دراسة جدوى لمحطة توليد الطاقة الشمسية في المنطقة الغربية

في المملكة العربية السعودية

أحمد محمد عايض القرني

إشراف
أ.د / سعيد علي حسن القليطي

المستخلص

تستخدم المملكة العربية السعودية تقنيات الطاقة التقليدية لتلبية زيادة الطلب على الكهرباء. هذه التقنيات تقليدية تستخدم الوقود الأحفوري الذي يعد من أسباب تلوث البيئة ويساهم بشكل كبير في ظاهرة الاحتباس الحراري أيضاً ويتطلب مراجعة الاستثمار من الاحتياط النفطي. وتستدعي المملكة العربية السعودية تضخماً في قطاع الكهرباء تراعي فيها متطلبات الحماية البيئية جنباً إلى جنب مع الربحية. الطاقة المتجددة هي الطاقة البديلة التي يمكن أن تحافظ على البيئة وصحة الإنسان، ويمكن كذلك أن تدعم التوليد التقليدي الحالي. أشعة الشمس هي واحدة من أهم المصادر الطبيعية للطاقة المتجددة في المنطقة الغربية بالمملكة العربية السعودية بسعة 1 جيجاوات. استناداً إلى معايير اختيار الموقع فإنه تم اختيار أربعة مواقع هي المدينة المنورة ورياض ووجدة وضبا وذلك لبناء المحطة على أفضل موقع منهم. وقد تم اختيار اثنين من التقنيات الشمسية على أساس الأسعار والكفاءة والمساحة التي تحتاجها وسهولة التوليد وما ينتج عنها من إنتاجية الحالية ودقة الكهروضوئية. وذلك تقييمها خلال الدراسة. وقد تم تنفيذ دراسة الجدوى التفصيلية باستخدام برنامج RETScreen وأظهرت النتائج أن أفضل موقع هو ضبا مع إشعاع شمسي يمكّن ما مقداره 6.43 كيلووات/ساعة/م²/يوم والتكنولوجيا المناسبة لهذا الموقع هي الطاقة الشمسية الحرارية مع 63 دولار لكل ميجاوات وهو سعر تنافسي لتكلفة إنتاج الكهرباء من المحطات التقليدية والتي تبلغ 99.20 دولار لكل ميجاوات. وتبلغ فترة استرداد الأسهم لهذه المجموعة 8.4 سنوات وهو ما يعني أنه سيتم تغطية نفقات إنشاء محطة الطاقة الشمسية في ضيافة خلال 8.4 سنوات. عملياً فإن عامل التكاليف والتكاليف لهذه المجموعة يساوي 2.73. والتوفر السنوي للانبعاثات الغازية هو 1.898.214 طن من ثاني أكسيد الكربون. إجمال التوفر في الدخل السنوي يبلغ 329.282.078 دولار. وعليه فإن هذه النتائج تظهر جدوى تركيب محطة الطاقة الشمسية الحرارية في موقع ضبا كما تظهر منافستها لمحطات الطاقة التقليدية.
FEASIBILITY STUDY FOR A SOLAR POWER PLANT IN THE WESTERN REGION OF SAUDI ARABIA

AHMED MOHAMMED AIED ALGARNI

Supervised by
Prof. Said Ali Hassan El-Quliti

ABSTRACT

Saudi Arabia using conventional energy technologies to meet the rapid increasing in the electricity demand. These technologies used the fossil fuel which cause environmental pollution and contributes greatly to the global warming also reduce the duration of benefit of reserve oil. Therefore, Saudi Arabia needs huge investments in the electricity sector taking into account along with the profitability the environmental protection requirements. Renewable energy is an alternative energy can preserve the environment, human health and would support the existing conventional generation. Sunlight is one of the main natural renewable energy sources and Saudi Arabia appears to have great natural potential for solar power generation due to its size and diverse geography. Accordingly, this thesis aims to provide a feasibility study for large grid connected solar power plant project in the Western region. Based on the forecasting model the power plant capacity was 1GW. Based on the selection site criteria four sites (Madina, Rabigh, Wejh and Thiba) were selected to build the plant on the best site of them. Based on the price, efficiency, area needed and scale of power plant, two solar technologies solar thermal tower and mono-crystalline photovoltaic were selected to be evaluated. A detailed feasibility study has been carried out using RETScreen software. Results showed that the best site was Thiba with daily solar radiation 6.43 kWh/m²/d, the best technology for this site was solar thermal tower and the generation electricity price was 67.63 $/MWh. This price is competitor to the unsupported fossil electricity price which is 99.20 $/MWh. The equity payback period for this combination was 8.4 years, and the benefit–cost factor was 2.73. The net annual GHG emission reduction was 1,898,214 tCO₂/year. The total annual saving and income was $329,282,078. These results show the superiority of installing solar thermal tower power plant in Thiba site.