دراسات وراثية لبعض سلالات الباسيلس المنتجة لانزيم السليوليز

إعداد الطالب

ثامر صالح السيود

تأليف

أ. د. محمد حامد زينى
أ. د. صلاح الدين محمد أبو عبا

المستخلص

السليلوز هو أكبر كتلة حيوية على الأرض وأكبر المواد في المحيط الحيوي، التحول البيولوجي للكتلة الحيوية السليوليز بواسطة أنزيم السليوليز أصبح من أهم الاهتمامات الاقتصادية. حيث استطاع اهتمام العديد من العلماء والباحثين في جميع أنحاء العالم كمورد متعدد يمكن تحميله إلى منتجات حيوية وطاقة حيوية، حيث ينظر إليه كمورد أساسي لتحل الكتلة الحيوية للسليلوز. يتحلل السليولوز عادة بواسطة إنزيم يسمى السليوليز.

يتم إنتاج هذا الإنزيم بواسطة العديد من الكائنات الحية الدقيقة، عادة تكون البكتيريا والفطريات. إنزيم السليوليز من المركبات النشطة حيوياً التي تنتجها الكائنات الحية الدقيقة خلال نموها في البيئات السليولوزية. الكائنات الحية الدقيقة المحلية لنسل السليولوز يمكن أن تحول السليولوز إلى سكريات قابلة للذوبان بما عن طريق التحلل المائي الحمضي والإنزيمي. وبالتالي، فإن استخدام السليولوز الميكروبي عن طريق الميكروبات يعتبر من اهم الدراسات في هذا المجال الحيوي الهام. على الرغم من استخدام الدهان في جميع أنحاء العالم لمصادر السليولوز الطبيعية، لا تزال هناك كميات وفيرة من مصادر السليولوز، السليولوز الموجود في المواد الخام ومنتجات النفايات التي لم يتم استغلالها أو التي لا يمكن استخدامها بشكل أكثر كفاءة. لسنوات عديدة، العديد من الكائنات الحية الدقيقة تنتج أنزيم السليولوز وهي مركبات نشطة بيولوجيًا تنتجها هذه الكائنات الدقيقة عند النمو في مادة السليولوز، خاصة البكتيريا والفطريات.

هناك العديد من الكائنات الحية الدقيقة المزعولة والمعرفة يمكن أن تحمل السليولوز من البكتيريا من النوع باسم السليولوز. تستطيع أن تنتج إنتاج جيد من السليولوز ويمكن استخدامها بكفاءة في إنتاج السليولوز. في هذه الدراسة تم استخدام بعض سلالات معزولة وسلالة Bacillus Pseudomonas aeruginosa لتقديم إنتاجها من السليولوز باستخدام
اختبار الكونجو ريد والتحليل الطيفي، كما تم إجراء البصمات الوراثية للسلالات معزولة بواسطة تحليل RAPD – PCR.
Genetic Studies of some cellulase- producing bacillus strains

By
Thamer Saleh Assaywed

Supervised By
Prof. Mohamed Hamed Zainy Prof. Salah El-Deen Abo-Aba

Abstract

Cellulose has attracted worldwide attention as a renewable resource that can be converted into bio-based products and bioenergy. Celluloses are observed as the most important renewable resource for bioconversion. It has been become the economic interest to develop an effective method to hydrolyze the cellulosic biomass. Cellulose is commonly degraded by an enzyme called cellulase. This enzyme is produced by several microorganisms, commonly by bacteria and fungi. Cellulose is commonly degraded by an enzyme called cellulase. This enzyme is produced by several microorganisms, commonly by bacteria and fungi. Cellulases are the inducible bioactive compounds produced by microorganisms during their growth on Cellulosic matters. Cellulose degrading microorganisms can convert cellulose into soluble sugars either by acid and enzymatic hydrolysis. Thus, microbial cellulose utilization is responsible for one of the largest material flows in the biosphere. Increasing knowledge of mode of action of Cellulase; they were used in enzymatic hydrolysis of cellulosic substances. Despite a worldwide and enormous utilization of natural cellulosic sources, there are still abundant quantities of cellulosic sources, cellulose containing raw materials and waste products that are not exploited or which could be used more efficiently. For many years, cellulose producing bacteria have been isolated, characterized for the production of more effective cellulases from variety of sources. In this study, we used some isolated Bacillus strains and Pseudomonas aeruginosa strain
to assay its cellulase production using Congo-red test and spectrophotometric analysis. Genetic fingerprinting was also done of isolated strains by RAPD –PCR analysis.