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Abstract

Sand erosion is a widespread phenomenon in the Gulf Cooperation Council (GCC)
region, where a solid particle impacts a wall surface that may cause engine damage.
The performance and lifespan of engine compressors and turbines are significantly
expected to deteriorate when operating in an erosive environment. Aircraft engine’s
reliability has a significant impact on flight safety of modern aircraft. Therefore,
proactive maintenance and continuous engine tracking are key methods for
enhancing both aircraft reliability and efficiency. Various conventional regression
models can be used to predict the failure of equipment and systems; however, there
is a growing interest in the application of Artificial Neural Networks (ANN), which
outperform regression models. The capacity of neural networks to model
multidimensional situations without assuming complex dependencies among the
input variables is an advantage over statistical methods. In addition, neural networks
extract the underlying nonlinear relationships between the complex input data
collected from numerous maintenance records through a process of learning from
training data. (FMEA), or Failure Modes and Effects Analysis, is a systematic
approach to identifying potential failure modes in a system, as well as the potential
effects of those failures and the likelihood of those failures occurring. The objective
of FMEA is to identify and prioritize potential failure modes in order to develop and
implement preventive and corrective actions that will reduce the risk of failure and
mitigate its potential consequences. Flow rate, particle size, and particle
concentration are key predictors of erosion rates on and around compressor blades.
Computational Fluid Dynamics (CFD) analysis can be used to validate the
performance and predict the erosion of compressor blades in gas turbine engines.
CFD simulations can provide detailed information about the flow field, including
velocity, pressure, and temperature distributions, as well as the trajectory of
particles in the flow. This information can be used to predict the location and the
rate of blade erosion and to identify the areas of the blade that may be particularly
susceptible to erosion. The CFD simulation must first be validated against
experimental data, which is done by comparing the simulation results with
measurements taken from an actual turbine. This validation process is important to
ensure that the CFD model accurately represents the physical system and that the
results can be trusted. Once validated, the CFD model can be used to perform
sensitivity analysis and explore unique design options to minimize the erosion and
increase the life of the compressor blades. The present study investigates the
reliability and performance of a Lockheed C-130 T-56 engine operating in the
corrosive environment of the Gulf Cooperation Council region. The research work
is divided into five major parts.



Part 1 predicts the failure rate of the Lockheed C-130 T-56 engine turbine using both
Weibull and lognormal regression models. Initially, the data were fitted into the
model using two parameters Weibull analysis, validation of the Weibull model were
supported by a straight-line fit to the transformed data. In addition, a validation of
Weibull analysis was compared with Weibull and lognormal regression results using
the Weibull++7 software package. The comparison indicated excellent agreement
with experimental data and validated the accuracy of the method in determining the
mean time between failures and a fairly accurate reliability characterization. In
addition, using likelihood contour plots for the parameter’s shape parameter and
scale parameter, we have explicit boundaries for the variances of all four related
parameters. The resultant characteristics indicate that the engine turbine’s failure
rate increases with time, making a replacement strategy worthwhile. Corrosion,
erosion, fatigue, and cracking are the most prevalent reasons for failure within this
range. Due to the component’s wear-out failure pattern, a hard-time maintenance
action consisting of a planned replacement and overhaul program is necessary. Part
2 covers the Artificial Neural Network (ANN) model utilizing the feed-forward back-
propagation algorithm as a learning rule. A MATLAB code was developed for this
purpose. The code takes in field data and outputs the general failure rate of the T-56
turbine. To validate our results, we have further analyzed the data by using a radial
basis neural network model. The results show that the failure rate predicted by the
feed-forward back-propagation artificial neural network model is in better
agreement with the radial basis neural network model compared with the actual field
data than the failure rate predicted by the Weibull model. Lastly, the general failure
rate of the T-56 engine turbine and its six main categorical failures were forecasted
using a multilayer perceptron neural network (MLP) model on DTREG commercial
software. Part 3 involves the risk assessment and the primacy of corrective action.
Failure Modes and Effects Analysis (FMEA) data were ranked using the Risk
Priority Number (RPN) ranking. From the FMEA matrix, the major failure mode
of the T-56 engine turbine was found to be mechanical damage due to the structural
failure caused by factors like erosion and sand ingestion. The results also provide
insight into the reliability of the engine turbine under actual operating conditions,
which aircraft operators can utilize to assess system and component failures and
customize the manufacturer-recommended maintenance plans. In Part 4, a
numerical simulation was performed to predict possible erosion patterns, particle
distribution, and erosion rate due to the solid particles impacting the blades of NASA
rotor 37. A linear erosion cascade experiment performed on NASA rotor 37 provides
validation for the failure rate. It was demonstrated that particle concentration has a
more substantial effect on blade erosion rate than particle size, whereas particle size
has a less significant effect among all other measured parameters. Part 5 describes
the development and application of models to calculate surface erosion in T-56
turbomachinery. These models predict particle trajectories in turbomachinery
passages to determine impact rates, velocities, and impact angles. For this purpose,
a 3D scan of new and damaged blades (due to erosion) was made to design profile
data from a T-56 first-stage compressor. The result shows that particles
concentration has the most significant effect on blade erosion rate where particles
size has less effect among all other measured parameters. It has explained that
surface roughness increases with an increase in particle size. The changes in the
wall’s stress and erosion rate density can also be seen along the streamwise direction,
mimicking the trends shown for particle concentration and pressure ratio. It was
observed that the average blade erosion rate and density exhibit a rapid rise with the
increase in particle size. However, the increase in erosion rate and density slows
down for much larger particle



