Geodetic Applications of Satellite Data

Hassan M. Asiri
Astronomy Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia hasiri@kau.edu.sa

Abstract

The global positioning system (GPS) provides an accurate data for locations on the Earth's surface. In this paper, data for longitudes and latitudes of more than seven thousand places in Saudi Arabia is considered. A database for qibla direction and geodesic distance to Makkah for these places is established. Spherical trigonometry is applied to perform geodetic computations. The database is illustrated and a sample of it for some main cities is presented.

Keywords: Qibla direction, Geodesic distance, Spherical Trigonometry, GPS.

Introduction

Qibla is the direction of the Kaaba (the sacred building at Makkah, Saudi Arabia) to which Muslims turn at prayer. The qibla is not only important for the prayers, but also relevant to everyday ceremonies in Islam. Therefore, determining the precise direction of the Kaaba has been always the concern of all Muslims around the World.

The qibla for a place on the Earth's surface is the angle between the North direction and the direction of the Kaaba with respect to this place. This angle is measured clockwise and ranged from 0 to 360 degrees ${ }^{[1]}$.

On the other hand, geodesic distance is the shortest possible line between two points on a sphere or other curved surface.

On a sphere, geodesics are great circles. For instance, the shortest route from the north pole P to the south pole Q of the Earth is given by the shorter arc of the great circle passing through P and Q.

In this paper, more than seven thousand places in Saudi Arabia are treated. Qibla direction for these places is determined, and geodesic distance between Makkah and these places is computed. Basic spherical trigonometric formula ${ }^{[2,3]}$ is applied to determine the qibla direction, while Andoyer's formula ${ }^{[4]}$ is used to compute the geodesic distance.
Data for longitudes and latitudes used in this paper are collected from ${ }^{[5]}$, and they are expressed in degrees and minutes.

Qibla Direction

Fig. 1. Definition of qibla.
The problem of qibla involves spherical trigonometry, since it considers the angles between the shortest lines on a sphere. The qibla direction can be determined using more than one method such as; direct solar observation and shadow method. However, basic spherical trigonometric formula ${ }^{[2,3]}$ seems to be accurate enough for calculating the qibla direction.

Figure 1 shows a spherical triangle $P X M$, where
E : Equatorial plane
P : North pole
M: Makkah
α : Qibla
λ_{M} : Longitude of Makkah
ϕ_{M} : Latitude of Makkah
and

$$
\begin{aligned}
& \lambda_{M}=+39^{\circ} 50^{\prime}, \\
& \phi_{M}=+21^{\circ} 25^{\prime}, \\
& X P=90-\phi, \\
& P M=90-\phi_{M}, \\
& X P M=\lambda_{M}-\lambda .
\end{aligned}
$$

Consider a place X on the Earth's surface whose longitude λ and latitude ϕ, respectively, then the qibla direction is given by:

$$
\begin{equation*}
\alpha=\tan ^{-1}\left[\frac{\sin \left(\lambda_{M}-\lambda\right)}{\cos (\phi) \tan \left(\phi_{M}\right)-\sin (\phi) \cos \left(\lambda_{M}-\lambda\right)}\right] . \tag{1}
\end{equation*}
$$

In the above equation, the quadrant where the angle α is located should be taken into account.

Geodesic Distance

Consider two places X_{1} and X_{2} on the Earth's surface. Let λ_{1} and ϕ_{1} be the longitude and latitude of X_{1}, respectively. Let λ_{2} and ϕ_{2} be the longitude and latitude of X_{2}, respectively. If we suppose that X_{1} and X_{2} are at sea level. Then the geodesic distance can be obtained using a high accuracy formula, by Andoyer ${ }^{[4]}$, which considers the Earth's flattening:

$$
\begin{equation*}
\beta=D\left[1+f A_{1} \sin ^{2}(B) \cos ^{2}(C)-f A_{2} \cos ^{2}(B) \sin ^{2}(C)\right] \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& B=\frac{1}{2}\left(\phi_{1}+\phi_{2}\right), \\
& C=\frac{1}{2}\left(\phi_{1}-\phi_{2}\right), \\
& \lambda=\frac{1}{2}\left(\lambda_{1}-\lambda_{2}\right), \\
& F=\sin ^{2}(C) \cos ^{2}(\lambda)+\sin ^{2}(\lambda) \cos ^{2}(B), \\
& G=\cos ^{2}(C) \cos ^{2}(\lambda)+\sin ^{2}(\lambda) \sin ^{2}(B), \\
& H=\tan ^{-1}(\sqrt{F / G}), \\
& J=\sqrt{F G} / H, \\
& D=2 a H, \\
& A_{1}=(3 J-1) / 2 G, \\
& A_{2}=(3 J+1) / 2 F, \\
& f=(a-b) / a,
\end{aligned}
$$

and $a(6,378.1 \mathrm{~km})$ is the Earth's equatorial radius, $b(6,356.8 \mathrm{~km})$ is the polar radius and f is the Earth's flattening.

Example

Calculate the qibla direction and geodesic distance to Makkah, for the capital of Saudi Arabia, Riyadh.

The longitudes and latitudes of Makkah and Riyadh, as stated in ${ }^{[5]}$, are:

$$
\begin{aligned}
& \lambda_{M}=+39^{\circ} 50^{\prime}, \\
& \phi_{M}=+21^{\circ} 25^{\prime}, \\
& \lambda_{R}=+46^{\circ} 47^{\prime}, \\
& \phi_{R}=+24^{\circ} 41^{\prime},
\end{aligned}
$$

Using Mathematica and applying equations (1) and (2), we get:

$$
\begin{aligned}
& \alpha=244^{\circ} .398, \\
& \beta=798.682 \mathrm{~km} .
\end{aligned}
$$

Summary

We have established a database which contains longitude, latitude, qibla direction and geodesic distance to Makkah for more than seven thousand places in Saudi Arabia. In this paper, we only present a sample of this huge database for some main cities, see Table 1.

In Fig. 2, we illustrate the longitudes and latitudes of more than seven thousand places in Saudi Arabia. Figures 3 and 4 show contour plots for qibla direction and geodesic distance. Three-dimensional plots of qibla direction and geodesic distance as functions of longitudes and latitudes are illustrated in Fig. 5 and 6.

Table. Qibla direction and geodesic distance to Makkah for some main cities.

City	λ	ϕ	α	β
Riyadh	$46^{\circ} 47^{\prime}$	$24^{\circ} 41^{\prime}$	$244^{\circ} .336$	798.682 km
Dammam	$50^{\circ} 05^{\prime}$	$26^{\circ} 26^{\prime}$	$243^{\circ} .990$	1181.590 km
Jeddah	$39^{\circ} 12^{\prime}$	$21^{\circ} 29^{\prime}$	$096^{\circ} .337$	066.062 km
Abha	$42^{\circ} 31^{\prime}$	$18^{\circ} 13^{\prime}$	$322^{\circ} .177$	452.207 km
Bahah	$40^{\circ} 33^{\prime}$	$26^{\circ} 03^{\prime}$	$188^{\circ} .206$	518.336 km
Arar	$41^{\circ} 01^{\prime}$	$30^{\circ} 59^{\prime}$	$186^{\circ} .603$	1066.470 km
Sakakah	$40^{\circ} 13^{\prime}$	$29^{\circ} 58^{\prime}$	$182^{\circ} .399$	947.989 km
Medina	$39^{\circ} 38^{\prime}$	$24^{\circ} 27^{\prime}$	$176^{\circ} .486$	336.547 km
Buraydah	$43^{\circ} 58^{\prime}$	$26^{\circ} 20^{\prime}$	$218^{\circ} .409$	688.168 km

Ha'il	$41^{\circ} 42^{\prime}$	$27^{\circ} 31^{\prime}$	$195^{\circ} .960$	701.634 km
Jizan	$42^{\circ} 33^{\prime}$	$16^{\circ} 54^{\prime}$	$330^{\circ} .832$	575.824 km
Najran	$44^{\circ} 12^{\prime}$	$17^{\circ} 32^{\prime}$	$314^{\circ} .037$	628.371 km
Tabuk	$36^{\circ} 32^{\prime}$	$28^{\circ} 24^{\prime}$	$156^{\circ} .085$	842.204 km

Fig. 2. Longitudes and latitudes of more than seven thousand places.

Fig. 3. A contour plot for the qibla direction.

Fig. 4. : A contour plot for the geodesic distance to Makkah.

Fig. 5. Qibla direction for more than seven thousand places.

Fig. 6. Geodesic distance to Makkah for more than seven thousand places.

Acknowledgement

The author would like to thank King Abdulaziz University, Jeddah, Saudi Arabia, for funding this work under the project number: 3-H004/430.

References

[1] Niyazi, Adnan. World Guide to Qibla. Al-Khurayji, Riyadh, 1999.
[2] Bagvi, Malik. Determination of the Direction of Qibla and the Islamic Timings. AshrafulMadaris, Karachi, 1970.
[3] Ilyas, Mohammad. A Modern Guide to Astronomical Calculations of Islamic Calendar, Times \& Qibla. Berita, Kuala Lumpur, 1984.
[4] Meeus, Jean. Astronomical Algorithms, 2nd ed. Willmann-Bell, Richmond Va, 1999.
[5] Ministry of Higher Education. Atlas of Saudi Arabia. Ministry of Higher Education, Riyadh, 1999.

تطبيقات جيوديسية لييانات الأقمار الصناعية

حسن محمد عسيري

قسم العلوم الفلكبة - كلبة العلوم - جامعة الملك عبدالعزبز
جدة - الدملكة العربية السعودبة
hasiri@kau.edu.sa
(الدستخص: النظام العالمي لتحديد المواقع يوفر بيانات دققة عن المواقع على سطح الكرة الأرضية. في هذا البحث، نقوم بدراسة بيانات خطوط الطول ودوائر العرض لأكثر من سبعة آلاف مكان في الملكة العربية السعودية. حيث نؤسس فاعدة بيانات لاتجاه القبلة والمسافة الجيوديسية إلى مكة المكرمة لهذه الأماكن. نستخدم المتلثات الكروية لاجراء الحسابات الجيوديسية. أخيراً ندنّل قاعدة البيانات بيانياً، بيبنما نقام عينة منها تشتنمل على بعض المدن الرئيسية.

