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ABSTRACT. A method is described for optimizing the field stress on HV bush-
ings-penetrating though a flat grounded casing — by modifying their profile,
seeking a uniform distribution of the tangential field along the bushing sur-
face. This results in an increase of the inception voltage for surface flashover
on the bushing surface. The optimization process was achieved by an algo-
rithm developed for calculating the tangential field component on the bushing
surface. The algorithm was based on the charge simulation technique to satisfy
the boundary conditions at the electrode, bushing and casing surfaces. The
dominant effect in the optimization process is ascribed to the inclination angle
and the height of the bushing outside the casing.

1. Introduction

Bushings are used to bring high voltage (HV) conductors through grounded casing, for
example, a tank cover of a HV test transformer without excessive electric stresses
between the conductor and the edge of the hole in the tank!!l. For voltages < 66 kV, the
bushing is no more than a solid insulating material shaped as a tapered cylinder sur-
rounding- the HV conductor. The insulating material would withstand the prevailing
high field stresses. However, the high tangential components of the field at the interface
between the solid insulating material and the surrounding air may cause surface dis-
charges and lead to relatively low flashover voltages.

One solution to the problem is to use special profiles for both the HV conductor and
the bushing materiall2l. These profiles are shaped to keep the equipotential contours the
same as those before introducing the bushing material around the HV conductor. This

type of bushings could be manufactured using epoxy resins as the insulating materi-
all3:4],

Another solution to the problem is to design the bushing with an optimized profile
where the distribution of the tangential field component would be uniform, thus
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increasing the inception voltage of surface flashover, in conformity with HV insulator
optimizationt3-7], In this paper, a method is developed for calculating the tangential
field component on the bushing surface.

The method developed for calculating the tangential field component along a bush-
ing penetrating through a grounded flat metal plate, which is the tank cover, is based on
the charge simulation technique!!8], In this technique, lumped charges are used to sim-
ulate the surface charge on the bushing, central conductor, top electrode, and tank
cover. Generally, lumped charges simulate accurately curved contours than area
charges!6] which approximate the contour by straight-line segments.

First, the proposed method for calculating the tangential field is explained. Then, the
procedure of optimization is discussed, where some parameters that describe the bush-
ing profile are modified to achieve acceptable degree of field uniformity. Finally, the
optimized profiles are discussed in terms of the geometrical parameters of the bushing.

2. Method of Analysis
2.1 Bushing Geometry

Figure 1 shows a bushing penetrating through a grounded flat metal plate, which is
the tank cover of a HV test transformer. The profile of the arrangement in Fig. 1 is
defined by the inclination angle ¢, the heights H| and H, outside and inside the tank,
and the base radius R, of the bushing, in addition to the central conductor radius R,
inside the bushing and the radius R, of the top electrode outside the bushing. This is in
conformity with the profile shapes adopted by some bushing manufacturers(®l.

2.1.1 The Top Electrode

The r- and z-coordinates of N, contour points selected on the top ¢lectrode are
expressed as (Fig. 1).

r(i)=,i.Az2R, -i.&2); i=12,. n

Wi)=H, +iAz; :—1,2,...,Ne @)

2R
where Az, = N :_ N and H | is the height of the bushing outside the tank (Fig. 1).

In Eq. (2), the contour points on the top electrode are spaced equally along the z-
direction.
2.1.2 The Central Conductor

The r- and z-coordinates of N, contour points selected on the central conductor are
expressed as (Fig. 1).

r@) =R, ;i=N,+LN,+2,.,N,+N, 3)
2i)=H -4z, ;i=N,+LN,+2,..,N,+N, 4)
i-N,
L.y - D™ -1)
N,
A -

where Az, = and A, > 1.
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FiG. 1. Charge representation of a bushing penetrating through a grounded flat plane.

In Eq. (4), the contour points on the central conductor of length L, are not spaced
equally along the z-direction. The spacing between the points is small near the top elec-
trode and increases gradually in the direction away from the electrode. Of the contour
points N, points are outside the tank and N ,(= N~ N ) points are inside the tank.
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2.1.3 The Bushing
a) Tapered Party

The r- and z-coordinates of N, contour points selected on the bushing surface out-
side the tank are expressed as (Fig. 1).

H, - 2(i)

r)=R,- — ;i=N,+ N, +LN,+N_+2,.,N,+N_+ N, (5)
2({)=(@-N,-N.).Az, ;i=N,+N.+LLN,+N, +2,.,N,+N_+ N, (6)

H, . . . : o
where Az, = " and R, is the base radius of the bushing (= radius of the cylindrical

portion of the b’f]lshing), Fig. 1.

In Eq. (6), the contour points on the tapered part of the bushing are spaced equally
along the z-direction.

¢) Cylindrical Part

The r- and z-coordinates of N, contour points selected on the bushing surface inside
the tank are expressed as (Fig. 1).

r(i)=R,; i=N,+N_.+N, +,N,+N_+N, +2,..,.N,+N_+N, @)

2(i)=-H,+({-N,-N,-N,).Az;;i=N,+N_+ N, +1, 8)
N,+N.+N, +2,.,N,+N_+N,

where

H
Az;=—-=2—and N, =N, +N,,
o +1
In Eq. (8), the contour points on the cylindrical part of the bushing are spaced equal-
ly along the z-direction.

2.1.4 The Tank Cover

The r- and z-coordinates of N, contour points selected on the tank cover are
expressed as, (Fig. 1).

ri)= R, + RA;N Mo i= N+ N+ N, +1,
N,+N . +N,+2,.,N,+N_+N,+N, 9

2(i)=0.0; i=N,+N.+N,+,N,+N. +N,+2,.,N,+ N+ N, +N, (10)

where 4, > 1.

In Eq. (10), the contour points on the tank cover are not spaced equally along the r-
direction. The spacing between the points is small near the bushing and increases grad-
ually in the direction away from the bushing.
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2.2 Surface Charge Simulation
2.2.1 The Top Electrode

Due to the axial symmetry of the arrangement, Fig. 1, the surface charge on the top
electrode is simulated by N, fictitious ring charges whose z-coordinates (Z(j)=z(j),
Jj=12,..,N,) are the same as the selected contour points on the electrode. The radii
R(i) of the ring charges are expressed in terms of the r-coordinates of the contour points
(Fig. 1).

R(j)=Bir(j);j=12,..,N, ey
where B, is a fraction ranging from 0.2 to 0.5 for acceptable accuracy of the simulation.
2.2.2 The Central Conductor

The surface charge on the central conductor is simulated by N, fictitious ring
charges, whose z-coordinates (Z(j) = z(j),j = Ne +1,N,+2,..,N, + NC) are the same
as the selected contour points on the conductor. The radii R(i) of the ring charges are
expressed in terms of the r-coordinates of the contour points (Fig. 1).

R()H)=Br(j);j=N,+LN,+2,.,N,+ N, (12)
where B,'is a fraction ranging from 0.2 to 0.5 for acceptable accuracy of the simulation.

2.2.3 The Bushing

In the bushing of dielectric constant €, dipoles are aligned by the applied electric
field and compensate for each other through the volume of the insulator, leaving net
charges only on the surface. These charges are simulated by fictitious lumped ring
charges in the bushing volume and in the surrounding air to match the axial symmetry
of the arrangement. The number of simulation charges in the insulator is N,(=N,), the
same as that in air, N, . The z-coordinates of simulation charges either in air or in bush-
ing (ZG)=2z(G)j=N,+N,+ |, N,+ N +2,.,N, + N, + N,) are the same as the
selected contour points on the bushing profile. Thus, the z-coordinate Z(j) for rings in
air are the same as those in the bushing. The radii R(i) of the ring charges in bushing
are expressed in terms of the r-coordinates of the contour points (Fig. 1).

R(j)=PB5r(j)ij=N,+N,+ LN, +N.+2,.,N,+ N + N, (13)
where B, is a fraction ranging from 0.4 to 0.6 for acceptable accuracy of the simulation.
The radii R({) of the ring charges in air are expressed in terms of the r-coordinates
of the contour points (Fig. ).
R(j)Y=B4r(j-Ny)j=N,+N.+N, +LN,+N +N, +2,.,N,+N_+2N, (14)
where 3 is a factor ranging from 1.2 to 1.7 for acceptable accuracy of the simulation.

2.2.4 The Tank Cover

As the tank cover is usually grounded, it is charged due to the voltage applied to the
central conductor. The surface charge on each side of the cover is simulated by two sets
of ring charges, N, and N,, respectively as shown in Fig. 1. The radii of the N, ring
charges simulating the upper side of the tank cover are expressed in terms of the r-coor-
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dinates of contour points selected on the tank cover as (Fig. 1).

R(j)=r(j—N,),j=N,+N,+2N, + LN, + N, +2N, +3,.,N,+ N_+2N, + N, (15)

The z-coordinates of the N, charges simulating the upper side of the tank cover are
expressed as

Z(j)=R(j)-R;j=N,+N_+2N,+ LN, + N +2N, +3,.,N,+N_+2N, + N, (16)

The radii of the N, ring charges simulating the lower side of the tank cover are
expressed in terms of the r-coordinates of contour points selected on the tank cover as
(Fig. ).
R(j)=r(j-N,)j=N,+N.+2N, +N, +2, (17)
N, +N.+2N, + N, +4,.,N,+N_+2N, + N,
where N, =N, +N,,.

The z-coordinates of the N, charges simulating the lower side of the tank co- .r are
expressed as

Z(j)==(R()-Ry);j=N,+N.+2N, + N, +2, (18)
N,+N, +2N,+ N, +4,..,N,+N_+2N, + N,

In Eq. (15) and (17), the radial coordinates of the contour points expressed by Eq. (9)
are equal to those of the ring charges simulating the tank’s upper-side and lower-side
alternately.

2.3 Electric Potential Equations
2.3.1 At the Top Electrode Surface

The potential ¢,(r, z) at any point (r, z) on the electrode/air boundary is the algebraic
sum of the potentials at this point, produced by the ring charges belonging to the top
electrode, the conductor, the bushing and the lower side of the tank cover (Eq. (1.1) in
Appendix 1).

2.3.2 At the Central Conductor/Bushing Interface

The potential ¢, (r, z) at any point (r, z) on the central conductor/bushing boundary
outside the tank is the algebraic sum of the potentials at this point, produced by the ring
charges belonging to the top electrode, the conductor, the air and the lower side of the
tank cover (Eq. (1.2) in Appendix 1).

Also, the potential ¢,(r, z) at any point (r, z) on the central conductor/bushing
boundary inside the tank is the algebraic sum of the potentials at this point, produced by
the ring charges belonging to the top electrode, the conductor, the air and the upper side
of the tank cover (Eq. (1.3) in Appendix 1).

2.3.3 At the Bushing Surface

The potential ¢,,,(r, z) at any point (r, z) along the bushing surface outside the tank
is the algebraic sum of the potentials at this point, produced by the ring charges belong-
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ing to the top electrode, the conductor, the air and the lower side of the tank cover if the
point is seen from the bushing side (Eq. (1.4) in Appendix 1). If the point is seen from
the air side, the potential ¢, (7, z) is the algebraic sum of the potentials at this point,
produced by the ring charges belonging to the top electrode, the conductor, the bushing
and the lower side of the tank cover (Eq. (1.5) in Appendix 1).

The potential ¢, (r, z) at any point (r, z) along the bushing surface inside the tank is
the algebraic sum of the potentials at this point, produced by the ring charges belonging
to the top electrode, the conductor, the air and the upper side of the tank cover if the
point is seen from the bushing side (Eq. (1.6) in Appendix 1). If the point is seen from
the air side, the potential ¢;, (r, ) is the algebraic sum of the potentials at this point,
produced by the ring chaiges belonging to the top electrode, the conductor, the bushing
and the upper side of the tank cover (Eq. (1.7) in Appendix 1).

2.3.4 At the Tank Cover

The potential ¢, (s, z) at any point (r, z) along the surface of the tank cover is the
algebraic sum of the potentials at this point, produced by the ring charges belonging to
the top electrode, the conductor, the bushing and the lower side of the tank cover if the
point is seen from outside the tank (Eq. (1.8) in Appendix 1).

The potential ¢,(r, z) at any point (r, z) along the surface of the tank cover is the
algebraic sum of the potentials at this point, produced by the ring charges belonging to
the top electrode, the conductor, the bushing and the upper side of the tank.cover if the
point is seen from inside the tank (Eq. (1.9) in Appendix 1).

2.4 Electric Field Equations

2.4.1. At the Bushing Surface

The normal electric field E, ,(r, z) at any point (r, z) along the bushing surface out-
side the tank is the vector sum of the normal field components at this point due to the
ring charges belonging to the top electrode, the conductor, the bushing and the lower
side of the tank cover if the point is seen from the air side (Eq. 2.1 in Appendix 2). If
the point is seen from the bushing side, the normal electric field £, ,, (r, z) is the vector
sum of the normal field components due to the ring charges belonging to the top elec-

trode, the conductor, the air and the lower side of the tank cover (Eq. 2.2 in Appendix 2).

The normal electric field E,;,(r, z) at any point (r, z) along the bushing surface
inside the tank is the vector sum of the normal field components at this point due to the
ring charges belonging to the top electrode, the conductor, the bushing and the upper
side of the tank cover if the point is seen from the air side (Eq. 2.3 in Appendix 2). If
the point is seen from the bushing side, the normal electric field £, (r, z) is the vector
sum of the normal field components due to the ring charges belonging to the top elec-
trode, the conductor, the air and the upper side of the tank cover (Eq. 2.4 in Appendix 2).

2.5 Boundary Conditions and Defining Equations
2.5.1 At the Top Electrode Boundary

a) The potential ¢,(r, z) calculated by Eq. (1.1) at every point on the electrode sur-
face is equal to the applied voltage V, i.e.,

~ AT arar eAnanATAce RumaamBna
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¢, (r.2)=V (19
2.5.2 At the Central Conductor Boundary
a) The potential ¢, (r, z) calculated by Eq. (1.2) at every point on the surface of the
central conductor outside the tank is equal to the applied voltage V; i.e.,
0y (rn)=V (20)
b) The potential ¢,,(r, z) calculated by Eq. (1.3) at every point on the surface of the
central conductor inside the tank is equal to the applied voltage V; i.e.,
¢ (r,2)=V (21
2.5.3 At the Bushing Boundary

a) The potential ¢, ,(r, z) calculated by Eq. (1.4) at every point on the bushing sur-
face outside the tank when seen from the bushing side is equal to the potential ¢, (7, z)
calculated by Eq. (1.5) when the point seen from the air side; i.e.,

¢3uh( rz)= ¢30a( r2) (22)

b) The potential ¢y, (1, z) calculated by Eq. (1.6) at every point on the bushing sur-
face inside the tank when seen from the bushing side is equal to the poteritial ¢, (7, z)
calculated by Eq. (1.7) when the point seen from the air side; i.e.,

P3ip (1 2) = 3, (1, 2) (23)
¢) The normal field components E, , (r, z) and E, , (r, z) in the air and in the bush-

noa

ing at any point on the bushing surface outside the tank, calculated by Eq. (2.1) and
(2.2) respectively, are related through the relative permittivity of the bushing €,; i.e.,

Enoa (rn2)= 8rEnob ( r Z) (24)

d) The normal field components E,; (r, z) and E, ; (1, z) in the air and.in the bushing
at any point on the bushing surface inside the tank, calculated by Eq. (2.3) and (2.4)

respectively, are related through the relative permittivity of the bushing, €, i.e.,
Euiu(r' Z) = ErEnib(r' Z) (25)

2.5.4 At the Tank Cover
a) The potential ¢, (r, z) calculated by Eq. (1.8) at every point on the surface of the
tank cover seen from outside is equal to 0.0; i.e.,
¢,,(r.2)=0.0 (26)
b) The potential ¢,,(r, z) calculated by Eq. (1.9) at every point on the surface of the
tank cover seen from outside is equal to 0.0, i.e.,
@,(r.2)=0.0 27

2.6 Determination of Simulation Charges

Satisfaction of pertaining boundary conditions at the top electrode, the central con-
ductor, the bushing profile and the grounded tank cover formulates a set of simultane-
ous equations whose solution determines the magnitudes of the unknown simulation
charges. This is described in detail as follows.

Satisfaction of the boundary condition expressed by Eq. (19) at the N, selected con-
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tour points on the electrode surface, the boundary condition expressed by Eq. (20) at
the N, points selected on the conductor surface outside the tank, the boundary condi-
tion expressed by Eq. (21) at the N, points selected on the conductor surface inside the
tank, the boundary condition expressed by Eq. (22) at the N, points selected on the
bushing surface outside the tank, the boundary condition expressed by Eq. (23) at the
Ny, points selected on the bushing surface inside the tank, the boundary condition
expressed by Eq. (24) at the N, points selected on the bushing surface outside the tank,
the boundary condition expressed by Eq. (25) at the N, points selected on the bushing
surface inside the tank and the boundary conditions expressed by Eq. (26) and (27) at
the N, points selected on the tank surface results in a set of equations whose solution
determines the unknown simulation charges. The matrix defining this set of equations
is shown in Fig. 2.

Once the simulation charges are determined, the potential distribution along the
bushing surface is determined using Eq. (1.5) and (1.7) in Appendix 1. Also, the elec-
tric field components along the bushing profile are obtained. Of course, the tangential
field at any point is the slope of the potential distribution along the bushing surface out-
side the tank and is obtained directly using Eq. (3.1) in Appendix 3.

2.7 Bushing Optimization

The procedure adopted for optimizing the bushing profile is to search for the slope
angle ¢, which results in an almost uniform distribution of the tangential field over the
bushing surface for given values of R,, R, Ry, H, and H,. The effect of the bushing
geometry represented by R,, R, R, and H, in addition to the relative permittivity €, of
the bushing material on the optimized dimensions of the profile is discussed.

3. Results and Discussion

3.1 Accuracy of Simulation

In the charge simulation technique, the number of boundary points is equal to the
number of unknowns. The matrix defining the set of equations describing the boundary
conditions has numerous zero'terms as shown in Fig. 2. Subsequently, the matrix has a
wide variation in its elements ranging from very high values to zero values. This
reflects itself in the “matrix condition”, when solved by Gauss or Crout decomposition
techniquel!%, The condition of the matrix was found better for the straight profiles
investigated here than the case for curved profiles!’].

The values of the unknown charges satisfy the boundary conditions in an acceptable
manner, only with a careful choice of both the number of simulation charges and the
coordinates of these charges. Therefore, the simulation accuracy depends strongly on
the assumptions concerning the simulation charges in both number and coordinates!”).
For straight profiles, the choice of the coordinates is systematic according to Eq. (1-10).
The number of simulation charges is obtained through several attempts starting at first
with small number of simulation charges until the simulation accuracy becomes satis-
factory. This is in conformity with previous findings, where the increase in the number
of simulation charges leads sometimes to bad conditioning of solutions instead of pro-
ducing better accuracy for a single dielectric geometry(!!],
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. . Top Central .
Simulation charge electrode | conductor Bushing surface Tank cover
Contour point e bushing upper lower
air side side side side
On top electrode zero zero
Eq. (19)
On central Eq. (20) zero Z€ro
electrode
Eq. 21) zero zero
On bushing | Eq. (22) zero zero
surface -
Eq. (23) Zero zero
Eq. (24) | zero zero
Eq. (25) Zero Zero
On tank Eq. (26) zero Zero
cover
Eq. 27) zero zero

F1G. 2. Zero terms of the matrix defined by Equations 19-27.

For the investigated geometry, the number of simulation charges N,, N, N, Ny,,

N.., and N,, are chosen equal to 8,24, 12,4, 10 and 10 respectively.

1
While one boundary condition is to be satisfied over the surface of the central ¢on-
ductdr, there are two boundary conditions for the bushing surface. In other words, the
number of equations written per point on the bushing surface is double that for a point
on the conductor surface. This is why the number of boundary points on the bushing
surface is chosen smaller than the number of boundary points on the central conductor.

Consider the geometry shown in Fig. 1 whose dimensions are: R, = 20 mm, R, = 3.75mm,
H, =300 mm, H, = 100 mm and ¢, = 3. The value of R, is directly determined by the
following equation.

R,=R,sin@+ { R(1-cos@)+H,}/tan (28)

where 0 is the angle defining the intersection of the bushing profile with the top elec-
trode as shown in Fig. 1.

Figure 3 shows computer results for the potential distribution along the bushing sur-
face. At each point outside the tank, the potential is calculated when the point is seen
from the air side ¢, (r, z) and when seen from the bushing side ¢, ,(r, z). Also, at
each point inside the tank, the potential is calculated when the point is seen from the air
side ¢;,(r, z) and when seen from the bushing side ¢y, (r, z). It is very satisfying to
observe the precise equality of ¢,  (r, z) and ¢, , (, z) outside the tank and of ¢, (r, z)
and @y, (r, z) inside the tank, which differed by less than 1%. This indicates the accura-
cy of the proposed simulation technique.

The calculated potentials satisfy not only the boundary conditions on the bushing
surface, but also the boundary condition on the top electrode and the central conductor,
where the deviation from the applied voltage V did not exceed 0.6%.
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FiG. 3. Potential distribution along the bushing surface (¢, = 3, @ = 80°, #; = 300 mm, R, = 20 mm, R_=3.75 mm,
6=45%

Of course, the accuracy of the potential calculation along the bushing surface reflects
itself in the accuracy of the predicted values of the tangential field component.

3.2 Bushing Optimization
To optimize the shape of the bushing, the effects of changing its geometry represent-
edby o, R,, R, R, and H, as well as the relative permittivity £, on the tangential field

distribution along the bushing surface are studied. Of course, changing the angle 0
results in a change of R, for the same values of & R,and H| in conformity of Eg. (28).

Figure 4 shows the potential distribution along the bushing surface for different
inclination angles. It is quite clear that the tangential field for non-optimized bushing is
high near the top electrode and tank cover. Such high field intensity may be the origin
of flashover on the bushing surface. On the other hand, the field is almost uniform
along the optimized bushing, which makes the probability of flashover on the bushing
lower for the same applied voltage.

Changing the inclination angle o from 66° to 90° results in varying the potential dis-
tribution along the bushing surface as shown in Fig. 5. The optimal value of & is
between 68° and 72°, where the potential distribution is almost linear and hence the tan-
gential field along the insulator surface is almost uniform.

As shown in Fig. 4., the line integral of the tangential field along the bushing surface
equals the applied voltage for both the optimized and non-optimized profiles. This is
also a measure of the accuracy of the proposed simulation technique.
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Fi. 4. Tangential field distribution along the profile for optimized and non-optimized bushings (¢, = 3.
H; =300 mm, R,=20 mm, R = 3.75 mm, 6= 45°).

Figure 6 shows the effect of changing the relative permittivity of the bushing materi-
al on the potential distribution. The higher the relative permittivity the smaller the tan-
gential field near the top electrode with minor influence on the field value near the tank
cover. The optimal value of ¢, lies between 3 and 4 for the geometry chosen for the
bushing, where the surface potential distribution is almost linear.

Figures 7 and 8 show, respectively, the effect of the radius of the top electrode R,
and the radius of the central conductor R, on the whole potential distribution. As is well
known, the larger the radius R, the smaller the rate of change of field in its vicinity in
conformity with the potential distribution shown in Fig. 7. The smaller the conductor
radius R, the higher is the field nonuniformity along the bushing surface, Fig. 8.

Figures 9 and 10 show the potential distribution along the bushing surface for
H, = 0.2 m and 0.6 m, respectively. The optimal value of @, which results in almost
uniform distribution of the tangential field, is almost the same irrespective of the value
of H,.

3.3 Tangential Field Similarity

One of the questions which faces the design engineer is related to how the dimen-
sions of the bushing will affect the simulation procedure and its accuracy.

For voltages < 66 kV, the dimensions of outdoor bushings may reach a meter, while
those for indoor applications may be a few decimeters. The dimensions of the bushings
also change widely with the voltage rating. Similarly, the size of the top electrode
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increases with the applied voltage to keep it free from corona discharges. Inspection of
the defining equations, outlined before, shows that a field-similarity does exist for elec-
trostatic fields, i.e., field without space charge. In other words, the dimensions of a
given bushing when scaled-down by a specific ratio, the per-unit tangential field distri-
bution when referred to the peak value remains the same. The absolute values of the
field for the original bushing are those for the scaled-down case after being, also scaled-
down by the same ratio. This is very helpful for the proposed simulation technique, as a
big bushing can be treated through an equivalent small one, where a reasonably large
number of boundary points results in a satisfactory matching of the boundary condi-
tions over the surfaces involved in the bushing!”l,

Conclusion

An approach is suggested to optimize the profile of HV bushings to have a uniform
tangential field distribution over their surface. The dominant effect in the optimization
process is ascribed to the inclination angle of the tapered part and the height of the
bushing outside the tank. On the other hand, the conductor radius, the top-electrode
radius, the bushing height outside the tank and the permittivity of the bushing material
have moderate effects on the tangential field distribution.
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Appendix 1: Electric Potential Equations
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K is the complete elliptic integral of the first kind!'?! and ¢, is the permittivity of free space.
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Appendix 2: Normal Electric Field Equations
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-l 2
where B=—C, sina - —C, cos a
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o is the inclination angle of the tapered part of the bushing
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Appendix 3: Tangential Electric Field Equations
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