JKAU: Comp. IT., Vol. 2, pp: 27- 44 (2013 A.D./ 1435 A.H.)

DOI: 10.4197 / Comp. 2-2

A Novel Approach of Selection Sort Algorithm with
Parallel Computing and Dynamic Programing Concepts

Khaled Thabit and Afnan Bawazir

Computer Science Department, Faculty of Computing and Information
Technology, King Abdulaziz University, P.O.Box. 80221, Jeddah 21589,
Kingdom of Saudi Arabia.
afnan-bawazir @hotmail.com

Abstract. Many research works have been conducted to find out better
enhancement for Selection Sort Algorithm, such as bidirectional
selection sort "Friend Sort Algorithm” which can position two
elements in each round. We have improved this algorithm by using the
concept of parallel computing. This algorithm is caled Min-Max
Bidirectional Paralel Selection Sort (MMBPSS). Also this paper
proposes to use dynamic programming (stack) to reduce sorting time
by increasing the amount of space. The basic idea behind using stack
isto eliminate unnecessary iteration. This algorithm is called Dynamic
Selection Sort "DSS'. To fuse advantages of "DSS" with advantages
of "MMBPSS", we suggest a new third algorithm caled Min-Max
Bidirectional Parallel Dynamic Selection Sort "MMBPDSS'. It can
position two elements: minimum and maximum from two directions
using Dynamic Selection Sort algorithm in each round in paralel, thus
reducing the number of loop required for sorting. Results obtained
after implementation are provided in graphical form with an objective
to show that "MMBPDSS' is saving almost 50% of classical
selection sorting time and ensure accuracy.

Keywords: High Performance Computing, Sdlection Sort, Bidirectional
seection sort, parallel computing, Dynamic Programming.

1. Introduction

Sorting is a technique by which elements are arranged in a particular
order following some characteristic or law!”. Data can be in numerical or
character form. There are a lot of sorting techniques, currently used in
industrial applications and academic researches, to arrange the data of

27

28 Khaled Thabit and Afnan Bawazr

various forms and from different areas. Sorting is of considerable
importance as the human is possessed in keeping the ordered
information/knowledge. To search the information efficiently the
arrangement of data is very important. To facilitate the human,
computers consume a massive amount of time in ordering the data?.
There are alot of sorting algorithms used nowadays such as Bubble Sort,
Insertion Sort, Selection Sort and Cocktail sort. Every kind of sort has its
own pros and cons, and the pattern of input data is a maor factor for its
performance. This paper focuses on Selection Sort algorithm which has
performance advantages over more complicated ones in certain
situations, especially where auxiliary memory is limited. It does many
comparisons and least amount of data swapping. Selection Sort
algorithm is inefficient on large lists, because it has O (n2) complexity,
and generally performs worse than the similar Insertion Sort. Many
research works have been conducted to find out better enhancement for
Selection Sort [*° that speed up the sorting process such as
bidirectional Selection Sort Algorithm, which can position two items in
each pass thus reducing the number of loops required for sorting. This
algorithm also called "Friends Sort"®l. Lakra and Divy! suggested
"Double Selection Sort" which makes sorting an efficient and convenient
way for larger data set by saving almost 25% to 35% than the classic
Selection Sort Algorithm. We have improved "Friends Sort" agorithm
by making it working in paralel. This agorithm is caled Min-Max
Bidirectional Parallel Selection Sort (MMBPSS). Also other study
proposes an improvement for Selection Sort Algorithm by using dynamic
programming technique (Stack). The key idea behind using stack is to
eliminate unnecessary passes by reducing the number of comparison. A
Stack is used to store the location of previous max element found, and
instead of starting from the beginning each time, the largest element is
found and placed at the end of the array. This algorithm is called
Dynamic Selection Sort "DSS". We suggest a new third algorithm called
Min-Max Bidirectional Parallel Dynamic Selection Sort "MMBPDSS"
which combine DSS and MMBPSS. Our hypothesis "MMBPDSS"
makes sorting an efficient and convenient way for smaller and larger data
set by saving amost 50% than the classic Selection Sort and Friend Sort
algorithms ™ due to the parallel implementation of the algorithm.

The paper is organized as follows: a brief review of selection
sorting algorithm are discussed in Section 2, while section 3 contains the

A Novel Approach of Selection Sort Algorithm with Parallel Computing and Dynamic Programing 29
Concepts

proposed algorithm "Min-Max Bidirectional Parallel Selection Sort" and
explained it in more details, the steps, and procedure with an example.
Section 4 presents second proposed algorithm “Dynamic Selection Sort”
in details with procedures using example. Furthermore, Section 5
contains third proposed algorithm “Min-Max Bidirectional Parallel
Dynamic Selection Sort” in details with steps and procedure using
example. This paper further progress in Section 6 by testing and
analyzing the proposed algorithm’s results with the classical Selection
Sorting and the new Friend Sorting technique®®. Finally the paper
concluded in Section-7.

2. Brief Review of Selection Sorting Algorithm

This section presents a review of Selection Sort including history
of formation, methodologiesand algorithms.

2.1 Selection Sort

Selection Sort is awell-known sorting technique that scans an array
to find the maximum item, puts it at the last location in the array, and
then scans the array for the second maximum item, puts it before the last
location, then third maximum and so forth, until reaches the smallest item
to be put at the first location of the array. It has O(n?) complexity,
inefficient for larger lists or arrays and its performance is worse than that
of Insertion Sort. In certain situations, it has a prominent efficiency than
some other convoluted algorithms. The number of passes, of the
Selection Sort for a given ligt, is equal to the number of elements in that
list.!® The number of interchanges and assignments depends on the
origina order of the items in the list/array, but the sum of these
operations does not exceed a factor of n2”.

2.2 Procedure for Selection Sort
Procedure Selection-Sort (List: List of items to be sorted)
Length « length (List);
For i« Length -1to 1 do
Max «1;
Forj«—i-1to0do
if(List[j] > List[Max])
Max «j
End if

30 Khaled Thabit and Afnan Bawazr

End for
Swap (List[i], List [Max]);
End for
End Procedure
2.3 Min-Max Bidirectional Parallel Selection Sort
Min-Max Bidirectional Parallel Selection Sort (MMBPSS) is an
improvement on the idea of traditional Bidirectional Selection Sort and
Friend Sort Algorithms™ which can position two elements in each round
parallel, thus reduces the number of loop required for sorting. The basic
design idea of the (MMBPSS) is as follows: it divides the list into two
parts, minimum and maximum values from each part are selected in each
sort round. Then both values of minimum and maximum from each part
are compared to determine the minimum and the maximum of the whole
array, and they are placed at their proper locations. The Steps of the
proposed algorithm are as follows:

1. Divide the array into two.
Now: working in paralel from 2 to 7:
2. Find minimum and maximum values from each part.

3. Take minimuml of the first part, compare it with minimum2 of the
second part.

4. Swap and put them at their exact location.

5. Take maximum1 of the first part, compare it with maximum2 of the
second part.

6. Swap and put them at their exact location.
7. Repeat these steps for the whole array.

2.4 Procedure for MMBPSS
Procedure MMBPSS (List: List of items to be sorted)

Length < length (List);
Max, Min;

Mid = Length/2;

Start = 0, end = Length-1;

For i— Start to end do in parallel

0=>

A Novel Approach of Selection Sort Algorithm with Parallel Computing and Dynamic Programing 31
Concepts

For j« Start to mid-1
if(List[j] < List[Min1])

Minl «j
End if
if(List[j] > List[Max1])
Max1 « End
End if
End for
0=>

For K« mid to end

if(List[k] < List[Min2])
Min2 «— k

End if

if(List[k] > List[Max])
Max2 «— k

End if

If (List [max1] >= List [max2])
Max = maxl1;

Else
Max = max2;
End if
Swap (List[i], List [max]);

If (List [minl] <= List [minZ2])
Min = minl;
Else
Min = min2;
Endif Swap (List[i], List [min]);
End for
End Procedure

2.5 Example for MMBPSS

Let ustake an array as an example see (Figure. 1) to apply (MMBPSS)

onit:

[5 | 33 | 8 | 41 | 19 [2 | 50 [1 | 7 | 20 |
Fig. 1. Unsorted Array

Index of Mid=5

Each for loop work at one part to find min & max in parallel,

See (Figure. 2)

[[[s T[4 10 [EEEESCR o

Fig. 2. Divide Array into two parts.
First iteration: see (Figure. 3)

Minl=5 Min2=1
Max1=41 Max2=50
Then compare them:

Min1>Min2 - Min=Min2=1

32 Khaled Thabit and Afnan Bawazr

Max 1< Max 2 > Max=Max2 =50
[1 [33 [8 [&1 [19
Fig. 3. Array after thefirst iteration.
Second iteration: see (Figure. 4)
Minl=8 Min2=2
Max1=41 Max2=20
Then compare them:
Min1>Min2 - Min=Min2=2
Max 1> Max 2 2> Max= Max1 =41

[z [& 7 [v [T [|

Fig. 4. Array after the second iteration.
Third iteration: see (Figure. 5)
Minl=7 Min2=5
Max1=19 Max2=33
Then compare them:
Min1>Min2 - Min=Min2=5
Max 1< Max 2 > Max= Max2 = 33

L T2 [s [r v [EJaTs [[|
Fig. 5. Array after third iteration.
Fourth iteration: see (Figure. 6)
Minl=7 Min2=8
Max1=19 Max2=20
Then compare them:
Min1<Min2 -2 Min=Min1=7
Max 1< Max 2 > Max=Max2 = 20
EE [5 [7 [19 !20 [38 [4 [50 |

Fig. 6. Array after fourth iteration.
Fifth iteration: see (Figure. 7)

Minl= 19 Min2=8
Max1=19 Max2=8
Then compare them:

Min1>Min2 - Min=Min2=8
Max 1> Max 2 > Max= Max1 =19

||1 |2 |5 |7 |8 |19 |20 |33 |41

|5o

Fig. 7. Array after fifth iteration.

Finaly, the array is sorted. See (Figure. 7)

A Novel Approach of Selection Sort Algorithm with Parallel Computing and Dynamic Programing 33
Concepts

2.6 Dynamic Selection Sort

Dynamic Selection Sort (DSS) is an improvement on the idea of
Selection Sort but it used dynamic programming (stack) to reduce sorting
time by increasing the amount of space. The basic idea behind using
stack is to eliminate unnecessary iterations. A stack is used to store the
location of previous largest element found, instead of starting from the
beginning after the largest element is found and placed at the end of the
array, we pop the stack and start at the location of the previous max, so
we can decrease the number of comparison required for sorting
operation. Here we used two Stacks, one to store the location of the
previous index largest element, another one to store value. Once the
location and value of the previous largest element is popped off from the
stack and compared with the elements of the array from that location till
anew largest element isfound or the new end of the array is reached. If a
larger element is encountered then the location and value of the previous
largest element is pushed into the stack. The new largest element is again
compared to the remaining elements of the array. This process is repeated
until the array is sorted.

2.7 Procedure for DSS

Procedure DynamicSelectionSort (List: List of itemsto be sorted)
Length < length (List); Max, Location, Value, Stackl, Stack2;
For i« Length -1 to 1 do
Max « i;
Forj«—i-1to0do
if(List[j] > List[Max])
Max «j
Push Max in Stack1l
Value « List [Max]
Push Value in Stack 2
End if
End for
Swap (List[1], List[Max]);
Pop the first element from both the stack //this element
already has been swapped
While (Stacks are not empty && 1> 0)
1<—1-1
Location < pop element from Stackl, Max «
Location
Value < pop element from Stack2.
Swapped « false

Khaled Thabit and Afnan Bawazr

For n < Location - 1to 0 && i- 1 do
Swapped « true;
if (List[n] > Value)

Max «—n
Push Max in Stackl
Value < List [Max]
Push Value in Stack 2
End if
End for
If (Swapped)

Swap (List[1], List[Max])

Pop the first element from both the stack
Else

1—1+1
End while // Stack count loop
End for // outer for loop

End Procedure

2.8 Example for DSS
Let ustake an array as an example (Fig.8 and 9) to apply (DSS) onit:

HENEEER
=[]
NN
-]
etk]
— a ENg R
: & -]
C o]
=][]
FlEE= R]=] E
: Eh%u’ﬁ::::’; index 1. - - -
Fop from =tack? valae 9. - -
) [= |
+ Check ifstack is not empey andi = 0
h iz equal (71
from index 3 3 0 (35,541 6EL(TY) s greasess.
Mk swappins (71} wish (53}
= ot andir0
=[]
= (5
which iz equal i]
.41, 55 .So(63) iz greatest - - -
© [«][]
=
Mk swappimg (58) wish (53)
HENEEEE

Fig. 8. DSS algorithm by way of an example.

A Novel Approach of Selection Sort Algorithm with Parallel Computing and Dynamic Programing 35
Concepts

Check if zrack iz not empty andi =0
Decrement 1= 3.

. =[]
+ Popfromstacklindex (D)
s Pop from atack? vahue (69 -p -
Now, index of max = (3 which iz sgual (39
s Compare (39) with 3.41, So ¢41) it 1= greatest B

Then index of max = (1.
+ Push in stack! index oY

+ Push in stack? value (41, - |-
Compare (41} with elemente from index 19 082, 20 it ie greater “
Then max = (7).

* Pushin stackl index (0. “

* Pushin atack? value (B2).

v Make ewapping (35) with (52).

39|41‘3|62‘69|TL 99|

T =]

Check if stack i3 not empty n
* Pop from stackl index (D).

* Pop from stack? value (52).
Check if stack i3 not empty andi=0
* DecrementI=12.
Pop from atack] index (1),
Pop from stack? value (41}, ﬂ:P‘:I
Then index of Max = {1}
Compare (41} with elementz from index 123039
v Make swapping (41) with (31

|39‘3|4—1|62|69 99|

1

Btack iz empty.
Decrement1= 1.
Mow, index of max = (1) which iz squal (3.

Compare (3) it with element (38), 2o it 1z greater

Then max = (). i -
» Puzhin stackl index (0. n
» Puzhin stack? value (39).

v Make ewappinz (3%) with (62)
|_|_,—|—|_|’3 3[4 (62 |68 [71 [@

Check if arack iz not empry

Decrementi=0.
» Pop from stackl index (0} -FE-D
» Pop from srack? value (38)

Mow atack iz empty and I =0 eo, etop.

Finally the array is zorted

|3 |39|4—1|G2‘6&|?L|99|

Fig. 9. DSS algorithm by way of an example" cont" .

3 Min Max Bidirectional Parallel Dynamic Selection Sort

Min-Max Bidirectiona Parallel Dynamic Selection Sort
(MMBPDSS) is an improvement on the idea of Dynamic Selection Sort
which can position two elements, minimum and maximum, from two
directions in each round in parallel. It thus reduces the number of loop
required for sorting. The Steps of the (MMBPDSS) are as follows

1. First thread starts from the beginning of the array which finds the
smallest element (using 2 stacks to store the minimum and its
location).

36 Khaled Thabit and Afnan Bawazr

2. The second thread starts from the end of the array searching for the
largest element (using 2 stacks to store the maximum and its
location).

3. Then concatenate the first half from first thread with the second half
from the second thread.

3.1 Procedure for MMBPDSS
ProcedureMinMaxBidirectionalParallelDynamicSelectionSort (List:

List of items to be sorted)
First Thread: // sorting smallest elements

Length « length (List); Min, Location, Value, Stackl, Stack2, mid = Length
/2
For i — 0to mid-1 do
Min « i;
Forj<«—i-1to0do
if(List[j] <Listf Min])
Min «—j
Push Min in Stackl
Value «— List [Min]
Push Value in Stack 2
End if
End for
Swap (List[i], List [Min]);
Pop the first element from both the stack //this element
already has been swapped
While (Stacks are not empty && i <= mid)
1«—1+1
Location < pop element from Stackl, Min— Location
Value < pop element from Stack2.
Swapped « false
For n < Location - 1to 0 && i - 1 do
Swapped « true;
If (List[n] < Value)
Min < n
Push Min in Stackl
Value «— List [Min]
Push Value in Stack 2
End if
End for
If (Swapped)
Swap (List[i], List [Min])

A Novel Approach of Selection Sort Algorithm with Parallel Computing and Dynamic Programing 37
Concepts

Pop the first element from both the stack
Else
l—1-1
End while // Stack count loop
End for // outer for loop
End first thread.

Second Thread: // sorting largest elements
Length < length (List); Max, Location, Value, Stackl, Stack2, mid = Length
/2
Fori— midto 1do
Max < i;
Forj«—1i-1to0do
if(List[j] > List[Max])
Max < j
Push Max in Stackl
Value «— List [Max]
Push Value in Stack 2
End if
End for
Swap (Listfi], List [Max]);
Pop the first element from both the stack //this element
already has been swapped
While (Stacks are not empty && i >= mid)
l—1-1
Location < pop element from Stackl, Max —
Location
Value «— pop element from Stack2.
Swapped « false
For n < Location - 1to 0 && i - 1 do
Swapped «— true;
If (List[n] > Value)
Max — n
Push Max in Stackl
Value «— List [Max]
Push Value in Stack 2
End if
End for
If (Swapped)
Swap (List[i], List [Max])
Pop the first element from both the stack
Else
1—1+1
End while // Stack count loop
End for // outer for loop

38 Khaled Thabit and Afnan Bawazr

End second thread.
End Procedure.

3.2 Example for MMBPDSS
Let ustake an array as an example (Figure. 10) to apply (MMBPDSS) on it:

2 7 10 | 6 1 8 9 12 |11 | 7 3 4

Working in parallel
First thread sorting smallest element using Dynamic Selection Sort
1 2 3 4 6 7 9 12 | 11 7 10 | 8

Second thread sorting largest element using Dynamic Selection Sort
2 7 6 4 1 3 7 8 9 10 | 11 12

Then concatenate first half form first thread with second half from

second thread.
1 2 3 4 6 7 7 8 9 10 11 12

4. RESULTSAND DISCUSSION

To prove efficiency of MMBPSS, DSS and MMBPDSS
performance, they were implemented along with Classical Selection Sort
algorithm and with the new Friend Sorting Algorithm!®. The calculation
of average execution time, total comparison and swapping frequencies
are conducted for random sample lists with different sizes, 30 times for
al mentioned agorithms in the paper. We have conducted those
algorithms by using basic laptop with the following specification Intel
Core2Duo processor 2.53 GHZ machine with 4 GB.

The results are accomplished in three ways:

1. Comparison of execution time of MMBPSS, DSS and MMBPDSS
algorithms with the classic Selection Sort algorithm and with the new
Friend Sorting algorithm.

2. Comparison of total frequency of MMBPSS, DSS and MMBPDSS
with the classic Selection Sort algorithm and new Friend Sorting
algorithm.

3. Comparison of total swapping frequency of MMBPSS, DSS and
MMBPDSS with the classic Selection Sort algorithm and with the new
friend sorting algorithm.

A Novel Approach of Selection Sort Algorithm with Parallel Computing and Dynamic Programing 39

Concepts

4.1 Comparison of Execution Time

Table 1 shows the comparison of the MMBPSS, DSS and
MMBPDSS algorithm with the classic Selection Sort algorithm and with
the new Friend Sorting algorithm with respect to the average execution
time each algorithm takes to perform sorting.

Table 1. Time Comparison

Average of Execution Time (Test on different array of size)in millisecond
A28 | section '\“e‘s"éjw B%@I Dmarmic Bidiecnona _
Sort Algorithm Parallel Selection @ Parall_el Dynamic
Algorinm Sort Selection Sort
1000 13.44133333 11.99764 36.87646667 10.43051 11.25
3000 44 45 117 37 31
5000 206.7171 169.3317 192.08728 140.6054 87.25
7000 213.9861 195.2054 198.8224 164.0168 125.4608
10000 693.21615 665.3608 528.2458 394.7421 299.2226
30000 4224.902 4244.429 3630.884 3498.265 2657.741
50000 11916.28 12019.771 9281.721 8580.618 6537.066
70000 18795.62 19479.03 16521.67 14323.28 12189.42
100000 53993.07 52417.33 31804.16 35361.93 27735.59

Graphical view for Table.1 is presented in Figure. 11.

50000

50000

—f—Selection sort

40000

nmwan <D

New friend sorting algorithm

<on3 -

i Pin- Max Bidirectional Parallel
Selection Sort

3

\

A\ IIE':. 20000
\

L B 20000
&‘!
10000

—r el o
100000 70000 50000 30000 10000 7000 5000 3000 1000
Mo.of elements

—k=—Drynamic Selection Sort

n g

PMin-Max Bidirectional Parallel
Dynamic Selection Sort

Se-mEADRD

Fig. 11. Time Comparison.

Khaled Thabit and Afnan Bawazr

It can be observed from Fig. 11 that the performance of the new
Friend Sorting algorithm is less efficient when the array size is smaller
than 30000 but after that its efficiency degrades and it isequally efficient
to the classic Selection Sort but MMBPSS is more efficient when the
array size is over 35000 elements. There is an additional overhead when
applying MMBPSS on smaller array size. DDS reduces the execution
time compared to the classic Selection Sort, the new Friend Sorting
algorithm and MMBPSS, while "MMBPDSS" is better than DDS and
saves almost 50% of the classical Selection Sorting. It really reaches the

optimization purpose.

4.2 Comparison of Total Comparison Frequency
Table2 shows the comparison of the MMBPSS, DSS and

MMBPDSS algorithms with the classic Selection Sort algorithm and with
the new Friend Sorting algorithm with respect to average of comparison
numbers each agorithm takes to perform sorting.

Table 2. Total Comparison Frequency.

Average of comparison numbers (Test on different array of size)
Ar) Min-Max Min-Max
ray slze i seleas i idi i
y Selection New fylend Bidirectional Dynamlc Bidirectional
E— sorting T — Selection Parallel
sort . Parallel -
algorithm - Sort Dynamic
Selection Sort .
Selection Sort
1000 499500 500500 10871 415369 621162
3000 4498500 4501500 35597 3683523 3929732
5000 12497500 12502500 69541 10096142 9745052
7000 24496500 24503500 97718 19993926 21634554
10000 49995000 50005000 151299.3 40832313 39379276
30000 449985000 450015000 490405 368623040 303589600
50000 1249975000 | 1250025000 880382 1031800452 1018170886
70000 2449965000 2450035000 1319601 2032017833 2256552865
100000 4999950000 | 5000050000 1926387 4186028005 4102486376

Graphical view for Table.2 is presented in Figure. 12.

A Novel Approach of Selection Sort Algorithm with Parallel Computing and Dynamic Programing
Concepts

BE+05

SE+05

AE+05

3E+09

2E+05

comparion frequency

1E+05

No.of elements

100000 70000 50000 30000 10000 7000 S000 3000 1000

o Min-M =x Bidirectional Parallel
Cynamic Selection Sort

W Dynamic Selection Sort
Mir-M zx Bidirectional Parallel
Selection Sort

= Mew friend sorting algorithm

= Selecrion sorc

Fig. 12. Total Comparison Freqguency.

41

It can be observed from the above graph that the total comparison
frequency of Selection Sort and the new Friend Sorting algorithms are
the same, while DSS and MMBPDSS reduce the total comparison
frequency but MMBPSS perform the least number of comparisons in
sorting procedure.

4.3 Comparison of Total Swapping Frequency

Table.3 shows the comparison of the MMBPSS, DSS and
MMBPDSS algorithms with the classic Selection Sort and the new
Friend Sorting algorithms with respect to average of swapping frequency
each algorithm takes to perform sorting.

Table 3. Total Swapping Freguency

Average of swapping numbers (Test on different array of size)
. . New friend .7M'in—MaX Dynamic B%al
Array size Selection | — . Bidirectional . TR
sorting Selection Parallel
sort algorithm Parallel Sort Dynamic
Selection Sort I -
Selection Sort
1000 999 1000 994 999 1003
3000 2999 3000 2993 2999 3000
5000 4999 5000 4991 4999 5002
7000 6999 7000 6991 6999 6999
10000 9999 10000 9988 9999 10002
30000 29999 30000 29990 29999 30000
50000 49999 50000 49989 49999 50002
70000 69999 70000 69987 69999 70000
100000 99999 100000 99980 99999 100000

Graphical view for Table.3 is presented in Figure. 13.

42 Khaled Thabit and Afnan Bawazr

120000

B 100000

==Min-Max Bidirectional Parallel
Dynamic Selection Sort

BOO00
== Dynamic Selection Sort

50000
Min-Max Bidirectional Paralle]
Selection Sort

40000

swapping frequency

== ew friend sorting algorithm

20000 Selection sort

ey |
100000 70000 50000 30000 10000 7000 5000 3000 1000
No. of elements

Fig. 13. Total Comparison Frequency.

It can be observed from the Figure. 13 that the classic Selection
Sort, the new Friend Sorting Algorithms, MMBPSS, DSS, MMBPDSS
perform the same number of swaps as the number of elements to perform
sorting.

5. CONCLUSION

In this study, we present three new sorting techniques:
"MMBSS',"DSS" and "MMBPDSS' for selection sort that are tested and
analyzed against the classical Selection Sorting and the new Friend
Sorting techniques® to provide their efficiency. The graphs show that
"MMBPDSS' save ailmost 50% of the classica Selection Sorting with
100% accuracy of order which get the benefit from effective utilization
of CPU by using parallel computing with cost of increasing amount of
space.

References

[1] Min, W., “Design and analysis on bidirectional selection sort agorithm,” in Education
Technology and Computer (ICETC), 2nd International Conference on, Vol. 4, pp: V4-380,
(2010).

[2] Bailey, D. A., Java Structure: Data Sructure in Java for Principled Programmer, 2™ ed.
McGraw-Hill, (2003).

[3] Igbal, S. Z., Gull, H. and Muzaffar, A. W., A new friends sort agorithm. In Computer
Science and Information Technology, 2nd IEEE International Conference on. pp: 326-329,
ICCSIT, (2009).

A Novel Approach of Selection Sort Algorithm with Parallel Computing and Dynamic Programing 43
Concepts

[4] Lakra, S. and Divy, "Improving the performance of selection sort using a modified double-
ended selection sorting”, International Journal of Application or Innovation in Engineering
& Management (IJAIEM), Volume 2, Issue 5, and May (2013).

[5] Agarwal, A., Pardesi, V. and Agarwal, N., * A New Approach To Sorting: Min-Max
Sorting Algorithm", International Journal of Engineering Research & Technology (1JERT)
Vol. 2 Issue5, May (2013).

[6] Donald, E. K., The art of computer programming, Sorting and searching, 3, 426-458.

[7] Lipschutz, S., Theory and Problems of Data Structures, Schaum’s Outline Series:
International Edition, McGraw (1999).

44 Khaled Thabit and Afnan Bawazr

Al casefe alaaiul " HLEAYI Ayt dua) lsd pun
ASaaliall Aaa plly 4yl siall
sk Ul eyl A
Cilsleal! iy cilawslal) DS ccslacslal) psle aush

Loged) Lupnl d<Laall c32n ¢ jjallve Sllo)) dzola
af nan-bawazir@hotmail.com

Juadl Gl ddindl Jleel) o aaall Cugsal 8 L aliial/
ORIV i deylsa Jie COLEAYI aii A lead Gaea
BSar (Al "Aaall HLEAY) Qi dae))lsaS olady) A5l
Laplall ol Gauaty Lid Wl (Alsa S 8 (ppaic auag
— el gani eyl o8 Algial) usall sede alasiuly
(MMBPSS) Laa¥) ddaulsy caiill Al olasy) Al Sl
Sl (puaSall) ASalipall dnayall aladid 4850 o2 o5 LS
Al 3al A dalie Jlaie 30l Gah oo Al
Sl e Y il Sl e ploaill g Gl aladiud ¢l
QP et Qa)lsall oda L prally pSll jaiall e Sl
'MMBPSS' Ui} as (DSS) Wi zedly (DSS) syiall sy
sad¥ S jal e TG sy Lapld sl
&y 'MMBPDSS' lial¥) dlauly caspll syl 45l
ead) aally S) pualie (e gppaie pias e (K
Usn IS & ol laa¥) 4 led ahaainly gaaladl (e
i iy iyl dyglladl c¥sall aae Js Jully «glsally
e Aily asmy JSE e 2t any lgle Jpand) S A L)
Lyl e /B0y Jumil & 'MMBPDSS' lehY Caxgll

kel LAY (i

