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Abstract. Fault trees are top-down formal deductive analytic tools with diverse applications in many fields
such asreliability, safety and security. Forward fault tree analysis (FTA) can be termed a priori analysis since
it predicts the top-event probability in terms of basic-event probabilities. This paper offers a tutorial
exposition and a detailed comparison of two kinds of backward or a posteriori FTA that are implemented in
the probability domain and in the Boolean domain, respectively. For the probability-domain a posteriori
FTA, it is assumed that the top event probability is known. For example, when the top event is presumed to
have occurred, then it has a probability of one. The analysis proceeds recursively in the probability domain to
assess the probabilities of lower events under certain redlistic assumptions such as mutual exclusiveness or
statistical independence of the input events for a specific gate, and with the utilization of educated guesses on
certain ratios of probabilities of such events. This paper offers a detailed mathematical procedure for
implementing this a posteriori FTA that makes the most of the concept of duality. The procedure is
demonstrated via a detailed illustrative example. The paper also considers the a posteriori FTA in the
Boolean domain. Such an analysisis available in the literature in terms of the very powerful tool of Bayesian
Networks (BNs). We demonstrate here that in many cases this analysis is still possible via elementary fault-
tree manipulations that use the concept of a Boolean quotient to effectively implement Bayes' Theorem in the
Boolean domain. Again, a demonstrative example is given to illustrate the Boolean a posteriori FTA, explain
its details, and show that the power of BNs is not really warranted in simple cases. A detailed comparison
between the two kinds of a posteriori FTA isalso given to identify their similarities and differences.
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1.Introduction

Fault trees are top-down forma deductive
analytic tools that have applications in many
fields such as reliability, safety, and security,
albeit sometimes they are used under a variety
of unwarranted disguised names such as success
trees, elicitation trees, attack trees, defense trees,
etc. Conventiona fault tree anaysis (FTA)
might be termed a forward, a priori, or
predictive analysis since it obtains the top-event
probability in terms of basic-event probabilities,
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or more generally it decides the probability of
any higher-level event in the tree in terms of the
probabilities of its lower-level eventd*®. The
reverse type of FTA might be termed a
backward, a posteriori, or diagnostic anaysis.
There are (at least) two kinds of this analysis,
which ae to be reviewed, anayzed,
demonstrated, compared and interrelated in this
paper.

The first kind of a posteriori FTA is due to
Shooman'® #. In this kind of analysis, it is
assumed that the top event has a known
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probability, eg., the top event could be
considered to have actualy occurred and hence
possess a probability of one. The analysis
proceeds recursively in the probability domain
to assess the probabilities of lower events under
certain realistic assumptions such as mutua
exclusiveness or statistical independence of the
input events for a specific gate, and utilization
of educated guesses on certain ratios of
probabilities of such events. By contrast, the
second kind of a posteriori analysis, as reported
by Bobbio, et al.” and Langseth and
Portinale®! is in essence a classical Bayesian
analysis involving an equivalent of the Total
Probability Theorem, and Bayes Theorem!®®.
A detailed comparison between the two kinds
of a posteriori analysis is given in Table 1.
Various aspects of the comparison in Table 1
will become clarified further as we proceed
throughout this paper.

While Shooman'®®  restricted the a
posteriori FTA to that of OR gates with
Mutually Exclusive (ME) inputs, we extend
the analysis to include both AND gates with
Statistically Independent (SI) inputs and OR
gates with either ME or Sl inputs. We derive
general solutions for al types of gates and
conditions with arbitrary numbers of inputs.
We aso outline the solution of the genera
case based on the use of the Inclusion-
Exclusion  Principle  with  simplifying
assumptions other than the ME or Sl
assumptions.

The second kind of a posteriori anaysis is
typically conducted by mapping fault trees into
the more powerful tool of Bayesian networks
(BNs), which are known also (occasionally with
minor differences) as belief nets, causa
networks, probabilistic- dependence graphs, or
influence diagrams. Bayesian networks have

better capabilities than standard fault trees, such
as their capabilities to handle uncertainty,
statistical dependence or multi-state behavior 12
4263 However, the use of BNs in a posteriori
FTA might not be warranted in many important
problems that can ill be handled via (the
somewhat modest) capabilities of fault trees.

The organization of the remainder of this
paper is as follows. Section 2 lists our notation,
abbreviations and certain useful nomenclature.
Section 3 presents the a posteriori analysis of
fault trees in the probability domain. The main
thesis of this section is that such an analysis
necessitates only the a posteriori anaysis of
single gates. Therefore, section 3 discusses the
genera a posteriori analysis of single AND or
OR gates, and then derives (under a variety of
appropriate assumptions) a posteriori solution
for an AND gate with Sl inputs, an OR gate
with ME inputs, and an OR gate with Sl inputs.
The results obtained are applied to a detailed
fault-tree example. Section 4 treats the a
posteriori analysis of fault trees in the Boolean
domain. We demondtrate here that in many
cases this anaysis is possible via dementary
fault-tree manipulations that use the concept of a
Boolean quotient (known aso as a Boolean
ratio, subfunction or restriction)*®%? to
implement Bayes Theorem effectively in the
Boolean domain. Again, a demonstrative
example is given to illustrate the Boolean a
posteriori FTA and explain its details, and show
that the power of BNsis not really warranted in
simple cases. A detailed comparison between
the two kinds of a posteriori FTA is aso given
with the hope of setting the stage on how they
can be further interrelated and even combined.
Section 5 concludes the paper and points out
new directions for further research.
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Table 1. Comparison of thetwo kinds of a posteriori analysis of fault trees.

First kind Second kind
. . Expert guessing of certain ratios among Knowledge of basic-event a priori
Basic assumption probabilities of inputs of various gates. probabilities
Local gate relations between the An overall tree relation between the top-
Nature of relation considered probabilities of the output and input of single event probability and basic-event
gates probabilities
Forward analysisincorporated ? No Yes

Solution of agebraic equations (essentialy Classical Bayesian andlysisinvolving an

Mathematics needed quadratic equations) equivaent 0;:2%12;32 ﬁ’_rr(])ggiroelrlTl]ty Theorem,
Implementation via Bayesian Networks No Possi bll?rgl’i\tlm 'Cj_r;l'x;? avoid
Utility asanaidto a priori analysis Yes No
Utility asan aid to guessing input probability N v
ratios 0 es
Typical applications Forensic analysis of terrorist attacks Diagnosis of safety-critical systems
Seminal work Shooman'®@ Bobbio, et al.,?; Langseth and Portinalé?”
2.Notation, Abbreviations and Nomenclature
A. Notation
P(A4) =  Probability of theevent A.
T; = Ratioof P(4;)toP(4,) fori=12,..,n, 1, =1.
E{..} =  Expectation or expected value of arandom variable{...}.
e; = A probabilistic event; input i of an AND or an OR gate.
a, = A probabilistic event; output of an AND gate of n inputs.
0n = A probabilistic event; output of an OR gate of ninputs.
Rn—1 = : nt
Ratio of P (U Al-) to P(A,).
=1
ex = A fault-tree event labelled by indicator variable X .
t; = Raio of P@A;) to P@A,) for i=12.,nt, =1
T =  Particular name for the indicator variable of the top event e of the fault
tree.
X =  Generic name for the indicator variable of acertain FT event ey. Thisisa
random Boolean (switching) variable such that:
X =1 (X = 0)if the event ey occurs and
X =0(X = 1) if theevent e, does not occur.
x = E{X} =  Expectation of the indicator variable X given by

x = E{X} = (DPX) + (0)P(X) = P(X),
I.e., itisequal to the probability of occurrence of event ey.
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B. Abbreviations

FTA Fault-Tree Analysis,

ME Mutualy Exclusive(ness),

Sl Statistically Independent/Statistical Independence,

BN Bayesian Network.

C. Nomenclature
Forward (a priori or a predictive) fault tree
analyss.

A fault-tree analysis in which the basic-event
probabilities are known. The analysis chains
fooward to obtan higher-level  event
probabilities and terminates with a prediction of
the top-event probability. This is the
conventiona fault-tree analysis, and it iswhat is
meant when simply fault-tree analysis is
mentioned.

Backward ( a posteriori or diagnostic ) fault
treeanalyss:

A fault-tree anaysis in which the top-event
probability is known. This analysis is mainly
used when the top event is assumed to have
occurred and hence has a probability of one.

A posteriori FTA of thefirst kind:

A fault-tree analysis that chains backward to
obtain lower-level event probabilities (under
certain redlistic assumptions), and terminates
with a knowledge of dl basic-event
probabilities. The analysis relies on the solution
of algebraic equations expressing probabilities
of the inputs of a certain gate in terms of the
probability of its output. Such a solution
proceeds recursively from the top gate (whose
output has a known probability, typicaly one) to
lower-level gates terminating at the leaf gates.
Typicdly, the anaysis relies on the expert
guessing of certain ratios among probabilities of
various gates.

A posteriori FTA of the second kind:

A fault-tree analysis that starts with a priori
knowledge of basic-event probabilities, utilizes
this knowledge in forward analysis to compute
the top-event probability, and then (under the
assumption that the top event has occurred) uses
Bayes theorem to deduce the a posteriori basic-
event probabilities.

Bayesian Network (BN):

A directed acyclic graph in which discrete
random variables are assigned to each node,
together with the conditional dependence on the
parent nodes. Root nodes are nodes with no
parents, and margina prior probabilities are
assigned to them. The main feature of a BN is
that it is possible to include loca conditional
dependencies into the model, by directly
specifying the causes that influence a given
effect. Bayesan Networks®™ 2! are usually
defined on discrete random variables, though
some extensons have been proposed for
extending the formalism to some form of
continuous random variables. BN are more
suitable to represent complex dependencies
among components and to include uncertainty
and multi-state behavior in modeling®® 4.
Mapping BNsinto FTs:

It is quite straightforward to map a given FT
into an equivalent BN with binary nodes, where
the FT’ s gates (with input and output events) are
mapped into small BN fragments, whose
combination produces the whole BN
corresponding to the given FT. In other words,
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the modular construction of an FT can be
mapped into a modular construction of an
equivalent BN. The modeling flexibility of the
BN formalism can accommodate various kinds
of datistica dependencies Uncertainties, and
multi-state behavior that are difficult to include
in the FT formalism® 24,

Reliability-Ready Expresson (RRE): An
expression in the switching (Boolean) domain,
in which logicaly multiplied (ANDed) entities
are statigticaly independent and logically added
(ORed) entities are digoint. Such an expression
can be directly transformed, on a one-to-one
basis, to the algebraic or probability domain by
replacing switching (Boolean) indicators by
their statistical expectations, and also replacing
logica multiplication and addition (ANDing
and ORIing) by their arithmetic counterparts
Rules for the conversion of a general switching
(Boolean) expression into a PRE are provided
i r][8, 9, 52-56].

Duality:

The dual of a switching function is obtained by
complementing the function and al its

switching arguments (inverting both output and
inputs)®*%8,

3.TheaPosteriori Analysisin the
Probability domain

Since the a posteriori analysis of a fault tree
can be accomplished in terms of that of single
gates, this section is devoted to the a posteriori
analysis of single AND or OR gates, first
generdly, and then subject to the Mutua
Exclusiveness (ME) or Statistical Independence
(SI) assumptions. The analysis technique is
then demonstrated via a detailed numerical
example.

3.1. General Analysisof AND and OR gates

The aim of this subsection is to discuss the
genera analysis of AND and OR gates, stress
the utility of the concept of duality in such
analysis, and point out the consderable
reduction in complexity when the inputs are
either Mutually Exclusive (ME) or Statistically
Independent (S1).

The output a,, of an AND gate of n inputs
e, ey, ..., e, has aprobability given in terms of
conditional probabilities ag®

Pan) =P ([7) &) = PlenPeslen)PCesleres) . Plepleses -en-0) M

while the output o,, of an OR gate of n inputse,, e,, ..., e,, has aprobability given by the Inclusion-

Exclusion Principl

P(o0,) = P(

i

Note that (2) expresses the output of an OR gate
in terms of the outputs of many binary or multi-
input AND gates, which need to be expressed
via (1) or extensions thereof. The AND and OR

e[25, 59, 60].

; ei> = Z:;P(ei) - Z ZlSkjsnP(ei Ne)+ Z Z ZlSKKksnP(ei NejNe)— -+ (=1)"1P (ﬂile")' @)

gates are dual gates. Complementation of both
inputs and output of one gate produces the other
gate. Thisisthe essence of the two De Morgan's
laws, visually represented by Fig. 1, and
mathematically given by



60 Ali Muhammad Ali Rushdi and Muhammad Ahmad Al-Qwasmi

o=V lofu-U) o) @

According to (3) and (4), the analysis of an AND (OR) gate can be converted to the dua analyss of
an OR (AND) gate. Therefore, the analyst has a choice to analyze any given gate directly as is or
indirectly in terms of its dual gate.

Fig. 1. Visual Interpretation of DeMorgan’sLaws.

The analysis of an AND gate via (1) requiresthe

use of conditional probabilities, while the is a considerable reduction in the complexity of

analysis of an OR gate via (2) involves an
exponential number (2™ — 1) of terms, many of
which necessitate the use of conditional
probabilities in expressions similar to (1). There

If the eventse; are ME, i.e,, if

€; N e]:® V|andj,

then (1) and (2) reduce respectively to
P(an) = O, MEel’,

n
ei>
i=1

If, instead the events e; are Sl, i.e,, if

the anayss when the events e; are either
Mutualy-Exclusve (ME) or Statistically
Independent ().

()

(6)

= Z P(ei),ME e;. (7)



Exposition and Comparison of Two Kinds of a Posteriori Analysis of Fault Trees 61

P(ei|e]-) =P(€i), Vland], (8)
or equivalently, if
P(ei N e]) = P(ei) P(e]), (9)
then (1) and (2) reduce respectively to
P(a,) = 1_[ P(e)), Sle; (10)
i=1
P(o,) = Z P(e) — z Z P(ei)P(ej) + zz Z P(el-)P(ej)P(ek) —
i=1 1<i<jsn 1<i<j<ksn
+omt [ [peen =1-] Jia-1pen).ste: (1n)
i=1 i=1
Note that (11) can aso be obtained from (3) and (10) in the equivaent complementary form
n
P(5,) = 1—[ P(&),SI e;. (12)
i=1
3.2. Analysisof an AND gatewith Sl inputs available through expert estimation or through a

We assume that the probability of the output posteriori analysis of higher-level gates. Since
a, of the AND gate is known, say S,. This the inputs of the AND gate are S, equation (10)
probability is exactly 1 if the event a,, is known is applicable and reduces to
to have occurred. Otherwise, it would be

n
P(e) =S,, Sle;. (13)
i=1
Following Shooman'®, we assume that we can express each of the probabilities in (13) as a ratio r;
of the last probability anong them P (e,,), namely

P(e;)) =1;P(e,),1<i<n, (14)

wherer, = 1. Substituting (14) in (13), we solve (13) for each of the probabilities P(e;) as

n -1 1/n
P(e) = [(1_[ 1}-) Sn] ,1<i<n, Sle;. (15)
j=1

3.3. Analysis of an OR gate with ME Inputs is applicable, and the probability of the output
The case studied in this subsection is the only T,, of the OR gate is known, say S,,. Hence,
case studied by Shooman!®?. Here, equation (7) equation (7) can be rewritten as:
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n
z Pe,) = S, ME e, (16)
i=1

Now, making the assumption (14) and substituting (14) in (16), we can solve (16) for each of the

probabilities P(e;) as:

-1
n
P(e;) = Sp 1 lz rj] .1<i<n, MEe,. (17)
j=1

Note that (17) for the ME inputs of

OR has some resemblance with (15) for the Sl inputs of AND.

3.4. Analysisof an OR gatewith Sl inputs

The OR gate with Sl inputsis analyzed in adirect fashion in subsection 3.4.1 and is analyzed viaits

dual representation in subsection 3.4.2.
3.4.1. Direct Analysis

The output of an OR gate with n inputs can be written as:

n
On = U € = 0p1 U ey, (18)
i=1

where
n-—1
Op_1 = U e - (19)
=1

Since the event e, is statistically independent
of each of the eventse; (1 <i <n— 1), then
it is also independent of their union o,,_;. The
expression (18) alows the Inclusion-Exclusion
Principle (2) to be rewritten as:

Sp = P(op) = P(0p—1) + P(ey) — P(0p—1)P(ey). (20)

Now, we assume that we can express P(0,,_1)
asaraioR,_, of P(e,), i.e

P(On—l) =Ry P(en)’ (21)

and hence obtain the following quadratic
equationin P(e,,)

Rn—l[P(en)]Z -1+ Rn—l)P(en) + 5, =0. (22)

P(en) =

2Rn_1

Equation (22) has two solutions:

1
2Rn_1

P(e,) = [1+R,_)FVD], (23)

wherethe discriminant D is

D=1+ Rn—l)2 —4Ry-15,
= 1+R%,_;+2Ry_q —4Ry_1Sy
= (ZRn—l) + 2Ry — 4Rn-15,
= 4R, ,(1-5,) = 0. (24)

In (24), we made use of the fact that S,, is a
probability and hence must be less than or
equal to 1. Equation (24) indicates that the
discriminant D is non-negative, and hence
both roots in (22) are real. Equation (24) also
indicates that

VD < (14 R,_1), (25)
and hence both roots in (23) are positive.
However, we now reject the positive sign in
(23) since it corresponds to the solution

[(1+ R,_,) +VD], (26a)



Exposition and Comparison of Two Kinds of a Posteriori Analysis of Fault Trees 63

P(0,_1) = % [(1+R,_,) +VD], (26b)

which corresponds to a probability P(e,) > 1 if R,_; < 1, and to a probability P(0,-,) > 1 if
R,_1 > 1. The only possibility of accepting the positive sign in (23) is the trivial case R,,_; = 1,
S, = 1 for which D is 0 and the two rootsin (22) are equal. Hence, our final solution of (22) is

P(en) =

e |G Ru) = (@ Ruc)? = 4R,15,02) @270)

Plones) =5 |1+ Ruct) = (L4 Ry — 4RuS2] . 270)

3.4.2. Dual Analysis
Now we use S,_, to denote P(o0,_,) and An dternative analysis of an OR gate with S
continue our work recursively to obtain the inputs is possible via equation (12). Now, we
robabilities Pen_1). P(er_s) ... P(e;) assume that each of the probabilities of the
br n-17 5 A=z e T AL complementary events in (12) is expressed as a
Figure 2 summarizes the previous

. ratio t; of the last probability among them
computations in flow-chart form. P(e,),ie,

Read for (n = 1), rx
(k=12 _.(n—1N.S.

Consider
PI‘{Al U AZ U..U An—l UAn} = Sn

Yes

No {n > 1}

For Pr{(A,U 4, U..U A4, 1)UA,}.
Use the quadratic formulawith Pr{4; U 4, U ... U
A,_1} =r_1Pr{A,}toobtain

Value of Valuefor
Pr{A1 U Az U..u A‘l’l—l } = Sn_1 Pr{An} = P‘I’l

n=n-—-1

Fig. 2. Assigning probabilitiesfor n statistically-independent inputs of an OR gate given the probability of its output.
P(g)=t;P(&y), 1<i<n, (28)
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where t,, = 1. Equating the RHS of (12) to S,, and substituting (28) into the resulting equation, we can
solve (12) for each of the complementary probabilities P(e;) as

-1 1/n
P(e) = t; [(1_[ tj> (1- Sn)] ,1<i<n, Se. (29)
j=1

In passing, we note that we used the
assumption (28) to obtain a smple solution. Had
we insisted on using the assumption (14), we
would have obtained an nth — degree equation
in each P(e;). The dternative (equaly good)
assumption in (28) saved us the trouble of
solving an nth degree polynomia equation and
the associated difficulty of sdecting the
appropriate root from aset of n roots.

SI
Inputs

ey |es |ee

Example 1

Figure 3 displays a fault tree that combines
al the specia cases considered. It has an OR
gate with three ME inputs, an AND gate with
three Sl inputs, and an OR gate with three S|
inputs. Let us assume that the top event
probability P(o03) isknown to be S; = 0.9. We
need to find all the basic-event probabilities. We
start by estimating the probabilities of the events
e1, e,, and e; which are the ME inputs of the
top OR gate. We now assume we know the
following probability ratios.

/ I nput s

Fig. 3. A simple example of a fault tree that has an OR gate with M1 inputs, an AND gate with Sl input and an OR gate with

Sl inputs.

r, = P(e;)/P(e3) = 0.2,
r, = P(e;)/P(e3) = 0.3,
r3 = P(e3)/P(e3) = 1.0.

Hence, according to (17), we obtain

(30a)
(30b)
(30¢)
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Sym (0.9)(0.2)

P(e,) = = =0.12, 31
) = T 02503+ 10 (la)

Ple,)=—2322__ _0.18, 31b
(82) At 4 ( )
S313

P(e) =——33 = 0.60, 31

(e3) AT+ (31¢)

As expected P(e;), P(e;) and P(e3) arein the
ratio of 0.2:03:1.0and add wup to
S; = 0.9. We now know the probability of the
output e, of the AND gate, and need to assess
the probabilities of its inputs ey, es, and eg.
Agan we assume we know the following
probability ratios.

r, = P(ey)/P(eg) = 0.4, (32a)
rs = P(es)/P(eg) = 0.5, (32b)
re = P(eg)/P(eg) = 1.0. (33¢)

Hence, according to (15), we obtain

P(e,) = r4[P(el)/(r4r5r6)]% = 0.33737, (33a)

P(es) = 15[P(e)/(rarste) | = 0.42172, (33b)

P(eg) = r6[P(el)/(r4r5r6)]% = 0.84343.(33¢)
As expected P(e,),P(es) andP(e;) are (to
within roundoff-errors) in the ratio 0.4: 0.5: 1.0
and their product is 0.12. Likewise, we use our
knowlodge of the probability of the output e; of
the OR gate with ST inputs e, eg, eq t0 estimate
the probabilities of these inputs. We use the dual
analysisin Sec. 3.4.2, and starting with P(&;3) =
0.4, we obtain P(e,),P(ég) and P(ey). We
assume we know the probability ratios

t, = P(&,)/P(&,) = 0.6, (34a)
ty = P(&5)/P(85) = 0.7, (34b)
to = P(&,)/P (&) = 1.0, (34c)

Hence, according to (29), we obtain

P(e;) = t;[P(e3)/(tstgty)]s = 0.59032, (35a)
P(eg) = tg[P(e_3)/(t7t8t9)]% = 0.68871, (35b)
P(&5) = to [P(@)/(ttats)]3

1
3

= 0.98387, (35¢)

As expected, P(e;),P(ég), andP(&y) are (to
within roundoff-error) in the ratio 0.6: 0.7: 1.0
and their product is 0.4. The origind
probabilities are P(e;) = 0.40968, P(eg) =
0.31129,and P(ey) = 0.01613.

4.The a Posteriori Analysisin the Boolean
Domain

In this section, we demonstrate how to apply
Bayes theorem to achieve a posteriori FTA via
manipulations in the Boolean domain. Let the
top event be denoted by e, and a basic event be
denoted by ey, then Bayes Theorem™® states
that

Plexlert = PR by (3)

provided P{e;} # 0. This theorem can be
restated In terms of the indicator variables T and
X of the events e and ey when noting that the
various probabilities in (36) can be rewritten as
expectations, i.e.,
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P{eyler} = E{XIT}, (37a)
P(er Neyx} =E{T ANX}, (37b)
P {erlex} = E{T|X}, (37¢)

So that (36) can be rewritten as
P{exler} = E{X|T} =E{T AX}/ E {T}.(38)

Equation (38) isvalid provided E{T} # 0. Now
we can obtan the a posteriori probability
P{ex|er} by pursuing the following steps:

1. Express T as a PRE (preferably the
simplest possible) as a Boolean function
of indicator variables (including X).
Note that the job of forming a PRE is
needed only once ( at thisinitial step).
2. The indicator variable (T|X) is the
Boolean quotient of T with respect to X,
e
TIX=T/X =Tlx=1, (39)

Further information on the Boolean
quotient is given in Appendix A. Since
T is in PRE form, each (T|X), for any
choice of X, isasoin PRE form.

3. Theindicator variable (T A X) is
obtained via (44) as

(TAX)=X AN(TIX). (40)

Since (T|X) isindependent of X and is
in PRE form, then X A (T|X) isdsoin
PRE form.

4. TheexpectationsE {T A X} and E {T}
in the RHS of (38) are now obtained
immediately as one —to- one

transformations of the PREsfor (T A X)
and (T).

The details of this method is now
illustrated by applying it to a fault-tree
example studied via Bayesian Networks
by Bobbio, et al.,[*.

Example 2:

This example, origindly taken from
Malhotra and Trivedi®, deds with the fault
tree shown in Fig. 4. Bobbio, et al.'* solve this
example by mapping the fault tree into a
Bayesian network. We will demonstrate that
such a mapping is not realy warranted since
fault-tree techniques suffice in this case. The
fault tree represents a redundant multiprocessor
system, with a single bus N connecting two
processors P; and P, having access to a loca
memory bank each (M; and M,), and through
the bus to a shared memory bank M5, so that if
the local memory bank fails, the processor can
use the shared one. Each processor is connected
to amirrored disk unit. If one of the disks fails,
the processor switches on the mirror. The whole
system is functional if the bus N is functiona
and one of the processing subsystems is
functional. With a little abuse of notation, we
ae usng the same upper-case un-
complemented literal to denote a component,
and aso to denote the indicator variable for its
failure. We can write the indicator T for the top
event as a digunction of cutset failures asin (3)
of Bobbio, et al.,'*, but if we do so, we lose the
ability to utilize statistical independence among
basic events and end up with a complicated
expression for the top-event probability. Instead,
wewrite T as

T=NV(SS,), (41)
where S; and S, are given by

Sl = Pl \ D11D12 \ M1M3, (4‘2)
SZ = PZ V D21D22 \Y M2M3, (43)
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We note that S; and S, would have been
satistically independent had there been no
common element M; between them. To
circumvent this problem, we use a Boolean-
Shannon expansion about M to obtain
515y = M3 (S;5;|0p,) V M3(S;S;|14,)
= M3 (Py V D11D;3) (P2 V Dy1Dy,)
V M3(P, VvV M; VD;i1D13)(P,
V M, V D31 D55), (44)

Note that (44) contains two digoint parts, thanks
to the appearance of M in the first part and M,
in the second part. The subfuctions of S;S, in
the two parts now consist each of factored
satistically independent entities. We substitute
(44) into (41), and use disjointing techniques? &

9. 5399, 8271 o convert the resulting expression
into the Probability-Ready Expression

T=NVN (1\713(P1 V Py Dy;Dy,)(P,
V P, Dy1Dy5)

v M; (P

VP (M v M, D11D12))(P2
Vv P,(M,

Vv M, D21D22)))- (45)

The PRE (45) is converted, on a one-to-one
basis, into the probability expression

"t=n+1-n((1-m3)p1+(1-
p.1)d11d.12)(p_2+ (1 -
p2)d21d22)+m3(pl+1-

p 1) (m1+(1-m1)d 11d.12) (p.2+ (1 —
p2)Ym2+(1—-m2)d_21d.22)). (46)"

T

Fig. 4. Fault Treefor a multiprocessor system (taken from!?® and(®Y).

Table2. Valuesof theindicator of thetop event conditioned by theindicator X of a basic event (equivalent to the Boolean quotient T /X).
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X T|X
Dyq N VN (M3(Py V Py D13)(P; V Py D31 D3;) V Ms(PyV Py (My V M,D;,))(P, v Py (M V My Dy1D55)))
Py N VN (M3(P,V P, DyyDy,) V M; (Pz VP, (M,V M, D21D22)))
M, N VN (M3(PyV Py D11D13) (P, V Py Dy1Dy3) V M3(Py V Py (My V My Dy D33) )
M; N VN (PyV Py(My VM Dy1Dy;) V (P, V Py, (M, v My Dy1D;5)))
N 1
Table3. Theapriori and a pogteriori probabilities of component failuresin Example 2.
C Thea posteriori failure R
Theapriori failure A - Thea podteriori failure
Component X probabilities probabllltIaF]‘S[Cng]BObeO, e probabilities of (38)
Dqq d=0.32968 0.98436 0.9978947
Py P =0.00025 0.02252 0.0022937
M, m = 0.000015 0.000015 0.0000150018
M, m = 0.000015 0.000015 0.0000150034
N n=0.00001 0.000081 0.0008425

Table 2 lists the conditiona indicators or
Boolean quotients (T/X), where X stands for
Diq, Py, My, M3, and N. Table 3 shows the a
priori failure probabilities assumed by Bobbio,
e a.” and the a posteriori failure
probabilities computed by them via Bayesian-
Network modelling. Table 3 aso reports a

posteriori probabilities computed via (38), under
the assumption of equa rdiabilities for smilar
components, i.e,d =d;; = dqy; =dy; = dyy,
P=P =P, ad m=my=m,=ms.
Thanksto (38), (40) and (46), one obtains
t=E{T}=n+(1-n)(@-m)(P+ (1 —-P)d*)?+m(P
+ (1 =P)(m+ (1-m)d?)?), (47)

E(DIT} = () <n +(1-n) ((1 —m)(P+ (1= PYA)(P + (1= P)d?) +m (P + (1 = P)(m + (1 - m)d) (P +

(1 - P)m+ (1 - m)dZ))))>,

(48)

E{PIT} = (2) (n+ A= (A =M+ =P +m(P+ (1 = PYn+ (1 = m)d))), 49)

EMITY = () (n+ (= m) (A =m)(P + (1 = P)aD? +m(P + (1= PY(m + (1 = m)d?))), (50)
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EOMITY = (T) (n + (=) (P + (1 = PY(m + (1 = m)d®))’), (51)

E{N|T} = n/t. (52)

In passing, we note that E{Dy,|T} = E{D1,|T} = E{D2;,|T} = E{D,,|T} = E{D|T}, E{P,|T} =

E{P,|T} = E{P|T}.
However, E{M, |T} = E{M,|T} # E{M,|T}.

The results obtained in Table 3 are at best
intriguing. We were expecting to obtain
identical or a least approximately equd
results in the second column of Table 3 (the a
posteriori failure probabilities of Bobbio, et
al.'*), and the third column of Table 3 (thea
posteriori faillure probabilities computed
herein via (38)). However, while the values
for D;;, M,, and M5 are somewhat reasonably
similar, the values for each of P; and N differ
by one order of magnitude. We argue that our
computations are based on a simple fault-tree
mode that exactly fits our needs, and hence it
is preferable  according to  Ockham's

(Occam's) razor, which requires a model to
retain the minimum of assumptions and
details needed to capture al the essentia
features of what the mode represents while
excluding any extraneous or distracting
festured?. The details of our model are
visible enough to alow an interested reader to
check it by verifying the derivation of our
equations and reproducing our numbers with
a smal cdculator. In particular, our a
posteriori failure probabilities can be easily
seen to pass a smple check of satisfying the
following conditional-probability equation
derivable from (45).

1=E{T|T}=E{N|T}+ Q- E{N|TH((1 —EM3|THEP1|TI+

—E{P_1|THE{D_11|T} E{D_12| TH(E{P2|T}+ (1

—E{P_2| THE{D_21|T}E{D_22 | T} + E{M_3| T} (E{P_2| T} + (1 — E{P_2| TH(E{M_1| T} + (1
— E{M_1|THE{D_11|T} E{D_12 | TH))(E{D_11|T} E{D_12| T} EM_2|T} + (1
—E{M_2|T}) E{D_21|T} E{D_22|T})). (53)

Conclusions

We presented and compared two kinds of a
posteriori analysis of fault trees, namely an
analysis in the probability domain, and another
in the Boolean domain. The main thesis of the
probability-domain FTA is that it necessitates
only the a posteriori analysis of single gates.
Therefore, we discussed the general a posteriori
analysis of single AND or OR gates, and then

derived (under a variety of appropriate
assumptions) a posteriori solution for an AND
gate with Sl inputs, an OR gate with ME inpuits,
and an OR gate with Sl inputs. The results
obtained are applied to a detailed fault-tree
example. In addition, we treated the a posteriori
analysis of fault trees in the Boolean domain.
We demondtrated that in many cases this
anaysis is possible via elementary fault-tree
manipulations that use the concept of a Boolean
quotient (known aso as a Boolean ratio,
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subfunction or restriction) to effectively
implement Bayes Theorem in the Boolean
domain. Again, a demonstrative example was
given to illustrate the Boolean a posteriori FTA
and explain its details, and show that the power
of Bayesan networks (BNs) is not realy
warranted in many smple (abeit significant)
cases. A detailed comparison between the two
kinds of a posteriori FTA was aso given to set
the stage for explaining how these two kinds can
be interrelated and even combined. The
essential difference between the two kinds is
that the first kind takes place in the probability
domain and relies on educated guessing and
solution of agebraic equations, while the
second kind is a novel implementation of Bayes
Theorem in the Boolean domain, and acts
occasionally as a suitable alternative to using the
too-powerful technique of Bayesian networks.
We dgtress herein that results obtained via the
second kind of a posteriori FTA are much
easier to verify and replicate than those obtained
via Bayesian networks.

Further research is needed to utilize the two
aforementioned kinds of a posteriori FTA in
more practical sSituations, and to explore the
possibility of existence of other kinds of a
posteriori FTA. The comparison between the
given two kinds of a posteriori FTA should be
extended to further interrelate and even combine
them. The implementation of Bayes Theoremin
the Boolean domain warrants further
investigation, and opens new avenues for
pedagogica and computational applications in
probability theory and reliability engineering.
An urgent issue to pursue is to solve many
smple aswell as complicated examples via both
the second kind of a posteriori FTA and the
Bayesian-network analysis to see if they do
redly agree or to identify reasons of
disagreement between them and to locate where

discrepancy between them emerges.

Appendix A: Boolean Quotient

Let us define a literal to be a letter or its
complement, where a letter is a constant or a
variable. A Boolean term or product is a
conjunction or ANDing of m literas in which
no letter appears more than once. For m=1, a
termisasingle litera and for m=0, aterm isthe
constant 1. Note that, according to this
definition the constant O is not a term. Given a
Boolean function # and a term t, the Boolean
quotient of # with respect to t, denoted by (#/
t), is defined to be the function formed from #
by imposing the constraint {t = 1} explicitly,
e

$/t = [$le=1, (A1)

The Boolean quotient is aso known as a
ratioc®’, a subfunctionl®™ * % or g
restriction/*. Brown!*? lists and proves severd
useful properties of Boolean quotients, of which
we reproduce the following ones:

$/1=#%, (A2)

f/st = (f/s)/t = (F/t)/s, forst
+ 0, (43)

f<g = f/t < g/t
{for n-variable functions # and g and an m-
variableterm t withm < n}, (A4)

tAf =t A(F/t) (45)
tvg=tv($/t) (46)
tANF <fF/t StVF (A7)

In this Appendix, we followed Brown*! in
denoting a Boolean quotient by an inclined slash
(#/t). However, in the main text we denote it
by a vertical bar (#|t) to stress the equivalent
meaning of # conditioned by t or # givent.



[1]

[2]
[3]

[ 4]

(3]

(el

[7]

[ 8]

[9]

[ 10]

[11]

[12]

[13]

[14]

[19]

[ 16]

Exposition and Comparison of Two Kinds of a Posteriori Analysis of Fault Trees 71

References

Shooman, M. L. The equivalence of reliability diagrams
and fault-tree analysis. IEEE Transactions on Reliability,
19, (2): 74-75, (1970).

Bennetts, R. G., On the analysis of fault trees, |IEEE
Transactions on Reliability, R-24, (3): 175-185, (1975).
Henley, E. J. and Kumamoto, H., Reliability
Engineering and Risk Assessment, Englewood Cliffs, NJ:
Prentice Hall, (1981).

Rushdi, A. M., Uncertainty analysis of fault-tree outputs,
IEEE Transactions on Reliability, R-34, (5): 458-462,
(2985).

Rushdi, A. M. and Kafrawy, K. F., Uncertanty
propagation in fault-tree analysis using an exact method of
moments, Microelectronics and Reiability, 28: 945-965
(1988).

Kafrawy, K. F. and Rushdi, A. M., Uncertainty analysis of
fault trees with datisticaly correlated falure data,
Microeectronics and Reliahility, 30: 157-175, (1990).
Rausand, M. and Hoyland, A., System Reliability
Theory: Models, Satistical Methods, and Applications,
2nd Ed., Wiley, Hoboken, NJ, USA, (2004).

Rushdi, A. M. and Ba-Rukab, O. M., A doubly-
stochastic fault-tree assessment of the probabilities of
security breaches in computer systems, Proceedings of
the Second Saudi Science Conference, Part Four:
Computer, Mathematics, and Satistics, Jeddah, Saudi
Arabia, 1-17, (2005).

Rushdi, A. M. and Ba-Rukab, O. M., Fault-tree
modelling of computer system security, International
Journal of Computer Mathematics, 82, (7): 805-819,
(2005).

Xing, L. and Amari, S. V., Fault tree analysis. InK. B.
Misra (Editor), Handbook of Performability Engineering,
Springer London, pp: 595-620, (2008).

Contini, S, Fabbri, L. and Matuzas, V. A., novel method
to apply importance and sendtivity analysis to multiple
fault-trees, Journal of Loss Prevention in the Process
Industries, 23(5): 574-584, (2010).

Contini, S. and Matuzas, V., Anaysis of large fault trees
based on functional decomposition, Reliability Engineering
& System Safety, 96, (3): 383-390, (2011).

Cha, S. and Yoo, J., A safety-focused verification using
software fault trees, Future Generation Computer Systems,
28, (8): 1272-1282, (2012).

Ruijters, E. and Stoelinga, M., Fault tree andysis A
survey of the state-of-the-art in modeling, analysis and tools,
Computer Science Review, 15: 29-62, (2015).

Krcdl, J. and Krcél, P., Scaable Analysis of Fault
Trees with Dynamic Features, In 2015 45" Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp: 89-100, (2015).

Deng, Y., Wang, H. and Guo, B., BDD agorithms based
on modularization for fault tree anadysis, Progress in
Nuclear Energy, 85: 192-199, (2015).

[17]

[18]

[19]

[20]

[21]

[22]

[ 23]

[ 24]

[ 25]

[ 26]

[27]

[ 28]

[ 29]

[30]

Amstutz, J., Paralel evauation of fault tree expressions,
pp: 117-128 in Jeffers, J. and Reinders, J. (Editors), High
Performance Parallelism Pearls, Volume Two: Multicore
and Many-core Programming Approaches, Morgan
Kaufmann, Burlington, CA, USA, (2015).

Makajic-Nikolic, D., Petrovic, N., Belic, A., Rokvic, M.,
Radakovic, J. A. and Tubic, V., The fault tree anaysis of
infectious medical waste management, Journal of Cleaner
Production, 113: 365-373, (2016).

Liu, P, Yang, L., Gao, Z., Li, S. and Gao, Y., Fault tree
andysis combined with quantitative analysis for high-speed
railway accidents, Safety Science, 79: 344-357, (2015).

Hu, Y. N., Research on the application of fault tree andysis
for building fire safety of hotels, Procedia Engineering,
135: 523-529, (2016).

Shooman, M. L., Use of a posteriori fault trees for
accident and terriorist investigation, Proceedings of the
22" |nternational System Safety Conference, Aug. 2-6,
Providence RI, USA (2004).

Shooman, M. L., Terrorist risk evaluation using a
posteriori fault trees, IEEE 2006 Annual Reliability and
Maintainability Symposium (RAMSO06), pp: 450-455,
(2006).

Bobbio, A., Portinale, L., Minichino, M. and
Ciancamerla, E., Improving the analysis of dependable
systems by mapping fault trees into Bayesian networks,
Reliability Engineering and System Safety, 71, (3): 249-
260, (2001).

Langseth, H. and Portinale, L., Bayesian networks in
reliability, Reliability Engineering and System Safety, 92:
92-108, (2007).

Trivedi, K. S., Probability and Statistics with Reliability,
Queuing, and Computer Science Applications, 2nd Ed.,
Prentice-Hall, Englewood Cliffs, NJ, USA, (2002).
Heckermann D., Wellman, M. and Mamdani, A., Real-
world applications of Bayesian networks,
Communications of the ACM, 38, (3): 24-26, (1995).
Poole N. and Zhang, L., Exploiting causal independence
in Bayesian network inference, Journal of Artificial
Intelligence Research, 5: 301-328, (1996).
TorresToledano J. G. and Sucar, L. E., Bayesian
networks for reliability analysis of complex systems, In:
Proceedings of the 6th |beroAmerican conference on Al
(IBERAMIA 98), Lecture notes in artificial intelligence,
Berlin, Germany: Springer, 1484: 195-206, (1998).
Portinale, L. and Babbio, A., Bayesian networks for
dependability analysis: An application to digital control
reliability, Proceedings of the 15" Conference on
Uncertainty in Artificial Intelligence (UAI-99), pp: 551—
8, (1999).

Bobbio, A., Portinale, L., Minichino,b M. and
Ciancamerla, E., Comparing fault trees and Bayesian
networks for dependability anaysis, pp: 310-322 in
Computer Safety, Reliability and Security, Springer Berlin
Heidelberg, (1999).



72

[31]

[32]

[ 33]

[ 34]

[39]

[ 36]

[37]

[ 38]

[39]

[ 40]

[ 41]

[42]

[43]

[ 44]

[ 45]

Ali Muhammad Ali Rushdi and Muhammad Ahmad Al-Qwasmi

Marsh, W. and Bearfidd, G., Representing parameterised
fault trees using Bayesan networks, pp: 120-133 in
Computer Safety, Reliability, and Security, Springer Berlin
Heidelberg, (2007).

Hosseini, S. H. and Takahashi, M. Combining
static/dynamic fault trees and event trees using Bayesian
networks, pp: 93-99 in Computer Safety, Reliability, and
Security, Springer Berlin Heidelberg, (2007).

Marquez, D., Neil, M. and Fenton, N., Solving dynamic
fault trees using a new hybrid Bayesian network inference
algorithm. |EEE 2008 16th Mediterranean Conference on
Control and Automation, pp: 609-614, (2008)

Mengshoel, O. J., Darwiche, A. and Uckun, S., Sensor
validation using Bayesian networks. In Proc. Sth
International Symposium on Artificial Intelligence,
Robotics, and Automation in Space (iSAIRAS-08), (2008).
Khakzad, N., Khan, F. and Amyotte, P., Safety andysisin
process fecilities: Comparison of fault tree and Bayesian
network approaches, Reliability Engineering & System
Safety, 96, (8): 925-932, (2011).

Duan, R. X. and Zhou, H. L., A New fault diagnosis
method based on fault tree and Bayesian networks, Energy
Procedia, 17: 1376-1382, (2012).

Kabir, S., Walker, M. and Papadopoulos, Y., Reliability
Anaysis of Dynamic Systems by Trandating Temporal
Fault Trees into Bayesian Networks, pp. 96-109 in Model-
Based Safety and Assessment, pp: 96-109, Springer
International Publishing, (2014).

Wang, Y. and Sun, Q., Bayesian network technology to
analyze fault trees, pp: 87-94 in Proceedings of the First
Symposium on Aviation Maintenance and Management-
Volumell, Springer Berlin Heidelberg, (2014).

Gribaudo, M., lacono, M. and Marrone, S, Exploiting
Bayesian Networks for the Analysis of Combined Attack
Trees, Electronic Notes in Theoretical Computer Science,
310: 91-111, (2015).

Ghazala, M. J., Irredundant disjunctive and conjunctive
forms of a Boolean function, |.B.M. Journal of Research
and Development, 1: 171-176, (1957).

Reusch, B., Generation of prime implicants from
subfunctions and a unifying approach to the covering
problem, IEEE Transactions on Computers, C-24 (9):
924-930 (1975).

Bryant, R., Graph-based algorithms for Boolean function
manipulation, |EEE Transactions on Computers, C-35,
(8): 677-691, (1986).

Rushdi, A. M., Improved variable-entered Karnaugh map
procedures, Computers and Electrical Engineering, 13,
(2): 41-52, (1987).

Brown, F. M., Boolean Reasoning: The Logic of
Boolean Equations, Kluwer Academic Publishers,
Boston, MA, USA (1990).

Rushdi, A. M. and Al-Yahya, H. A., A Boolean
minimization procedure using the variable-entered
Karnaugh map and the generalized consensus concept,

[ 46]

[47]

[ 48]

[ 49]

[ 50]

[ 51]

[52]

[ 53]

[ 54]

[ 55]

[ 56]

[57]

[ 58]

International Journal of Electronics, 87, (7): 769-794,
(2000).

Rushdi, A. M., Prime-implicant extraction with the aid of
the variable-entered Karnaugh map, Umm Al-Qura
University Journal : Science, Medicine and Engineering,
13, (1): 53-74 (2001).

Rushdi, A. M. and Al-Yahya, H. A., Further improved
variable-entered Karnaugh map procedures for obtaining
the irredundant forms of an incompletely-specified
switching  function, Journal of King Abdulaziz
University: Engineering Sciences, 13, (1): 111-152,
(2001).

Rushdi, A. M., Using Variable-Entered Karnaugh Maps
to Solve Boolean Equations, International Journal of
Computer Mathematics, 78, (1): 23-38 (2001).

Rushdi, A. M. and Al-Yahya, H. A., Derivation of the
complete sum of aswitching function with the aid of the
variable-entered Karnaugh map, Journal of King Saud
University: Engineering Sciences, 13, (2): 239-269,
(2001).

Rushdi, A. M. and Amashah, M. H., Using variable—
entered Karnaugh maps to produce compact parametric
solutions of Boolean equations, International Journal of
Computer Mathematics, 88, (15): 3136-3149 (2011).
Crama, Y. and Hammer, P. L., Boolean Functions:
Theory, Algorithms, and Applications, Cambridge
University Press, Cambridge, United Kingdom (2011).
Rushdi, A. M. A. and Alturki, A. M., Rdiability of
coherent threshold systems, Journal of Applied Sciences,
15, (3): 431-443, (2015).

Rushdi, A. M. and Goda, A. S., Symbolic reliability
analysis via Shannon's expansion and datistical
independence, Microelectronics and Reliability, 25, (6):
1041-1053, (1985).

Rushdi, A. M. and AbdulGhani, A. A., A comparison
between reliability analyses based primarily on
disointness or statistical independence, Microelectronics
and Reliability, 33: 965-978, (1993).

Rushdi, A. M. A. and Hassan, A. K., Reliability of
migration between habitat patches with heterogeneous
ecological corridors, Ecological Modelling, 304: 1-10,
(2015).

Rushdi, A. M. A. and Hassan, A. K., An exposition of
system reliability analysis with an ecological perspective,
Ecological Indicators, 63: 282-295, (2016).

Rushdi, A. M., Reliability of k-out-of-n Systems, Chapter
5 in K. B. Misra (Editor), New Trends in System
Reliability Evaluation, Vol. 16, Fundamental Studies in
Engineering, Elsevier Science Publishers, Amsterdam,
The Netherlands, pp: 185-227, (1993).

Rushdi, A. M., Partially-redundant systems: Examples,
reliability, and life expectancy, International Magazine
on Advances in Computer Science and Telecommunications,
1, (1): 1-13, (2010).



[ 59]
[ 60]

[ 61]

[ 62]

[ 63]

[ 64]

[ 65]

[ 66]

Exposition and Comparison of Two Kinds of a Posteriori Analysis of Fault Trees 73

Dohmen, K., Inclusion-exclusion and network reliability,
Journal of Combinatorics, 5: 537-544, (1998).

Dohmen, K., Inclusion-Exclusion: Which terms cancel,
Archiv der Mathematik, 74(4): 314-316. (2000).
Malhotra, M. and Trivedi, K., Dependability modeling
using Petri-nets. IEEE Transactions on Reliability, 44,
(3): 428-440, (1995).

Hurley, R. B., Probability maps, |IEEE Transactions on
Reliability, R-12, (3): 39-44, (1963).

Abraham, J. A., An improved algorithm for network
reliability, IEEE Transactions on Reliability, R-28, (1):
58-61, (1979).

Dotson, W. and Gobien, J., A new analysis technique
for probabilistic graphs, IEEE Transactions on Circuits
and Systems, CAS-26, (10): 855-865, (1979).

Bennetts, R. G., Analysis of reliability block diagrams
by Boolean techniques, |EEE Transactions on Reliability,
R-31, (2): 159-166, (1982).

Rushdi, A. M., Symboalic reliability analysis with the aid
of variable-entered Karnaugh maps, |EEE Transactions
on Reliabhility, R-32, (2): 134-139, (1983).

[ 67]

[ 68]

[ 69]

[70]

[71]

[72]

Rushdi, A. M. and Al-Khateeb, D. L., A review of
methods for system reliability analysis: A Karnaugh-map
perspective, Proceedings of the First Saudi Engineering
Conference, Jeddah, Saudi Arabia, 1:57-95, (1983).
Schneeweiss, W. G., Digoint Boolean products via
Shannon's expansion, |IEEE Transactions on Reliability,
R-34, (4): 329-332, (1984).

Heidtmann, K. D., Smaller sums of digoint products by
subproduct inversion, IEEE Transactions on Reliability,
39, (3): 305-311, (1989).

Rushdi, A. M., Karnaugh map, Encyclopaedia of
Mathematics, Supplement Volume |, M. Hazewinkd
(Editor), Boston, Kluwer Academic Publishers, pp: 327-
328, (1997), Available at http://eom.springer.de/K/k110040.
htm.

Rushdi, A. M. A. and Ghaleb, F. A. M., The Walsh
spectrum and the real transform of a switching function: A
review with a Karnaugh-map perspective, Journal of
Qassim University: Engineering and Computer Sciences, 7,
(2): 73-112, (2015).

Rushdi, A. M., Occam 's razor, KAU Engineering
Magazine, 5, (1): 58-61, (2011).



74

Ali Muhammad Ali Rushdi and Muhammad Ahmad Al-Qwasmi

e hd¥) il Gadl Jdadadll e pe g 45)lia gy (2l i)
gl daa] danag sad) o teaa o

cColasleal) Luidiy lalad] LS, Colanslsd] dutia g Ll Lunsigl] ad

Lsecdd] Lypell dSLaall ian | jujellue Sl deals

arushdi @kau.edu.sa

e s il ) e e alaiall Ll £das el 4 o Uad) Sl of L alii)
el el e Sy - e s Aadladly At gmal) e V¥ Laall (e el 3 Ao giie iyl
L) AV o aa¥l sl ag¥) aall Jlaial aigy 4 Gowd) Jolailly ¢ UasY) el
S A Qs (e e sl bl A5 )lie s Uagled Walyaiad 238 Canll 385 i Al Lgilaa
o (Vsdl) bl lagally Jaa¥l Glagall 8 Laads 2y o Uad¥l et (asdl) 3l
Gaall Jlaial 058 Jlaa¥) Glagal) 3 ¢Uad) iy 3 dolasl) ddla & (oayids . sl
138 e zrmaal) aalsll Gglue allaial maay & ey Caaall 138 g8y W aSty S (glea 2 sY)
s ) 8 oY) Slaall allaal pal JlasY) glad) 8 5a5les bysamy Lad (sl
s Baaae Agilaie dolsdl DA ElaaY Alasy) Dlayl 5 sl @ Jie Gadlg) Ll
2hal A8l o3a aaE . Culaa¥) oda Jie Y Laial G Aims st ail dipias iliedd (e 5]
e s Aaglial) o sgiar ¢ L) adany oUndY) ey GadU Julaill Jaa dnd Slais Gualy,
Shaall 3 e ad¥) ey 30U Jdasll U 38550 Gyt - Jesbe aniagi Jhe PR (e s baY)
Al Sl auly i 13a 8 8100 8y 8 g suasall bl 3 jigie dalaill 1 . ikl
s etV e Al cilallas uyla (e USas didatl) 1aa Jlay A e 58 L adl lin el
8y + il lagall 8 5l Agyladl Jladll dgull (odlaiall) o Ysal) dandll myla psgie aadiud
s ¢ i) Gl (b e Uadl) ety 3ad Julail glal ana s Ui elac) s (5)al
A5lie 35 Adasedl YA 6 G o)y Le 4l Gl Aall) SIS 5 e galll o lely calialis
Lagiss COURY) dasly 4ntl) angl liad oUad¥) Sl GO didaill o5 O luas

Slasall ¢ ¥ glasall o saall) G Julaill ¢oaal) bl o UadY) sy 1 00 Ll
(Vs ilaial



