تقييم نتائج النموذج المتعدد CMIP5 لدرجة الحرارة والمطر الموسمى على الجزيرة العربية

إعداد

الطالب: محمد سلمان خالد

بإشراف:
الأستاذ الدكتور محمد نذير الإسلام (مشرف رئيسى)

المستخلص

تحتوي هذه الدراسة على معلومات حول التغيرات في درجات الحرارة وهطول الأمطار على شبه الجزيرة العربية في المناخ المستقبلي ودرجة عدم اليقين داخل مجموعة بيانات النماذج المتعددة للمشروع المتقارب رقم 5 (CMIP5). يتم التحقق من صحة النماذج من خلال مقارنة بيانات وحدة البحوث المناخية (CRU) لدرجات الحرارة وهطول الأمطار في المناخ الحالي. نبناء على معايير التحقق من الصحة، تم تقسيم النماذج إلى 22 نماذج متعددة و2 نماذج أفضل. تُستخدم النماذج التي تعطي نتائج بشكل جيد على منطقة الدراسة لتصدير النتائج الدورية الدموية الكبيرة وتغريتها في الفترة المستقبلية. في حالة درجة الحرارة، تعطي مجموعات النماذج المتعددة والنماذج الأفضل تبريدهم بشكل أكبر على المناطق الشمالية والوسطى، وتسخين أو لا شيء على جنوب شبه الجزيرة العربية.

في حالة درجة الحرارة، تكون الأنماط تمامًا في حالة مواسم الصيف والخريف، فنجد زيادة كبيرة في الاحترار فوق جنوب شبه الجزيرة العربية (SAP) بـ RCP8.5، بينما تكون الأنماط النقيض في حالة مواسم الخريف والشتاء في المنطقة الشمالية (NAP) بـ RCP4.5. يُظهر النمط السنوي للتغيرات في درجات الحرارة خلال فصل الشتاء والربيع زيادة في الاحترار فوق جنوب شبه الجزيرة العربية (SAP) بـ RCP8.5. يُظهر النمط السنوي للتغيرات في درجات الحرارة خلال فصل الصيف والخريف، فنجد زيادة كبيرة في الاحترار على المناطق الشمالية لشبه الجزيرة العربية (SAP) بـ RCP8.5. يُظهر النمط السنوي للتغيرات في درجات الحرارة خلال فصل الصيف والخريف، فنجد زيادة كبيرة في الاحترار على مناطق الجنوبية لشبه الجزيرة العربية (NAP) بـ RCP8.5.

أبرزت التوقعات السنوية وال الموسمية ل$params[0] أن فإن فائض هطول الأمطار سيظل على المناطق الجنوبية.
لشبه الجزيرة العربية (SAP)، خاصة على المنطقة الجنوبية الغربية ونقص في الهطول على المناطق الشمالية والشمالية الغربية من شبه الجزيرة العربية. وبالمثل، تظهر الارتفاعات الضغطية تغييراً إيجابياً عند مستوى ۲۰۰ و۵۰۰ في جميع الفصول مما يشير إلى ازدياد الاحترار والجفاف على شبه الجزيرة خلال الفترة المستقبلية. هناك حاجة إلى مزيد من الدراسة لفهم دور الذبذبات العالمية في التحكم في تغيرات المناخ المستقبلي على شبه الجزيرة العربية.
Assessment of CMIP5 Multi-Model Seasonal Temperature and Precipitation over the Arabian Peninsula

By
Muhammad Salman Khalid
Supervised By
Prof. Md. Nazrul Islam

ABSTRACT (English)

This study carries information about the temperature, precipitation and geopotential height future changes over Arabian Peninsula and the uncertainties within the Coupled Model Inter-comparison Project Phase 5 (CMIP5) multi-model data set. The CMIP5 models validate with respect to the observed Climatic Research Unit (CRU) data set for the temperature and precipitation. On the basis of validation criteria, the 22 CMIP5 models are grouped into two categories: i) Multi-models, and ii) Best-models. The models which are commonly performed well over the regions are used to interpret the geopotential height future changes. In case of temperature both the multi-models and best-models ensembles underestimate temperature over northern and central regions and overestimate or remain unchanged at southern Peninsula. The RCP8.5 scenario exhibits extensive warming over the whole Arabian Peninsula in near and far future as compared to the RCP4.5. The annual, winter and spring temperature change pattern shows more increment in warming over the southern Arabian Peninsula (SAP) as compared to northern Arabian Peninsula (NAP). However the conditions are quite opposite in case of summer and autumn seasons northern regions attained high increase in temperature than SAP. Best-models projected maximum increase in temperature within the summer season of far future (RCP8.5) that ranges from 4 to 6°C. Annual and seasonal precipitation projections highlighted that rainfall will surplus at SAP, particularly over south-western region and precipitation deficiency associate with north and north-western zone of the Arabian Peninsula. Similarly the geopotential height show a positive change at 200hpa and 500hpa in all seasons which indicates more warming and dryness will enhance over the Peninsula.