/ܲ(݁) 	= 1.0.																		(33ܿ) 
Hence , according to (15), we obtain 

ܲ(݁ସ) = 	ሿଵଷ(ݎହݎସݎ)/ସሾܲ(݁ଵ)ݎ 	= 0.33737, (33ܽ) 
 ܲ(݁ହ) = 	ሿଵଷ(ݎହݎସݎ)/ହሾܲ(݁ଵ)ݎ 	= 0.42172, (33ܾ) 
 ܲ(݁) = 	ሿଵଷ(ݎହݎସݎ)/ሾܲ(݁ଵ)ݎ 	= 0.84343. (33ܿ) 

 
As expected ܲ(݁ସ), ܲ(݁ହ)	and	ܲ(݁) are (to 
within roundoff-errors) in the ratio 0.4:	0.5:	1.0 
and their product is 0.12. Likewise, we use our 
knowlodge of the probability of the output ݁ଷ of 
the OR gate with ܵܫ inputs ݁, ଼݁, ݁ଽ to estimate 
the probabilities of these inputs. We use the dual 
analysis in Sec. 3.4.2, and starting with ܲ(݁̅ଷ) =0.4, we obtain ܲ(݁̅), ܲ(଼݁̅) and ܲ(݁̅ଽ). We 
assume we know the probability ratios 
ݐ  = ܲ(݁̅)/ܲ(݁̅ଽ) 	= ଼ݐ (34ܽ)																											,0.6 = ܲ(଼݁̅)/ܲ(݁̅ଽ) 	= ଽݐ (34ܾ)																										,0.7 = ܲ(݁̅ଽ)/ܲ(݁̅ଽ) 	= 1.0,																										(34ܿ) 

 
Hence, according to (29), we obtain ܲ(݁̅) = 	ሿభయ(ଽݐ଼ݐݐ)/ሾܲ(݁̅ଷ)ݐ 	= 0.59032, (35ܽ)  ܲ(଼݁̅) = 	ሿଵଷ(ଽݐ଼ݐݐ)/ሾܲ(݁̅ଷ)଼ݐ 	= 0.68871, (35ܾ) ܲ(݁̅ଽ) = 	ሿଵଷ(ଽݐ଼ݐݐ)/ሾܲ(݁̅ଷ)	ଽݐ 	= 0.98387, (35ܿ) 
 
As expected, ܲ(݁̅), ܲ(଼݁̅), and	ܲ(݁̅ଽ) are (to 
within roundoff-error) in the ratio 0.6:	0.7:	1.0 
and their product is 0.4. The original 
probabilities are ܲ(݁) = 0.40968, ܲ(଼݁) =0.31129, and ܲ(݁ଽ) = 0.01613. 

4. The a Posteriori Analysis in the Boolean 
Domain 

 

In this section, we demonstrate how to apply 
Bayes’ theorem to achieve a posteriori FTA via 
manipulations in the Boolean domain. Let the 
top event be denoted by ்݁ and a basic event be 
denoted by ݁, then Bayes' Theorem[25] states 
that  
 ܲ{	݁|்݁} = ܲ {்݁ ∩ ݁} ܲ{்݁}, (36) 
 
provided ܲ{்݁} ≠ 0. This theorem can be 
restated In terms of the indicator variables ܶ and ܺ of the events ்݁ and ݁ when noting that the 
various probabilities in (36) can be rewritten as 
expectations, i.e.,  
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 ܲ	{݁௫|்݁} =  (37ܽ)																										,{ܶ|ܺ}ܧ
 ܲ(்݁ ∩ ݁} =  (37ܾ)																				,{ܺ	⋀	ܶ}ܧ
 ܲ	{்݁|݁} =  	(37ܿ)																								,{ܺ|ܶ}	ܧ

 
 So that (36) can be rewritten as  
 ܲ{݁|்݁} ≡ {ܶ|ܺ}ܧ = ܶ}	ܧ ∧ .{ܶ}	ܧ	/{ܺ (38) 
 
Equation (38) is valid provided ܧ{ܶ} ≠ 0. Now 
we can obtain the a posteriori probability ܲ{݁|்݁} by pursuing the following steps:  
 

1. Express ܶ as  a PRE (preferably the 
simplest possible) as a Boolean function 
of indicator variables (including X). 
Note that the job of forming a PRE is 
needed only once ( at this initial step).  

2. The indicator variable (ܶ|ܺ) is the 
Boolean quotient of ܶ with respect to ܺ, 
i.e.  ܶ|ܺ = ܶ/ܺ	 = ܶሿୀଵ,																					(39) 

 
Further information on the Boolean 
quotient is given in Appendix A. Since ܶ	is in PRE form, each (ܶ|ܺ), for any 
choice of ܺ, is also in PRE form.  

3. The indicator variable (ܶ	⋀	ܺ) is 
obtained via (4ܣ) as  
 (ܶ ∧ ܺ) = ܺ	 ∧ (ܶ|ܺ).																					(40) 
 
Since  (ܶ|ܺ) is independent of ܺ and is 
in PRE form, then ܺ	 ∧ (ܶ|ܺ) is also in 
PRE form.  
 

4. The expectations ܧ	{	ܶ ∧ ܺ} and  ܧ	{	ܶ} 
in the RHS of (38) are now obtained 
immediately as one –to- one 

transformations of the PREs for (ܶ ∧ ܺ) 
and (ܶ).  
 
The details of this method is now 
illustrated by applying it to a fault-tree 
example studied via Bayesian Networks 
by Bobbio, et al.,[23]. 

Example 2: 
This example, originally taken from 

Malhotra and Trivedi[61], deals with the fault 
tree shown in Fig. 4. Bobbio, et al.,[23] solve this 
example by mapping the fault tree into a 
Bayesian network. We will demonstrate that 
such a mapping is not really warranted since 
fault-tree techniques suffice in this case. The 
fault tree represents a redundant multiprocessor 
system, with a single bus N connecting two 
processors ଵܲ and ଶܲ having access to a local 
memory bank each (ܯଵ and ܯଶ), and through 
the bus to a shared memory bank ܯଷ, so that if 
the local memory bank fails, the processor can 
use the shared one. Each processor is connected 
to a mirrored disk unit. If one of the disks fails, 
the processor switches on the mirror. The whole 
system is functional if the bus ܰ is functional 
and one of the processing subsystems is 
functional. With a little abuse of notation, we 
are using the same upper-case un-
complemented literal to denote a component, 
and also to denote the indicator variable for its 
failure. We can write the indicator T for the top 
event as a disjunction of cutset failures as in (3) 
of Bobbio, et al.,[23], but if we do so, we lose the 
ability to utilize statistical independence among 
basic events and end up with a complicated 
expression for the top-event probability. Instead, 
we write ܶ as  
 ܶ = ܰ	 ∨ ( ଵܵ	ܵଶ),																														(41) 
 
where ଵܵ and ܵଶ are given by  
 ଵܵ = ଵܲ ∨ ଵଶܦଵଵܦ ∨ (42) ܵଶ													ଷ,ܯଵܯ = 	 ଶܲ ∨ ଶଶܦଶଵܦ ∨  (43)											ଷ,ܯଶܯ
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We note that ଵܵ and ܵଶ would have been 
statistically independent had there been no 
common element ܯଷ between them. To 
circumvent this problem, we use a Boolean- 
Shannon expansion about ܯଷ to obtain  ଵܵܵଶ = ൫	ഥଷܯ ଵܵܵଶห0ெయ൯ 	∨ ଷ൫ܯ ଵܵܵଶห1ெయ൯ =	ܯഥଷ	( ଵܲ ∨ )	(ଵଶܦଵଵܦ ଶܲ ∨ ∨(ଶଶܦଶଵܦ )ଷܯ	 ଵܲ ∨ ଵܯ 	∨ 	)(ଵଶܦଵଵܦ ଶܲ∨ ଶܯ ∨  (44)														ଶଶ),ܦଶଵܦ
 
Note that (44) contains two disjoint parts, thanks 
to the appearance of ܯഥଷ in the first part and ܯଷ 
in the second part. The subfuctions of ଵܵܵଶ in 
the two parts now consist each of factored 
statistically independent entities. We substitute 
(44) into (41), and use disjointing techniques[2, 8, 

9, 53-59, 62-71] to convert the resulting expression 
into the Probability-Ready Expression  ܶ = ܰ	 ∨ ഥܰ 	ቀܯഥଷ( ଵܲ ∨ തܲଵ	ܦଵଵܦଵଶ)( ଶܲ∨ തܲଶ	ܦଶଵܦଶଶ) 	∨ ൫	ଷܯ ଵܲ∨ തܲଵ(ܯଵ ∨ ଵଶ)൯൫ܦଵଵܦ	ഥଵܯ ଶܲ∨ തܲଶ(ܯଶ∨  (45)												ଶଶ)൯ቁ.ܦଶଵܦ	ഥଶܯ
 
The PRE (45) is converted, on a one-to-one 
basis, into the probability expression  "ݐ = ݊ + (1 − ݊)((1 − 1_)(	3_݉ + (1 2_)(	12_݀	11_݀		(	1_− + (1 (	22_݀	21_݀	(	2_− + !_)	3_݉ + (1 1_݉)(	1_− + (1 − 2_)		(	12_݀	11_݀(1_݉ + (1 2_݉)(	2_− + (1 − ݉_2	)	݀_21	݀_22	)).						(46)"  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4. Fault Tree for a multiprocessor system (taken from[23] and[61]). 

Table 2. Values of the indicator of the top event conditioned by the indicator ࢄ of a basic event (equivalent to the Boolean quotient ࢄ/ࢀ). 
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 ܺ ܶ|ܺ 

 ଵଵܦ
 ܰ	 ∨ ഥܰ	(ܯഥଷ( ଵܲ ∨ തܲଵ	ܦଵଶ)( ଶܲ ∨ തܲଶ (ଶଶܦଶଵܦ ∨ ଷ൫ܯ ଵܲ ∨ തܲଵ ଵܯ) ∨ ଵଶ)൯൫ܦഥଵܯ ଶܲ ∨ തܲଶ	(ܯଶ ∨  (ଶଶ)൯ܦଶଵܦ	ഥଶܯ
 

ଵܲ 
 ܰ	 ∨ ഥܰ	(ܯഥଷ( ଶܲ ∨ തܲଶ (ଶଶܦଶଵܦ ∨ ଷܯ ൫ ଶܲ ∨ തܲଶ ଶܯ) ∨ ഥଶܯ  (ଶଶ)൯ܦଶଵܦ
 ଵܯ 
 ܰ	 ∨ ഥܰ	(ܯഥଷ( ଵܲ ∨ തܲଵ )(ଵଶܦଵଵܦ ଶܲ ∨ തܲଶ (ଶଶܦଶଵܦ ∨ )ଷܯ ଶܲ ∨ തܲଶ ଶܯ) ∨  ((	(ଶଶܦଶଵܦ	ഥଶܯ
 ଷܯ 
 ܰ	 ∨ ഥܰ	( ଵܲ ∨ തܲଵ(ܯଵ ∨ ഥଵܯ (ଵଶܦଵଵܦ ∨ ൫ ଶܲ ∨ തܲଶ ଶܯ) ∨ ഥଶܯ  (ଶଶ)൯ܦଶଵܦ
 ܰ 1 

 
 

Table 3. The a priori and a posteriori probabilities of component failures in Example 2. 

 

 
Table 2 lists the conditional indicators or 

Boolean quotients (T/X), where X stands for  	ܦଵଵ, ଵܲ, ܯଵ, ܯଷ, and ܰ. Table 3 shows the a 
priori failure probabilities assumed by Bobbio, 
et al.,[23], and the a posteriori failure 
probabilities computed by them via Bayesian-
Network modelling. Table 3 also reports a 

posteriori probabilities computed via (38), under 
the assumption of equal reliabilities for similar 
components, i.e.,	݀ = ݀ଵଵ = ݀ଵଶ = ݀ଶଵ = ݀ଶଶ, ܲ = ଵܲ = ଶܲ, and ݉ = ݉ଵ = ݉ଶ = ݉ଷ. 
Thanks to (38), (40) and (46), one obtains ݐ = {ܶ}ܧ = ݊ + (1 − ݊)((1 − ݉)(ܲ + (1 − ܲ)݀ଶ)ଶ + ݉(ܲ+ (1 − ܲ)(݉ + (1 −݉)݀ଶ)ଶ)), (47) 

{ܶ|ܦ}ܧ  = ቀௗ௧ቁ ቆ݊ + (1 − ݊) ൬(1 − ݉)(ܲ + (1 − ܲ)݀)(ܲ + (1 − ܲ)݀ଶ) + ݉ ቀܲ + (1 − ܲ)(݉ + (1 − ݉)݀)൫ܲ +
(1 − ܲ)(݉ + (1 − ݉)݀ଶ)൯ቁ൰ቇ,																																																																																																																																																					(48) 
{ܶ|ܲ}ܧ   = ൬ܲݐ ൰ ൬݊ + (1 − ݊) ቀ(1 − ݉)(ܲ + (1 − ܲ)݀ଶ) + ݉൫ܲ + (1 − ܲ)(݉ + (1 −݉)݀ଶ)൯ቁ൰ , (49) 

{ܶ|ଵܯ}ܧ  = ቀ ݐ݉ ቁ ൬݊ + (1 − ݊) ቀ(1 − ݉)(ܲ + (1 − ܲ)݀ଶ)ଶ + ݉൫ܲ + (1 − ܲ)(݉ + (1 − ݉)݀ଶ)൯ቁ൰,					(50)	

Component ࢄ 
The a priori failure 

probabilities 

The a posteriori failure 
probabilities of Bobbio, et 

al.,[10] 

The a posteriori failure 
probabilities of (38) ܦଵଵ ࢊ = . ૢૡ . ૢૡ . ૢૢૠૡૢૠ ଵܲ ࡼ = .  .  . ૢૠ ܯଵ  = .  .  . ૡ ܯଷ  = .  .  .  ܰ  = .  . ૡ . ૡ 
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{ܶ|ଷܯ}ܧ  = ቀ ݐ݉ ቁ	ቀ݊	 + (1 − ݊)	൫ܲ + (1 − ܲ)(݉ + (1 −݉)݀ଶ)൯ଶቁ,																														(51) 
{ܶ|ܰ}ܧ  =  (52)																																																																							.ݐ/݊
 

In passing, we note that ܧ{ܦଵଵ|ܶ} = {ܶ|ଵଶܦ}ܧ = {ܶ|ଶଵܦ}ܧ = {ܶ|ଶଶܦ}ܧ = ,{ܶ|ܦ}ܧ }ܧ ଵܲ|ܶ} }ܧ= ଶܲ|ܶ} =   .{ܶ|ܲ}ܧ
However, ܧ{ܯଵ|ܶ} = {ܶ|ଶܯ}ܧ ≠   .{ܶ|ଷܯ}ܧ
 

The results obtained in Table 3 are at best 
intriguing. We were expecting to obtain 
identical or at least approximately equal 
results in the second column of Table 3 (the a 
posteriori failure probabilities of Bobbio, et 
al.,[23]), and the third column of Table 3 (the a 
posteriori failure probabilities computed 
herein via (38)). However, while the values 
for ܦଵଵ, ܯଵ, and ܯଷ are somewhat reasonably 
similar, the values for each of ଵܲ and ܰ differ 
by one order of magnitude. We argue that our 
computations are based on a simple fault-tree 
model that exactly fits our needs, and hence it 
is preferable according to Ockham's 

(Occam's) razor, which requires a model to 
retain the minimum of assumptions and 
details needed to capture all the essential 
features of what the model represents while 
excluding any extraneous or distracting 
features[72]. The details of our model are 
visible enough to allow an interested reader to 
check it by verifying the derivation of our 
equations and reproducing our numbers with 
a small calculator. In particular, our a 
posteriori failure probabilities can be easily 
seen to pass a simple check of satisfying the 
following conditional-probability equation 
derivable from (45). 

 1 = {ܶ│ܶ}ܧ = {ܶ│ܰ}ܧ +	(1 − 	1))({ܶ│ܰ}ܧ − {ܶ│1_ܲ}ܧ)({ܶ│3_ܯ}ܧ + {ܶ│2_ܲ}ܧ)({ܶ│12_ܦ}ܧ		{ܶ│11_ܦ}ܧ({ܶ│1_ܲ}ܧ−1) + ({ܶ│22_ܦ}ܧ{ܶ│21_ܦ}ܧ({ܶ│2_ܲ}ܧ−	1) + {ܶ│2_ܲ}ܧ)		{ܶ│3_ܯ}ܧ + (1 − {ܶ│1_ܯ}ܧ)({ܶ│2_ܲ}ܧ + (1	− {ܶ│2_ܯ}ܧ){ܶ│12_ܦ}ܧ		{ܶ│11_ܦ}ܧ)(({ܶ│12_ܦ}ܧ		{ܶ│11_ܦ}ܧ({ܶ│1_ܯ}ܧ + (1−  (53)																																																																														.((({ܶ│22_ܦ}ܧ		{ܶ│21_ܦ}ܧ		({ܶ│2_ܯ}ܧ
 
 
Conclusions 

We presented and compared two kinds of a 
posteriori analysis of fault trees, namely an 
analysis in the probability domain, and another 
in the Boolean domain. The main thesis of the 
probability-domain FTA is that it necessitates 
only the a posteriori analysis of single gates. 
Therefore, we discussed the general a posteriori 
analysis of single AND or OR gates, and then 

derived (under a variety of appropriate 
assumptions) a posteriori solution for an AND 
gate with SI inputs, an OR gate with ME inputs, 
and an OR gate with SI inputs. The results 
obtained are applied to a detailed fault-tree 
example. In addition, we treated the a posteriori 
analysis of fault trees in the Boolean domain. 
We demonstrated that in many cases this 
analysis is possible via elementary fault-tree 
manipulations that use the concept of a Boolean 
quotient (known also as a Boolean ratio, 
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subfunction or restriction) to effectively 
implement Bayes’ Theorem in the Boolean 
domain. Again, a demonstrative example was 
given to illustrate the Boolean a posteriori FTA 
and explain its details, and show that the power 
of Bayesian networks (BNs) is not really 
warranted in many simple (albeit significant) 
cases. A detailed comparison between the two 
kinds of a posteriori FTA was also given to set 
the stage for explaining how these two kinds can 
be interrelated and even combined. The 
essential difference between the two kinds is 
that the first kind takes place in the probability 
domain and relies on educated guessing and 
solution of algebraic equations, while the 
second kind is a novel implementation of Bayes' 
Theorem in the Boolean domain, and acts 
occasionally as a suitable alternative to using the 
too-powerful technique of Bayesian networks. 
We stress herein that results obtained via the 
second kind of a posteriori FTA are much 
easier to verify and replicate than those obtained 
via Bayesian networks. 

Further research is needed to utilize the two 
aforementioned kinds of a posteriori FTA in 
more practical situations, and to explore the 
possibility of existence of other kinds of a 
posteriori FTA. The comparison between the 
given two kinds of a posteriori FTA should be 
extended to further interrelate and even combine 
them. The implementation of Bayes' Theorem in 
the Boolean domain warrants further 
investigation, and opens new avenues for 
pedagogical and computational applications in 
probability theory and reliability engineering. 
An urgent issue to pursue is to solve many 
simple as well as complicated examples via both 
the second kind of a posteriori FTA and the 
Bayesian-network analysis to see if they do 
really agree or to identify reasons of 
disagreement between them and to locate where 

discrepancy between them emerges.   

Appendix A: Boolean Quotient  

Let us define a literal to be a letter or its 
complement, where a letter is a constant or a 
variable. A Boolean term or product is a 
conjunction or ANDing of m literals in which 
no letter appears more than once. For m=1, a 
term is a single literal and for m=0, a term is the 
constant 1. Note that, according to this 
definition the constant 0 is not a term. Given a 
Boolean function ࣹ and a term t, the Boolean 
quotient of ࣹ with respect to t, denoted by (ࣹ/ݐ), is defined to be the function formed from ࣹ 
by imposing the constraint {t = 1} explicitly[44], 
i.e.  
ݐ/ࣹ  = 	 ሾࣹሿ௧ୀଵ,																																		(1ܣ) 
 
The Boolean quotient is also known as a 
ratio[40], a subfunction[41, 43, 45-50], or a 
restriction[42]. Brown[44] lists and proves several 
useful properties of Boolean quotients, of which 
we reproduce the following ones: 
 ࣹ/1 =  (2ܣ)																																												,ࣹ
ݐݏ/ࣹ  = ݐ/(ݏ/ࣹ) = ≠ݐݏ	ݎ݂			,	ݏ/(ݐ/ࣹ) 0,  (3ܣ)

 ࣹ ≤ ݃		 ⟹ 	ݐ/ࣹ		 ≤  		ݐ/݃	
{for n-variable functions ࣹ and ݃ and an m-
variable term t with ݉ ≤ ݊}, (A4) 
ݐ  ∧ ࣹ = 	ݐ ∧ ̅ݐ (5ܣ)																															(ݐ/ࣹ) ∨ ࣹ = ̅ݐ ∨ 	ݐ (6ܣ)																																(ݐ/ࣹ) ∧ 	ࣹ	 ≤ 		ݐ/ࣹ ≤ 	 ̅ݐ ∨  (7ܣ)																						ࣹ

 
In this Appendix, we followed Brown[44] in 

denoting a Boolean quotient by an inclined slash (ࣹ/ݐ). However, in the main text we denote it 
by a vertical bar (ࣹ|ݐ) to stress the equivalent 
meaning of  ࣹ conditioned by ݐ or ࣹ given ݐ. 
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إن أشــجار الأخطــاء هــي أدوات تحليليــة للاســتنباط المــنظم مــن أعلــى إلــى أســفل، وهــي تتمتــع  .المســتخلص
ويمكــن تســمية التحليــل الأمــامي . والســلامة والأمــن بتطبيقــات متنوعــة فــي العديــد مــن المجــالات مثــل المعوليــة

لأشـــجار الأخطـــاء بالتحليـــل المســـبق لأنـــه يتوقـــع احتمـــال الحـــدث الأوجـــي لشـــجرة الأخطـــاء بدلالـــة احتمـــالات 
ا ومقارنـة تفصـيلية لنـوعين مـن التحليـل الخلفـي أو ا تعليميًـتقدم ورقـة البحـث هـذه استعراضًـ. أحداثها الأساسية

علــى ) البــولاني(المنطقــي  الميــدانالاحتمــالي و  الميــدانلأشــجار الأخطــاء يــتم تنفيــذهما فــي ) البَعــدي(اللاحــق 
الاحتمــالي كــون احتمــال الحــدث  الميــداننفتــرض فــي حالــة التحليــل اللاحــق لأشــجار الأخطــاء فــي . التــوالي

يمضـي هـذا . يحا للواحد الصـحا، كأن يتأكد لنا وقوع هذا الحدث ومن ثم يصبح احتماله مساويً الأوجي معلومً 
الاحتمـــالي لتقـــدير احتمـــالات الأحـــداث الأدنـــى فـــي إطـــار بعـــض  الميـــدانا بصـــورة معـــاودة فـــي التحليـــل قـــدمً 

التنـافي أو الاسـتقلال الإحصـائي لأحـداث المـدخلات لبوابـة منطقيـة محـددة، ومـع  :مثل ،الافتراضات الواقعية
 تقـدم هـذه الورقـة إجــراءً . مثـل هـذه الأحـداثنـة بـين احتمـالات الاسـتفادة مـن تخمينـات حصـيفة لقـيم نسـب معي

ويتجلــى هــذا . لتنفيــذ هــذا التحليــل اللاحــق لأشــجار الأخطــاء يعظــم الانتفــاع بمفهــوم المزاوجــة ا مفصــلاً رياضــيً 
الميـدان ا التحليل اللاحق لأشـجار الأخطـاء فـي تدرس الورقة أيضً . الإجراء من خلال مثال توضيحي مفصل

 .ا تعرف باسم الشـبكات الباييزيـةمتوفر في أدبيات الموضوع في صورة أداة قوية جدً وهذا التحليل . المنطقي
ا عـن طريـق معالجـات أوليـة لأشـجار الأخطـاء نظهر هنا أنـه فـي كثيـر مـن الحـالات يظـل هـذا التحليـل ممكنًـ

ومــرة . قــيالمنط الميــدانللتنفيــذ الفعــال لنظريــة بــاييز فــي ) المنطقــي(تســتخدم مفهــوم خــارج القســمة البــولاني 
المنطقــي، وشــرح  الميــدانأخــرى، يــتم إعطــاء مثــال توضــيحي لبيــان التحليــل اللاحــق لأشــجار الأخطــاء فــي 

نـورد مقارنـة . ا فـي الحـالات البسـيطةليس له مـا يبـرره حقًـ تفاصيله، وإظهار أن اللجوء لقوة الشبكات الباييزية
  .جه الشبه وأوجه الاختلاف بينهمايضاح أو اللاحق لأشجار الأخطاء لإ التحليل تفصيلية بين نوعي

 الميـــدانالاحتمـــالي،  يـــدانالم، )البَعـــدي(التحليـــل اللاحـــق ، التحليـــل المســـبقشـــجرة الأخطـــاء، : الكلمـــات الدالـــة
  ).البولاني(المنطقي 

  
 


