
Programming Tools

I) Iteration

 Iteration is a loop or repeatedly executed instruction cycle, with only a few changes in

each cycle. In programming language that are not matrix or array-oriented, like C, Pascal,

or FORTRAN, even a simple matrix multiplication needs three nested loops (over rows,

columns, and the indices). Since R is matrix-oriented, these operations are much more

efficient and easy to formulate in mathematical terms. This means they are faster than

loops and the code is much easier to read and write.

The following table contains the different forms of loops.

Forms of loop Syntax

for loop for (index in range) { expressions to be executed }

while loop while (condition) { expressions to be executed }

repeat loop repeat { expressions to be executed

if (condition) break}

For loops

for (variable in sequence) expression

The expression can be a single R command - or several lines of commands wrapped in

curly brackets:

for (variable in sequence) {

 expression

 expression

 expression

}

Here is a quick trivial example, printing the square root of the integers one to ten:

> for (x in c(1:10)) print(sqrt(x))

[1] 1

[1] 1.414214

[1] 1.732051

[1] 2

[1] 2.236068

[1] 2.449490

[1] 2.645751

[1] 2.828427

[1] 3

[1] 3.162278

While loops

In R a while takes this form, where condition evaluates to a boolean (True/False) and must

be wrapped in ordinary brackets:

while (condition) expression

As with a for loop, expression can be a single R command - or several lines of commands

wrapped in curly brackets:

while (condition) {

 expression

 expression

 expression

}

!OTES:
• there is no explicit to return argument in loops. Use a print or cat functions to print

out results.

• The main different between while and repeat is that it is possible not to enter the
while loop at all where the repeat is entered at least once.

while repeat

• Wrapped the enter condition

• It is possible not do any expression.
• Wrapped the exit condition

• do at least one expression.

Example :

Calculate the sum over 1, 2, 3, . . . until the sum is larger than 100 by using different

loops.

1. while loop:

n=0;sumn=0

while (sumn<=100)

{ n=n+1

 sumn=sumn+n

}

2. repeat loop

n=0;sumn=0

repeat

{ n=n+1

 sumn=sumn+n

 if (sumn>= 100) break}

3. for loop

n=0;sumn=0

for (i in 1:100) sumn=sumn+i # Is this command give the exact answer?

 # It is not flexible to use for here

If we want to print sumn each time

What is the difference between these two commands?

n=0;sumn=0

while (sumn<=100)

{ n=n+1

 sumn=sumn+n

print(sumn)

}

n=0;sumn=0

while (sumn<=100)

{ n=n+1

 sumn=sumn+n

if(sumn<=100)

{ # this Curly brackets is unnecessary here

print(sumn)

}

}

Try if sumn start with 0, and try if sumn start with 101

Example:

Create this matrix by using loop










928

741

1- for loop

x=c(1,4,7,8,2,9)

n=1

m=matrix(,2,3)

for(i in 1:2)

{

for (j in 1:3)

{

m[i,j]=x[n]

n=n+1

}

}

> m

 [,1] [,2] [,3]

[1,] 1 4 7

[2,] 8 2 9

2- while loop:

x=c(1,4,7,8,2,9)

n=1

i=1

j=1

m=matrix(,2,3)

while(i<=2)

{

while (j<= 3)

{

m[i,j]=x[n]

n=n+1

j=j+1

}

j=1

i=i+1

}

m

3- repeat loop

x=c(1,4,7,8,2,9)

n=1

i=1

j=1

m=matrix(,2,3)

repeat

{

repeat

{

m[i,j]=x[n]

n=n+1

j=j+1

if(j>3)break

}

j=1

i=i+1

if(i>2)break

}

m

Another method:

x=c(1,4,7,8,2,9)

n=1

i=1

j=1

m=matrix(,2,3)

test=T

while(test)

{

while(test)

{

m[i,j]=x[n]

n=n+1

j=j+1

if(j==4)

test=F

}

test=T

j=1

i=i+1

if(i==3)

test=F

}

Example:

to print out the first few Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21,34 where each

number is the sum of the previous two numbers.

x <- c(0,1)

while (length(x) < 10) {

 position <- length(x)

 new <- x[position] + x[position-1]

 x <- c(x,new)

}

print(x)

To understand how this manages to append the new value to the end of the vector x, try

this at the command prompt:

> x <- c(1,2,3,4)

> c(x,5)

[1] 1 2 3 4 5

The looping variable i values can be of any mode

a) A numeric looping variable :

 for (i in c(3, 2, 9, 6))

 print (i^2)

 or

 x <− c(3, 2, 9, 6); for (i in 1:4) print((x[i]^2)

b) A character looping variable:

 transport.media=c("car","bus","train")

 for (i in transport.media)

 print(i)

II) Conditional Execution (The if statement)

• if (condition) { expression 1 }
• if (cond 1) { expr 1 }
 else if (cond 2) { expr 2 }

 else { last expr }

• ifelse (condition, expression for true, expression for false)

Examples:

if (mode(x)!="character") log(x) # try when x="d",3,NA

test 2 conditions

if (mode(x)!="character" && x>0) log(x)

Note that:

|| && not | &

x=c(4,1,-9,0)

logx=rep(0,length(x)) # same as logx=0 (any value)

for (i in 1:length(x))

{ if (x[i]>0) logx[i]=log(x[i])

 else logx[i]=NA}

#same as

 ifelse(x>0,log(x),NA) # evaluate a condition for the whole vector or array

ifelse(x>0,sqrt(x),NA)

III) Writing Function

Functions do things with data

“Input”: function arguments (0,1,2,…)

“Output”: function result

Syntax:

 Function_name <- function (input arguments)

 {

 function.body (R expressions)

 return (list (output argument))

 }

then you can call the function using the calling routine

function_name (argument)

Example:

add = function(a,b)

{ result = a+b

 return(result) }

add(7,8)

!ote that:

1. All variables declared inside the body of a function are local and vanish after the

function is executed.

2. Better to use return function if we need more than one value to return from function.

Examples:

Cubic<-function(xx){return(xx^3)}

Cubic(3);xx

Cubic<-function(xx){xx^3} # same as above

Cubic(3)

Cubic2<-function(xx)

{y=2^xx;return(xx^3,y)}

Cubic2(3)

Cubic2<-function(xx)

{y=2^xx;y2=xx^3}

Cubic2(3) # Guess what is the output???????????????????/

Example:

Writing Functions
This following script uses the function() command to create a function (based on the code

above) which is then stored as an object with the name Fibonacci:

Fibonacci <- function(n) {

 x <- c(0,1)

 while (length(x) < n) {

 position <- length(x)

 new <- x[position] + x[position-1]

 x <- c(x,new)

 }

 return(x)

}

Once you run this code, there will be a new function available which we can now test:

> Fibonacci(10)

 [1] 0 1 1 2 3 5 8 13 21 34

> Fibonacci(3)

[1] 0 1 1

> Fibonacci(2)

[1] 0 1

> Fibonacci(1)

[1] 0 1

That seems to work nicely - except in the case n == 1 where the function is returning the

first two Fibonacci numbers! This gives us an excuse to introduce the if statement.

The If statement
In order to fix our function we can do this:

Fibonacci <- function(n) {

 if (n==1) return(0)

 x <- c(0,1)

 while (length(x) < n) {

 position <- length(x)

 new <- x[position] + x[position-1]

 x <- c(x,new)

 }

 return(x)

}

In the above example we are using the simplest possible if statement:

if (condition) expression

The if statement can also be used like this:

if (condition) expression else expression

And, much like the while and for loops the expression can be multiline with curly

brackets:

Fibonacci <- function(n) {

 if (n==1) {

 x <- 0

 } else {

 x <- c(0,1)

 while (length(x) < n) {

 position <- length(x)

 new <- x[position] + x[position-1]

 x <- c(x,new)

 }

 }

 return(x)

}

Example
Create your own function

X<-seq(2,10,2);y<-2:6

F<-(3*X^4)/(X+y);F

F1<-function(X,y){(3*X^4)/(X+y)}

W<-F1(X,y);W

> X<-seq(2,10,2);y<-2:6

> F<-(3*X^4)/(X+y);F

[1] 12.0000 109.7143 388.8000 945.2308 1875.0000

> F1<-function(X,y){(3*X^4)/(X+y)}

> W<-F1(X,y);W

[1] 12.0000 109.7143 388.8000 945.2308 1875.0000

#function that compute mean and standard error

std.error<-function(x)

{ std.error=sqrt(sum(x-mean(x))^2)/(length(x)*(length(x)-1))

return(list(mean(x),std.error))}

x=c(1,5,7,8,4,6,9)

std.error(x)

Construct a function that assign an even number to 1, and an odd number to 0 only at a

line (use ifelse)

