A Conceptual Model of Plant and Gaseous Pollutant Interactions

GEOFF RICKS
Department of Landscape Architecture, School of Environmental Design, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia.

ABSTRACT This research paper provides a conceptual model of plant-pollutant interactions with respect to pollutant exposure dose, flux into the plant, and a manifestation of plant damage and injury. The research shows that the response from plants occupies a damage-injury continuum that varies between death at one extreme and recovery at the other.

1. Introduction

The causal link between gaseous air pollution and damage to vegetation is clear[16,24,30,37,41], although their interactions are far from simple. The response from the plant is complex, a function of pollutant exposure, flux into the plant, and the deleterious effects on plant tissues and physiological processes, alleviated by the capacity to counter pollutant action (Fig. 1).

2. Pollutant Exposure Dose

Exposure dose is the amount of pollutant a plant experiences. Traditionally defined in terms of ambient concentration and exposure period[28,39], the importance of successive exposure patterns, especially the magnitude and frequency of changes in concentration and the time interval between polluting episodes, is now recognised[39]. Under natural circumstances pollution levels continually fluctuate in response to variations in emission rates and prevailing weather conditions[16].

Measuring ambient air usually consists of a mixture of pollutants, and assessing the effects of each 'cocktail' is difficult[41,43]. Exposure from uniform exposure, although providing controlled experimental situations, is unrepresentative of natural observations[41,46].

Recently, experimental exposure profiles that mimic simple patterns of ambient air have been developed[27,28], but until more representative profiles are gen
Fig. 1. Conceptual model of plant-pollutant interactions.
A Conceptual Model of Plant and Gaseous Pollutant Interactions.

117

3. Flux into the Plant

Exposure dose and uptake dose (i.e., the amount of pollutant entering the leaves) have often been considered synonymous[15], because particular exposures produced a characteristic plant response. However, examination of unexplained anomalies and apparent contradictions in relation to gas exchange into the leaf, suggests that uptake rates may vary to such an extent that exposure is not always a reliable measure of pollutant flux into the plant[8,33,35,49]. Within the free atmosphere, rapid transport of gases occurs through turbulent (eddy) diffusion, but across the leaf boundary layer and through the stomatal pore and substomatal cavity this changes to molecular diffusion[11,36], dependent upon the concentration gradient between the exterior and interior of the leaf and the diffusion resistances along this pathway. Boundary layer resistance, determined by leaf dimension and windspeed[35], does not vary a great deal in comparison with stomatal resistance, which alters dramatically as the pore opens or closes in response to endogenous metabolic processes[40], leaf water potential[7,34], external environmental factors, including light levels[25,40], and some pollutants[46]. Stomatal resistance has a major influence on pollutant flux into the leaf.

After gases reach the substomatal cavity, they dissolve in the water coating the extracellular surfaces of the peripheral mesophyll cells[26]. Further progress occurs by bulk flow over the exterior of the leaf cells until the pollutant penetrates the cell membranes and cytosol and reaches the cytological and biochemical targets it normally affects[22].

Thus the flux of pollutant to the leaf surface, its uptake, and the proportion entering the cells may be quite different; what is more, none may reflect the ambient concentration around the plant.

4. Manifestation of Plant Damage

Once a pollutant enters a cell, and disrupts normal cellular ultrastructure, it can interfere in biochemical pathways and processes causing gross cytological damage or major physiological distress[14,22]. However, the picture is complicated by the multiplicity of effects from different pollutants[7,16,22], and the varying response of species and individuals[5,20,43] through their homeostatic capacity to counteract the action of certain pollutants.

Hence, scavenging and detoxification mechanisms act on pollutants during their transport in the extracellular water, reducing amounts reaching the cells[26,44], and the plant’s ability to neutralize intracellular pollutant action, through repair or compensation processes[29], decreases internal cellular damage. Repair processes restore a damaged part to its original state, allowing normal function to resume, whereas compensatory mechanisms ignore damaged material, and by additional measures redress the injury or dysfunction. Evidence from long-term experiments[9,21,38]
suggests such restorative processes, active during periods of low pollutant exposure, significantly help plants tolerate subsequent higher levels with minimal disruption.

Other factors also modify response. Climatic conditions influence uptake by their effect upon exposure dose and gas exchange. Disease and soil quality are significant in determining plant health and vigour12; attack from pathogens or poor growing conditions weaken a plant, impairing its homeostatic ability. Susceptibility can alter with age, stage of development or season12; younger leaves appear less sensitive than older ones16,34, and early damage to specialised organs, e.g., cotyledons, growing points or flower initials, seriously affects further growth and productivity44. Evergreens may be particularly sensitive during winter periods, when their restorative capacity is reduced by low metabolic activity, whereas deciduous species are extremely resistant at this time because the absence of leaves prevents pollutant uptake1.4

Pollutant damage is conveniently divided into visible and invisible injury12. The former describes acute effects, obvious changes in the plant's appearance, usually to the leaves, where damage is greatest16. Invisible injury refers to chronic, more subtle, effects upon plant physiology and metabolism, not evident externally, even though there can be significant reductions in growth and productivity1,2,3,10,30,41. Visible injury can be regarded as the outward manifestation of an increase in invisible injury, for each represent the opposite end of a common spectrum, a continuum varying between death at one extreme and recovery at the other (Fig. 1).

Acknowledgement
This paper forms part of the work carried out under Research Contract 02-107, provided by the College of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia.

References

\begin{enumerate}
 \item Bell, J.N.B. and Clough, W.S., Depression of yield of ryegrass exposed to sulphur dioxide. \textit{Nature, 241: 47-49 (1973).}
\end{enumerate}

نموذج نظري للنباتات وتفاعالاتها الغازية

جيفري ريكس
قسم عيارة البيئة، مدرسة تصميم البيئة، كلية الهندسة، جامعة الملك عبد العزيز
جدة - المملكة العربية السعودية.

الملخص. يقدم البحث نموذجا نظريا للمتفاعلات الملوثة الغازية للنباتات، من حيث مدى تعرض النباتات للملوث وسرعة انتشار الملوثات داخل النبات، ومن ثم الضرر العام لنتلك العمليات. كما يتعرض البحث بالتحليل لرد فعل النباتات المتأثرة بالضرر والذي يتراوح ما بين القضاء النام على النبات في الحالات القصوى من التلوث والشفاء في الحالات الأخرى.