
JKAU: Comp. IT., Vol. 2, pp: 27 - 44 (2013 A.D./ 1435 A.H.)

DOI: 10.4197 / Comp. 2-2

27

A Novel Approach of Selection Sort Algorithm with

Parallel Computing and Dynamic Programing Concepts

Khaled Thabit and Afnan Bawazir

 Computer Science Department, Faculty of Computing and Information
Technology, King Abdulaziz University, P.O.Box. 80221, Jeddah 21589,

Kingdom of Saudi Arabia.
afnan-bawazir@hotmail.com

Abstract. Many research works have been conducted to find out better
enhancement for Selection Sort Algorithm, such as bidirectional
selection sort "Friend Sort Algorithm" which can position two
elements in each round. We have improved this algorithm by using the
concept of parallel computing. This algorithm is called Min-Max
Bidirectional Parallel Selection Sort (MMBPSS). Also this paper
proposes to use dynamic programming (stack) to reduce sorting time
by increasing the amount of space. The basic idea behind using stack
is to eliminate unnecessary iteration. This algorithm is called Dynamic
Selection Sort "DSS". To fuse advantages of "DSS" with advantages
of "MMBPSS", we suggest a new third algorithm called Min-Max
Bidirectional Parallel Dynamic Selection Sort "MMBPDSS". It can
position two elements: minimum and maximum from two directions
using Dynamic Selection Sort algorithm in each round in parallel, thus
reducing the number of loop required for sorting. Results obtained
after implementation are provided in graphical form with an objective
to show that "MMBPDSS" is saving almost 50% of classical
selection sorting time and ensure accuracy.

 Keywords: High Performance Computing, Selection Sort, Bidirectional
selection sort, parallel computing, Dynamic Programming.

1. Introduction

Sorting is a technique by which elements are arranged in a particular
order following some characteristic or law[1]. Data can be in numerical or
character form. There are a lot of sorting techniques, currently used in
industrial applications and academic researches, to arrange the data of

Khaled Thabit and Afnan Bawazir

28

various forms and from different areas. Sorting is of considerable
importance as the human is possessed in keeping the ordered
information/knowledge. To search the information efficiently the
arrangement of data is very important. To facilitate the human,
computers consume a massive amount of time in ordering the data[2].
There are a lot of sorting algorithms used nowadays such as Bubble Sort,
Insertion Sort, Selection Sort and Cocktail sort. Every kind of sort has its
own pros and cons, and the pattern of input data is a major factor for its
performance. This paper focuses on Selection Sort algorithm which has
performance advantages over more complicated ones in certain
situations, especially where auxiliary memory is limited. It does many
comparisons and least amount of data swapping. Selection Sort
algorithm is inefficient on large lists, because it has O (n2) complexity,
and generally performs worse than the similar Insertion Sort. Many
research works have been conducted to find out better enhancement for
Selection Sort [1, 3-5] that speed up the sorting process such as
bidirectional Selection Sort Algorithm, which can position two items in
each pass thus reducing the number of loops required for sorting. This
algorithm also called "Friends Sort"[3]. Lakra and Divy[4] suggested
"Double Selection Sort" which makes sorting an efficient and convenient
way for larger data set by saving almost 25% to 35% than the classic
Selection Sort Algorithm. We have improved "Friends Sort" algorithm
by making it working in parallel. This algorithm is called Min-Max
Bidirectional Parallel Selection Sort (MMBPSS). Also other study
proposes an improvement for Selection Sort Algorithm by using dynamic
programming technique (Stack). The key idea behind using stack is to
eliminate unnecessary passes by reducing the number of comparison. A
Stack is used to store the location of previous max element found, and
instead of starting from the beginning each time, the largest element is
found and placed at the end of the array. This algorithm is called
Dynamic Selection Sort "DSS". We suggest a new third algorithm called
Min-Max Bidirectional Parallel Dynamic Selection Sort "MMBPDSS"
which combine DSS and MMBPSS. Our hypothesis "MMBPDSS"
makes sorting an efficient and convenient way for smaller and larger data
set by saving almost 50% than the classic Selection Sort and Friend Sort
algorithms [3] due to the parallel implementation of the algorithm.

The paper is organized as follows: a brief review of selection
sorting algorithm are discussed in Section 2, while section 3 contains the

A Novel Approach of Selection Sort Algorithm with Parallel Computing and Dynamic Programing
Concepts

29

proposed algorithm "Min-Max Bidirectional Parallel Selection Sort" and
explained it in more details, the steps, and procedure with an example.
Section 4 presents second proposed algorithm “Dynamic Selection Sort”
in details with procedures using example. Furthermore, Section 5
contains third proposed algorithm “Min-Max Bidirectional Parallel
Dynamic Selection Sort” in details with steps and procedure using
example. This paper further progress in Section 6 by testing and
analyzing the proposed algorithm’s results with the classical Selection
Sorting and the new Friend Sorting technique[3]. Finally the paper
concluded in Section-7.

2. Brief Review of Selection Sorting Algorithm

 This section presents a review of Selection Sort including history
of formation, methodologies and algorithms.

2.1 Selection Sort

Selection Sort is a well-known sorting technique that scans an array
to find the maximum item, puts it at the last location in the array, and
then scans the array for the second maximum item, puts it before the last
location, then third maximum and so forth, until reaches the smallest item
to be put at the first location of the array. It has O(n²) complexity,
inefficient for larger lists or arrays and its performance is worse than that
of Insertion Sort. In certain situations, it has a prominent efficiency than
some other convoluted algorithms. The number of passes, of the
Selection Sort for a given list, is equal to the number of elements in that
list.[6] The number of interchanges and assignments depends on the
original order of the items in the list/array, but the sum of these
operations does not exceed a factor of n²[7].

2.2 Procedure for Selection Sort

Procedure Selection-Sort (List: List of items to be sorted)

 Length ← length (List);

 For i ← Length -1 to 1 do

 Max ← i;

 For j ← i - 1 to 0 do

 if(List[j] > List[Max])

 Max ← j

 End if

Khaled Thabit and Afnan Bawazir

30

 End for

 Swap (List[i], List [Max]);

End for

End Procedure

2.3 Min-Max Bidirectional Parallel Selection Sort
Min-Max Bidirectional Parallel Selection Sort (MMBPSS) is an

improvement on the idea of traditional Bidirectional Selection Sort and
Friend Sort Algorithms[3] which can position two elements in each round
parallel, thus reduces the number of loop required for sorting. The basic
design idea of the (MMBPSS) is as follows: it divides the list into two
parts, minimum and maximum values from each part are selected in each
sort round. Then both values of minimum and maximum from each part
are compared to determine the minimum and the maximum of the whole
array, and they are placed at their proper locations. The Steps of the
proposed algorithm are as follows:

1. Divide the array into two.

Now: working in parallel from 2 to 7:

2. Find minimum and maximum values from each part.

3. Take minimum1 of the first part, compare it with minimum2 of the
second part.

4. Swap and put them at their exact location.

5. Take maximum1 of the first part, compare it with maximum2 of the
second part.

6. Swap and put them at their exact location.

7. Repeat these steps for the whole array.

2.4 Procedure for MMBPSS

Procedure MMBPSS (List: List of items to be sorted)

 Length ← length (List);
 Max, Min;
Mid = Length/2;
Start = 0, end = Length-1;

 For i← Start to end do in parallel
 () =>

A Novel Approach of Selection Sort Algorithm with Parallel Computing and Dynamic Programing
Concepts

31

 For j← Start to mid-1
 if(List[j] < List[Min1])
 Min1 ← j
 End if
 if(List[j] > List[Max1])
 Max1 ← End
 End if
 End for
 () =>
 For K← mid to end
 if(List[k] < List[Min2])
 Min2 ← k
 End if
 if(List[k] > List[Max])
 Max2 ← k
 End if
If (List [max1] >= List [max2])
 Max = max1;

 Else
 Max = max2;
End if
Swap (List[i], List [max]);

 If (List [min1] <= List [min2])
 Min = min1;
 Else
 Min = min2;
End if Swap (List[i], List [min]);
 End for
End Procedure

2.5 Example for MMBPSS
Let us take an array as an example see (Figure. 1) to apply (MMBPSS)
on it:

5 33 8 41 19 2 50 1 7 20
 Fig. 1. Unsorted Array

Index of Mid=5
Each for loop work at one part to find min & max in parallel,
See (Figure. 2)

5 33 8 41 19 2 50 1 7 20
 Fig. 2. Divide Array into two parts.

First iteration: see (Figure. 3)
Min1= 5 Min2=1
Max1=41 Max2=50
Then compare them:
Min 1> Min 2  Min= Min 2= 1

Khaled Thabit and Afnan Bawazir

32

Max 1< Max 2  Max= Max2 = 50
1 33 8 41 19 2 20 5 7 50

 Fig. 3. Array after the first iteration.
Second iteration: see (Figure. 4)
Min1= 8 Min2=2
Max1=41 Max2=20
Then compare them:
Min 1> Min 2  Min= Min 2= 2
Max 1> Max 2  Max= Max1 = 41

50 41 5 20 33 19 7 8 2 1

Fig. 4. Array after the second iteration.

Third iteration: see (Figure. 5)
Min1= 7 Min2=5
Max1=19 Max2=33
Then compare them:
Min 1> Min 2  Min= Min 2= 5
Max 1< Max 2  Max= Max2 = 33

50 41 33 20 8 19 7 5 2 1

Fig. 5. Array after third iteration.

Fourth iteration: see (Figure. 6)
Min1= 7 Min2=8
Max1=19 Max2=20
Then compare them:
Min 1< Min 2  Min= Min 1= 7
Max 1< Max 2  Max= Max2 = 20

50 41 33 20 8 19 7 5 2 1

Fig. 6. Array after fourth iteration.

Fifth iteration: see (Figure. 7)
Min1= 19 Min2=8
Max1=19 Max2=8
Then compare them:
Min 1> Min 2  Min= Min 2= 8
Max 1> Max 2  Max= Max1 = 19

50 41 33 20 19 8 7 5 2 1

Fig. 7. Array after fifth iteration.

 Finally, the array is sorted. See (Figure. 7)

A Novel Approach of Selection Sort Algorithm with Parallel Computing and Dynamic Programing
Concepts

33

2.6 Dynamic Selection Sort

Dynamic Selection Sort (DSS) is an improvement on the idea of
Selection Sort but it used dynamic programming (stack) to reduce sorting
time by increasing the amount of space. The basic idea behind using
stack is to eliminate unnecessary iterations. A stack is used to store the
location of previous largest element found, instead of starting from the
beginning after the largest element is found and placed at the end of the
array, we pop the stack and start at the location of the previous max, so
we can decrease the number of comparison required for sorting
operation. Here we used two Stacks, one to store the location of the
previous index largest element, another one to store value. Once the
location and value of the previous largest element is popped off from the
stack and compared with the elements of the array from that location till
a new largest element is found or the new end of the array is reached. If a
larger element is encountered then the location and value of the previous
largest element is pushed into the stack. The new largest element is again
compared to the remaining elements of the array. This process is repeated
until the array is sorted.

2.7 Procedure for DSS

Procedure DynamicSelectionSort (List: List of items to be sorted)
 Length ← length (List); Max, Location, Value, Stack1, Stack2;
 For i ← Length -1 to 1 do
 Max ← i;
 For j ← i - 1 to 0 do
 if(List[j] > List[Max])
 Max ← j
 Push Max in Stack1
 Value ← List [Max]
 Push Value in Stack 2
 End if
 End for
 Swap (List[i], List[Max]);
 Pop the first element from both the stack //this element
already has been swapped
 While (Stacks are not empty && i > 0)
 i ← i - 1
 Location ← pop element from Stack1, Max ←
Location
 Value ← pop element from Stack2.
 Swapped ← false

Khaled Thabit and Afnan Bawazir

34

 For n ← Location - 1 to 0 && i - 1 do
 Swapped ← true;
 if (List[n] > Value)
 Max ← n
 Push Max in Stack1
 Value ← List [Max]
 Push Value in Stack 2
 End if
 End for
 If (Swapped)
 Swap (List[i], List[Max])
 Pop the first element from both the stack
 Else
 i ← i + 1
 End while // Stack count loop
 End for // outer for loop

End Procedure

2.8 Example for DSS

Let us take an array as an example (Fig.8 and 9) to apply (DSS) on it:

Fig. 8. DSS algorithm by way of an example.

A Novel Approach of Selection Sort Algorithm with Parallel Computing and Dynamic Programing
Concepts

35

Fig. 9. DSS algorithm by way of an example "cont".

3 Min Max Bidirectional Parallel Dynamic Selection Sort

Min-Max Bidirectional Parallel Dynamic Selection Sort
(MMBPDSS) is an improvement on the idea of Dynamic Selection Sort
which can position two elements, minimum and maximum, from two
directions in each round in parallel. It thus reduces the number of loop
required for sorting. The Steps of the (MMBPDSS) are as follows

1. First thread starts from the beginning of the array which finds the
smallest element (using 2 stacks to store the minimum and its
location).

Khaled Thabit and Afnan Bawazir

36

2. The second thread starts from the end of the array searching for the
largest element (using 2 stacks to store the maximum and its
location).

3. Then concatenate the first half from first thread with the second half
from the second thread.

3.1 Procedure for MMBPDSS
ProcedureMinMaxBidirectionalParallelDynamicSelectionSort (List:
List of items to be sorted)
First Thread: // sorting smallest elements

Length ← length (List); Min, Location, Value, Stack1, Stack2, mid = Length
/ 2;
 For i ← 0 to mid-1 do
 Min ← i;
 For j ← i - 1 to 0 do
 if(List[j] < List[Min])
 Min ← j
 Push Min in Stack1
 Value ← List [Min]
 Push Value in Stack 2
 End if
 End for
 Swap (List[i], List [Min]);
 Pop the first element from both the stack //this element
already has been swapped
 While (Stacks are not empty && i <= mid)
 i ← i + 1
 Location ← pop element from Stack1, Min← Location
 Value ← pop element from Stack2.
 Swapped ← false
 For n ← Location - 1 to 0 && i - 1 do
 Swapped ← true;
 If (List[n] < Value)
 Min ← n
 Push Min in Stack1
 Value ← List [Min]
 Push Value in Stack 2
 End if
 End for
 If (Swapped)
 Swap (List[i], List [Min])

A Novel Approach of Selection Sort Algorithm with Parallel Computing and Dynamic Programing
Concepts

37

 Pop the first element from both the stack
 Else
 i ← i - 1
 End while // Stack count loop
 End for // outer for loop
End first thread.

Second Thread: // sorting largest elements
Length ← length (List); Max, Location, Value, Stack1, Stack2, mid = Length
/ 2;
 For i ← mid to 1 do
 Max ← i;
 For j ← i - 1 to 0 do
 if(List[j] > List[Max])
 Max ← j
 Push Max in Stack1
 Value ← List [Max]
 Push Value in Stack 2
 End if
 End for
 Swap (List[i], List [Max]);
 Pop the first element from both the stack //this element
already has been swapped
 While (Stacks are not empty && i >= mid)
 i ← i - 1
 Location ← pop element from Stack1, Max ←
Location
 Value ← pop element from Stack2.
 Swapped ← false
 For n ← Location - 1 to 0 && i - 1 do
 Swapped ← true;
 If (List[n] > Value)
 Max ← n
 Push Max in Stack1
 Value ← List [Max]
 Push Value in Stack 2
 End if
 End for
 If (Swapped)
 Swap (List[i], List [Max])
 Pop the first element from both the stack
 Else
 i ← i + 1
 End while // Stack count loop
 End for // outer for loop

Khaled Thabit and Afnan Bawazir

38

End second thread.
End Procedure.

3.2 Example for MMBPDSS

Let us take an array as an example (Figure. 10) to apply (MMBPDSS) on it:

 Fig. 10. Illustration MMBP DSS via Example.

4. RESULTS AND DISCUSSION
To prove efficiency of MMBPSS, DSS and MMBPDSS

performance, they were implemented along with Classical Selection Sort
algorithm and with the new Friend Sorting Algorithm[3]. The calculation
of average execution time, total comparison and swapping frequencies
are conducted for random sample lists with different sizes, 30 times for
all mentioned algorithms in the paper. We have conducted those
algorithms by using basic laptop with the following specification Intel
Core2Duo processor 2.53 GHZ machine with 4 GB.

The results are accomplished in three ways:
1. Comparison of execution time of MMBPSS, DSS and MMBPDSS
algorithms with the classic Selection Sort algorithm and with the new
Friend Sorting algorithm.
2. Comparison of total frequency of MMBPSS, DSS and MMBPDSS
with the classic Selection Sort algorithm and new Friend Sorting
algorithm.
3. Comparison of total swapping frequency of MMBPSS, DSS and
MMBPDSS with the classic Selection Sort algorithm and with the new
friend sorting algorithm.

2 7 10 6 1 8 9 12 11 7 3 4

Working in parallel
First thread sorting smallest element using Dynamic Selection Sort

1 2 3 4 6 7 9 12 11 7 10 8

 Second thread sorting largest element using Dynamic Selection Sort
2 7 6 4 1 3 7 8 9 10 11 12

Then concatenate first half form first thread with second half from
second thread.

1 2 3 4 6 7 7 8 9 10 11 12

A Novel Approach of Selection Sort Algorithm with Parallel Computing and Dynamic Programing
Concepts

39

4.1 Comparison of Execution Time
Table 1 shows the comparison of the MMBPSS, DSS and

MMBPDSS algorithm with the classic Selection Sort algorithm and with
the new Friend Sorting algorithm with respect to the average execution
time each algorithm takes to perform sorting.

Table 1. Time Comparison
Average of Execution Time (Test on different array of size)in millisecond

Array size Min-Max
Bidirectional
Parallel Dynamic
Selection Sort

Dynamic
Selection

Sort

Min-Max
Bidirectional

Parallel Selection
Sort

New Friend
Sorting

Algorithm

Selection
Sort

11.25 10.43051 36.87646667 11.99764 13.44133333 1000

31 37 117 45 44 3000

87.25 140.6054 192.08728 169.3317 206.7171 5000

125.4608 164.0168 198.8224 195.2054 213.9861 7000

299.2226 394.7421 528.2458 665.3608 693.21615 10000

2657.741 3498.265 3630.884 4244.429 4224.902 30000

6537.066 8580.618 9281.721 12019.771 11916.28 50000

12189.42 14323.28 16521.67 19479.03 18795.62 70000

27735.59 35361.93 31804.16 52417.33 53993.07 100000

Graphical view for Table.1 is presented in Figure. 11.

Fig. 11. Time Comparison.

Khaled Thabit and Afnan Bawazir

40

It can be observed from Fig. 11 that the performance of the new
Friend Sorting algorithm is less efficient when the array size is smaller
than 30000 but after that its efficiency degrades and it is equally efficient
to the classic Selection Sort but MMBPSS is more efficient when the
array size is over 35000 elements. There is an additional overhead when
applying MMBPSS on smaller array size. DDS reduces the execution
time compared to the classic Selection Sort, the new Friend Sorting
algorithm and MMBPSS, while "MMBPDSS" is better than DDS and
saves almost 50% of the classical Selection Sorting. It really reaches the
optimization purpose.

4.2 Comparison of Total Comparison Frequency

Table.2 shows the comparison of the MMBPSS, DSS and
MMBPDSS algorithms with the classic Selection Sort algorithm and with
the new Friend Sorting algorithm with respect to average of comparison
numbers each algorithm takes to perform sorting.

Table 2. Total Comparison Frequency.

Average of comparison numbers (Test on different array of size)

Array size
Min-Max
Bidirectional
Parallel
Dynamic
Selection Sort

Dynamic
Selection

Sort

Min-Max
Bidirectional

Parallel
Selection Sort

New friend
sorting

algorithm

Selection
sort

621162 415369 10871 500500 499500 1000

3929732 3683523 35597 4501500 4498500 3000

9745052 10096142 69541 12502500 12497500 5000

21634554 19993926 97718 24503500 24496500 7000

39379276 40832313 151299.3 50005000 49995000 10000

303589600 368623040 490405 450015000 449985000 30000

1018170886 1031800452 880382 1250025000 1249975000 50000

2256552865 2032017833 1319601 2450035000 2449965000 70000

4102486376 4186028005 1926387 5000050000 4999950000 100000

Graphical view for Table.2 is presented in Figure. 12.

A Novel Approach of Selection Sort Algorithm with Parallel Computing and Dynamic Programing
Concepts

41

Fig. 12. Total Comparison Frequency.

It can be observed from the above graph that the total comparison

frequency of Selection Sort and the new Friend Sorting algorithms are
the same, while DSS and MMBPDSS reduce the total comparison
frequency but MMBPSS perform the least number of comparisons in
sorting procedure.

4.3 Comparison of Total Swapping Frequency
Table.3 shows the comparison of the MMBPSS, DSS and

MMBPDSS algorithms with the classic Selection Sort and the new
Friend Sorting algorithms with respect to average of swapping frequency
each algorithm takes to perform sorting.

 Table 3. Total Swapping Frequency

Graphical view for Table.3 is presented in Figure. 13.

Average of swapping numbers (Test on different array of size)

Array size

Min-Max
Bidirectional

Parallel
Dynamic

Selection Sort

Dynamic
Selection

Sort

Min-Max
Bidirectional

Parallel
Selection Sort

New friend
sorting

algorithm

Selection
sort

1003 99999410009991000
3000 29992993300029993000
5002 49994991500049995000
6999 69996991700069997000
10002 9999998810000999910000
30000 2999929990300002999930000
50002 4999949989500004999950000
70000 6999969987700006999970000
100000 999999998010000099999100000

Khaled Thabit and Afnan Bawazir

42

Fig. 13. Total Comparison Frequency.

It can be observed from the Figure. 13 that the classic Selection

Sort, the new Friend Sorting Algorithms, MMBPSS, DSS, MMBPDSS
perform the same number of swaps as the number of elements to perform
sorting.

5. CONCLUSION

In this study, we present three new sorting techniques:
"MMBSS","DSS" and "MMBPDSS" for selection sort that are tested and
analyzed against the classical Selection Sorting and the new Friend
Sorting techniques[3] to provide their efficiency. The graphs show that
"MMBPDSS" save almost 50% of the classical Selection Sorting with
100% accuracy of order which get the benefit from effective utilization
of CPU by using parallel computing with cost of increasing amount of
space.

References

[1] Min, W., “Design and analysis on bidirectional selection sort algorithm,” in Education
Technology and Computer (ICETC), 2nd International Conference on, Vol. 4, pp: V4–380,
(2010).

[2] Bailey, D. A., Java Structure: Data Structure in Java for Principled Programmer, 2nd ed.
McGraw-Hill, (2003).

[3] Iqbal, S. Z., Gull, H. and Muzaffar, A. W., A new friends sort algorithm. In Computer
Science and Information Technology, 2nd IEEE International Conference on. pp: 326-329,
ICCSIT, (2009).

A Novel Approach of Selection Sort Algorithm with Parallel Computing and Dynamic Programing
Concepts

43

[4] Lakra, S. and Divy, "Improving the performance of selection sort using a modified double-
ended selection sorting", International Journal of Application or Innovation in Engineering
& Management (IJAIEM), Volume 2, Issue 5, and May (2013).

[5] Agarwal, A., Pardesi, V. and Agarwal, N., " A New Approach To Sorting: Min-Max
Sorting Algorithm", International Journal of Engineering Research & Technology (IJERT)
Vol. 2 Issue 5, May (2013).

[6] Donald, E. K., The art of computer programming, Sorting and searching, 3, 426-458.

[7] Lipschutz, S., Theory and Problems of Data Structures, Schaum’s Outline Series:
International Edition, McGraw (1999).

Khaled Thabit and Afnan Bawazir

44

باستخدام مفهومي الحوسبة " الاختيار"ترتيب تحسين خوارزمية
 المتوازية والبرمجة الديناميكية

 خالد ثابت، وأفنان باوزير
 كلية الحاسبات وتقنية المعلومات، قسم علوم الحاسبات

 المملكة العربية السعودية جامعة الملك عبدالعزيز، جدة،
afnan-bawazir@hotmail.com

كتشاف أفضل لا البحثية الأعمال من العديد أجريت قد. المستخلص

 ترتيب الاختيار ةمثل خوارزمي ،"الاختيار"سين لخوارزمية ترتيب تح
 يمكن والتي "يار الصديقةترتيب الاخت" ةالاتجاه كخوارزمي الثنائية
 الخوارزمية هذه بتحسين قمنا قدل جولة، كل في عنصرين وضع

-تسمى أصغر الخوارزمية هذه المتوازية، الحوسبة مفهوم باستخدام
). MMBPSS(للترتيب بواسطة الاختيار المتوازية الاتجاه ثنائي كبرأ

 لتقليل) المكدس(الديناميكية البرمجة استخدام الورقة هذه تقترح كما
 الأساسية الفكرة. اكرةمساحة الذ مقدار زيادة طريق عن الفرز وقت
له في داعي لا التكرار الذي على القضاء هو المكدس استخدام وراء

تسمى ترتيب الخوارزمية هذه. البحث عن العنصر الكبير والصغير
 ،"MMBPSS" مزايا مع)DSS(مزايا ولدمج) DSS(الاختيار المتغيرة
 الاتجاه أكبر ثنائي-أصغر تسمى جديدة ثالثة اقترحنا خوارزمية

والتي . "MMBPDSS"للترتيب بواسطة الاختيار المتغيرة المتوازية
 الأقصى والحد الأدنى الحد عنصرين من عناصر وضع منتمكن

 جولة كل الاختيار المتغيره في خوارزمية باستخدام اتجاهين من
 وتم تقديم. للترتيب الجولات المطلوبة عدد تقليل وبالتالي بالتوازي،
 مع بيانية رسوم شكل التنفيذ على بعد عليها الحصول تم التي النتائج
خوارزمية من٪ 50ـهي أفضل ب" MMBPDSS" لاظهار الهدف

 .ترتيب الاختيار العادية

