
 1

 K AAU

العزيز عبد الملك جامعة

 العلوم كلية

 قسم ا�حصاء

 2 ئ����يمعمل إحصا

STAT 442

 /1429-1430لثاني ا الفصل الدراسي

 2

Introduction

What is R?

R is a very powerful programming environment for statistical research and data analysis,
including the ability to easily generate numbers, manipulate arrays of various
dimensions, and to produce very quality graphics.

About R

What is R?
Contributors
Screenshots
What's new?

Download

CRAN

R Project

Foundation
Members &
Donors
Mailing Lists
Bug Tracking
Developer Page
Conferences
Search

Documentatio

n

Manuals
FAQs
Newsletter
Wiki
Books
Other

Misc

Bioconductor
Related Projects
Links

http://www.r-
project.org/

The R Project for Statistical Computing

Getting Started:

• R is a free software environment for statistical computing and
graphics. It compiles and runs on a wide variety of UNIX
platforms, Windows and MacOS. To download R, please choose
your preferred CRAN mirror.

• If you have questions about R like how to download and install the
software, or what the license terms are, please read our answers to
frequently asked questions before you send an email.

News:

• R version 2.4.1 has been released on 2006-12-18.
• DSC 2007, the 5th workshop on Directions in Statistical

Computing, February 15-16, 2007, Auckland, New Zealand.
• R &ews 6/5 has been published on 2006-12-1.
• The R Wiki provides an online forum where useRs can help other

useRs.

 3

Features:-

• An interactive programmed, an effective data handling and storage facility

• An array oriented. Can generate, manipulate, and operate on large array using simple
commands.

• It is very graphical. A large number of high level graphics commands are available
to produce publication quality graphics both on your screen and on a printer.

• An interpreted language, in which individual language expressions are read and then
immediately executed.

• Well developed, simple and effective programming language which includes
conditionals, loops, user defined recursive functions and input and output facilities.

General instruction:-

• A name is any combination of letters, numbers, and periods (.), and if it starts with
‘.’ the second character must not be a digit, and can not start with number.

• File name and variables can be more than 8 characters in length.

• It is case sensitive: the object X is not the same as object x.

• Any comment after # on a given line not execute.

• Commands are separated either by semi-colon(‘;’), or by a new line.

• If a command is not complete at the end line, R will give a different prompt, by
default + .

• Data are stored in _data. Subdirectory.

Help Facilities

R has online help system. To start the help system you have many choices:

• For general help:

1) >help()
2) Click on [Help]

• For a specific command or function:
1) >help (command name), for example, >help(mean) or
2) >? Function name, for example, >? mean

• For help on characters: the argument must be enclosed in double quotes,

>help("[[")

• For searching for entries
 The help.search command, for example, >help.search("linear models")

• The examples on a help topic can normally be run by

 > example(topic),

 4

Data objects

Data modes:

In R, data object is a collection of values. The modes of values are as follows:

• Logical: the values T(or TRUE) and F(FALSE).

• Numeric: real numbers, integers, decimal or scientific notation.

• Complex: complex numbers of the form a+bi (3+1.23 i), (a and b) are
numeric.

• Character: enclosed by double quotes (“) or apostrophes (‘), such a “Sara” or
‘Sara’.

� If you want to know the mode of any object use mode () function

Types of data objects:

There are seven basic types of data objects in R:
1) Vector (an ordered set of values) – one way array of ordered data.
2) Matrix (two dimensions).
3) Array (a matrix with more than two dimensions)
4) Data frame (generalized matrices that allow a mix of columns with different data
modes).

5) List (a list of components, where each component can be a data object of different
data types).

6) Factor (categorical data)
7) Time series.

 5

Operators in R

 I. &ames and Assignment:
The assignment operator (<- or =) used to associate names and values.
For example
x <- 7 or x =7 # stores the value 7 in an object named x
You can check of the object x either by typing x or print (x).

&ote:

 All assignments in R remain until removed or overwritten. The rm() command used to
remove a variable.
Example:

>Print(x)
[1] 7
>rm(x) # remove x
>x
Error: object “x” not found.

To display the names of the objects which are currently stored within R,

> objects()

Missing values
When an element or value is “not available” or a ”missing value ” the data values are
represented by such special symbols NA. when a value (missing data, square root or
logarithm of negative number). For these cases, any operation on NA becomes NA.

 The function is.na(x) gives a logical vector of the same size as x with value TRUE if
and only if the corresponding element in x is NA.

>x<-c(1:3,NA) ; x
 >is.na(x) # is TRUE both for NA and NAN values.
[1] FALSE FALSE FALSE TRUE
>x= =NA
[1] NA NA NA NA
>sum(x)
NA

 There is a second kind of “missing” values which are produced by numerical
computation; it is called Not a Number, NAN, values. Examples are
>0/0 # give NAN
>Inf – Inf # give NAN
>xx=Inf/Inf
> is.nan(xx) # is TRUE only for NAN values.

 6

> x<-c(1,2,3,NAN,4,5,NAN,7)
> sum(x)

[1] NaN
> log(-2)
[1] NaN
Warning message:
NaNs produced in: log(x)

> x<-c(1,2,3,NaN,4,5,NaN,7)
> is.na(x)
[1] FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE

To remove missing values from x:

>x= x[!is.na(x)]
[1] 1 2 3 4 5 7

II. Arithmetic operators :

Operator Description Priority

() parentheses 1

** or ^ Exponentiation 2

:
Sequences of
numbers

3

* / Multiply, divide 4

+ - Add, subtract 5

III. Logical and comparison operators:

Operator Description Operator Description

< Smaller than & Factorized And

> Larger than | Factorized Or

= = Equal to ! Not

<= Smaller than or equal to ! = Not equal to

>= Larger than or equal to

Use of Brackets

&ame of

bracket
bracket Function

Round brackets () For function calls like in mean(x), and to set priorities

Square brackets [] Index brackets in x[3] used to access or extracts data

Curly brackets { }
Block delimiter for grouping sequences of commands as
in functions or if statements

 7

DATA STRUCTURE

I. Vector

A vector is an ordered collection of values.

A) creating a vector

 The following table has useful functions for creating vector

function Symbol description example

Concatenate
command

c()
Combines values
with any mode

X<−c(2,3,8,0,-7)

Sequence
command

seq(from= ,to= ,by=)
Regular sequences
of numbers

X<− seq(1,10,1)

from :::: to X<−1::::10

Replicate
command

rep(x, times=)
Takes a pattern and
replicates it

X<−rep(1, 5)

c:

Combine values with any modes

Examples:

 > c(1,7:9)
 > c(1:5, 10.5, "next")
 > c(“This”, “is”,”Stat”,”442”)
> z<- 0:9
[1] 0 1 2 3 4 5 6 7 8 9
> digits<- as.character(z)
[1] "0" "1" "2" "3" "4" "5" "6" "7" "8" "9"
> d<- as.integer(digits)
[1] 0 1 2 3 4 5 6 7 8 9

seq

Sequence Generation

from:to
 a:b
seq(from, to)
seq(to)

 seq(from, to, by=)
 seq(from, to, length=)

 8

Arguments:

 from: starting value of sequence.

 to: (maximal) end value of the sequence.

 by: increment of the sequence.

 length: desired length of the sequence.

Examples:

 > 1:4
 > pi:6 # float
 > 6:pi # integer
 > seq(0,1, length=11)
 > seq(1,9, by = 2) # match
 > seq(1,9, by = pi) # stay below
 > seq(1,6, by = 3)
 > seq(1.575, 5.125, by=0.05)
 > seq(17) # same as 1:17
> seq(-pi,pi,0.5)
> seq(-pi,pi,length=10)
> seq(1,by=0.05,length=10)
> seq(10,2,-2)

> 1:4
[1] 1 2 3 4
> pi:6 # float
[1] 3.141593 4.141593 5.141593
> 6:pi # integer
[1] 6 5 4
> seq(0,1, length=11)
 [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
> seq(1,9, by = 2) # match
[1] 1 3 5 7 9
> seq(1,9, by = pi) # stay below
[1] 1.000000 4.141593 7.283185
> seq(1,6, by = 3)
[1] 1 4
> seq(1.575, 5.125, by=0.05)
 [1] 1.575 1.625 1.675 1.725 1.775 1.825 1.875 1.925 1.975 2.025 2.075
2.125
[13] 2.175 2.225 2.275 2.325 2.375 2.425 2.475 2.525 2.575 2.625 2.675
2.725

 9

[25] 2.775 2.825 2.875 2.925 2.975 3.025 3.075 3.125 3.175 3.225 3.275
3.325
[37] 3.375 3.425 3.475 3.525 3.575 3.625 3.675 3.725 3.775 3.825 3.875
3.925
[49] 3.975 4.025 4.075 4.125 4.175 4.225 4.275 4.325 4.375 4.425 4.475
4.525
[61] 4.575 4.625 4.675 4.725 4.775 4.825 4.875 4.925 4.975 5.025 5.075
5.125
> seq(17) # same as 1:17
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
> seq(-pi,pi,0.5) #can not get to pi
 [1] -3.1415927 -2.6415927 -2.1415927 -1.6415927 -1.1415927 -0.6415927
 [7] -0.1415927 0.3584073 0.8584073 1.3584073 1.8584073 2.3584073
[13] 2.8584073
> seq(-pi,pi,length=10)
 [1] -3.1415927 -2.4434610 -1.7453293 -1.0471976 -0.3490659 0.3490659
 [7] 1.0471976 1.7453293 2.4434610 3.1415927
> seq(1,by=0.05,length=10)
 [1] 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45
> seq(10,2,-2)
[1] 10 8 6 4 2

Rep:

Replicate Elements of Vectors and Lists

rep(x, times, ...)
rep(x, times, length.out, each, ...)
rep.int(x, times)

Arguments:

 x: a vector (of any mode including a list)

 times: optional non-negative integer. A vector giving the number of
 times to repeat each element if of length 'length(x)', or to
 repeat the whole vector if of length 1.

length.out: optional integer. The desired length of the output vector.

 each: optional integer. Each element of 'x' is repeated 'each'
 times.

 ...: further arguments to be passed to or from other methods.

 10

Examples:

> rep(1:4, 2)
> rep(1:4, each = 2) # not the same.
> rep(1:4, c(2,2,2,2)) # same as second.
> rep(1:4, c(2,1,2,1))
> rep(1:4, each = 2, len = 4) # first 4 only.
> rep(1:4, each = 2, len = 10) # 8 integers plus two recycled 1's.
> rep(1:4, each = 2, times = 3) # length 24, 3 complete replications
> rep(1, 40*(1-0.8)+1e-7)
> rep(c(“yes”,”no”), c(4,2))
> rep(1:3,1:3)
> rep(c(1,3,2),length=10)
> rep(c(T,T,F),2)

> rep(1:4, 2)
[1] 1 2 3 4 1 2 3 4
> rep(1:4, each = 2) # not the same.
[1] 1 1 2 2 3 3 4 4
> rep(1:4, c(2,2,2,2)) # same as second.
[1] 1 1 2 2 3 3 4 4
> rep(1:4, c(2,1,2,1))
[1] 1 1 2 3 3 4
> rep(1:4, each = 2, len = 4) # first 4 only.
[1] 1 1 2 2
> rep(1:4, each = 2, len = 10) # 8 integers plus two recycled 1's.
 [1] 1 1 2 2 3 3 4 4 1 1
> rep(1:4, each = 2, times = 3) # length 24, 3 complete replications
 [1] 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4
> rep(1, 40*(1-.8)+1e-7)
[1] 1 1 1 1 1 1 1 1
> rep(c("yes","no"), c(4,2))
[1] "yes" "yes" "yes" "yes" "no" "no"
> rep(1:3,1:3)
[1] 1 2 2 3 3 3
> rep(c(T,T,F),2)
[1] TRUE TRUE FALSE TRUE TRUE FALSE

 11

 Vector Arithmetic

 Vector arithmetic is element-wise (element by element). Vectors must be of same
length or a warning message is issued.

Examples:

> x<-1:10
> x*2
> x^2
> y<-6:2
> y+x
> w<-1:4
> x+w

> x<-1:10
> x
 [1] 1 2 3 4 5 6 7 8 9 10
> x*2
 [1] 2 4 6 8 10 12 14 16 18 20
> x
 [1] 1 2 3 4 5 6 7 8 9 10
> x^2
 [1] 1 4 9 16 25 36 49 64 81 100
> y<-6:2
> y
[1] 6 5 4 3 2
> y+x
 [1] 7 7 7 7 7 12 12 12 12 12
> w<-1:4
> w
[1] 1 2 3 4
> x+w
 [1] 2 4 6 8 6 8 10 12 10 12
Warning message:
longer object length
 is not a multiple of shorter object length in: x + w

 12

B) Accessing elements in a vector.

• R uses brackets, [indices], to select elements of a vector.

• To delete elements from a vector, use the minus sign. [- indices].

• Extracting elements using logical values, [logical condition]

 Such index vector can be any of four distinct types:

1. Indices of positive integral quantities:

Examples:

> X<-seq(2,10,2)
> X[2] # list the second element in X
> X[3:5] # list the 3rd, 4th and 5th element in X same as X[c(3,4,5)]
> X[c(1,3,5)] # list the 1st, 3rd, and 5th element in X (order not required)
> X[6]

You also could use rep() or seq() inside []

> X[seq()];X[rep()]

> X<-seq(2,10,2)
> X[2]
[1] 4
> X[3:5]
[1] 6 8 10
> X[c(1,3,5)]
[1] 2 6 10
> X[8]
[1] NA
>letters
>LETTERS
>LETTERS[1:3]
>letters[2:4]

2. Indices of negative integral quantities:

> y<-2:6; y[-4]
> y[-c(1:3)]
 [1] 5 6
3. Indices of character strings:

> fruit<-c(5,10,1,20)
> names(fruit)<- c("orange"," banana", "apple"," peach")
> lunch <- fruit[c("apple", "orange")]
apple orange
 1 5

 13

4. Logical Indices:

 > y<- -2:3
 > log(y)
 > y>0
 > y[y>0]
 > log(y[y>0])
 > log(y>0)
 > y[y<3]
 > y[y<0|y>2]
 > y[(y<3&y>2)]

 > y<- -2:3 # -2 -1 0 1 2 3
 > log(y)
[1] NaN NaN -Inf 0.0000000 0.6931472 1.0986123
Warning message:
NaNs produced in: log(x)
> y>0
[1] FALSE FALSE FALSE TRUE TRUE TRUE
> y[y>0] # list element in y such that they are more than 0
[1] 1 2 3
> log(y[y>0])
[1] 0.0000000 0.6931472 1.0986123
> log(y>0)
[1] -Inf -Inf -Inf 0 0 0
> y[y<3] # list element in y such that they are less than 3
[1] -2 -1 0 1 2
> y[y<0|y>2] # list element in y such that they are less than 0 or more than 2
[1] -2 -1 3
> y[(y<3&y>2)] # list element in y such that they are less than 0 and more than 2

numeric(0)

> z=c(2,5,4,NA,3,-2)
> z[!is.na(z)]
[1] 2,5,4,3,-2

> w = z[!is.na(z)]; w
> (z+1)[(!is.na(z)) & z>0] -> S ; S
> z
> z[is.na(z)] <- 0
> z
2 5 4 0 3 -2

 14

Example:

Suppose we have height (in inches) and weight (in pounds) of 9 people

Weight 60 61 62 63 64 65 66 67 68

Height 120 125 130 135 140 145 150 155 135

> height<- c(seq(120,155,5),135)

> weight<- 60:68
use logical expression to see how many less than 140

> height<140
> sum(height <40)
> height [height <140]
> height[height >150]
> weight[weight<65]
> weight[weight<60] # no height less than 60
> height [height <140& height!=120]
#combine weight and height

> height[weight>65]

> height<- c(seq(120,155,5),135)
> weight<- 60:68
> # use logical expression to see how many less than 140
> height<140
[1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE
> sum(height <40)
[1] 0
> height [height <140]
[1] 120 125 130 135 135
> height[height >150]
[1] 155
> weight[weight<65]
[1] 60 61 62 63 64
> weight[weight<60] #no height less than 60
numeric(0)
> height [height <140& height!=120]
[1] 125 130 135 135
> #combine weight and height
> height[weight>65]
[1] 150 155 135

 15

Printing in R:

> > > > ccccat(at(at(at()))) # Concatenate and Print (for general printing)

> > > > Print()Print()Print()Print() #print numeric or character data

> > > > Paste()Paste()Paste()Paste() # Concatenate vectors after converting to character.

Examples

> x=1:10
> print(x)
 [[[[1111]]]] 1111 2222 3333 4444 5555 6666 7777 8888 9999 10101010
> cat("class = ", x, "\n")
class = class = class = class = 1111 2222 3333 4444 5555 6666 7777 8888 9999 10101010
> cat("class = ", x)
class = class = class = class = 1111 2222 3333 4444 5555 6666 7777 8888 9999 10101010>>>>
> paste(1:12)
 [[[[1111] "] "] "] "1111" "" "" "" "2222" "" "" "" "3333" "" "" "" "4444" "" "" "" "5555" "" "" "" "6666" "" "" "" "7777" "" "" "" "8888" "" "" "" "9999" "" "" "" "10101010" "" "" "" "11111111" "" "" "" "12121212""""

> paste("A", 1:6, sep = "")
[[[[1111] "A] "A] "A] "A1111" "A" "A" "A" "A2222" "A" "A" "A" "A3333" "A" "A" "A" "A4444" "A" "A" "A" "A5555" "A" "A" "A" "A6666""""

 > paste("Today is", date())
[[[[1111] "Today is Sun Sep] "Today is Sun Sep] "Today is Sun Sep] "Today is Sun Sep 24242424 01:33:0401:33:0401:33:0401:33:04 2006200620062006""""
Same asSame asSame asSame as
> cat("Today is", date())
Today is Sun Sep Today is Sun Sep Today is Sun Sep Today is Sun Sep 24242424 01:35:1901:35:1901:35:1901:35:19 2006200620062006> cat("Today is", date(), "\n")
Today is Sun Sep Today is Sun Sep Today is Sun Sep Today is Sun Sep 24242424 01:35:4301:35:4301:35:4301:35:43 2006200620062006

 16

Some Arithmetic and Statistical R Functions (built-in)

R Function &otes

log(x), log10(x), exp(x),
sqrt(x)

ln(x), log10(x), e
x, x

Sin(x), cos(x), tan(x) Trigonometric function

max(x), min(x), length(x),
range(x)

Maximum, minimum, number of elements,
and range of a vector

sign(x), abs(x), sort(x),
sum(x), prod(x)

Sign, absolute value, sort in ascending order,
summation, product of elements in a vector x

ceiling(x) Rounds to the next higher integer

floor(x) Rounds to the next lower integer

trunc(x) Cuts off all digits after the decimal point

round(x), round(x, 3),
round(x, -1)

Rounds to the nearest integer. The second
argument is the number of significant number
of digits desired, negative value to round
large number to nearest 10 or 100, etc.

cor(x,y), mean(x), var(x),
quantile(x), median(x),
summary(), stem(x), hist(x)

Statistical function

% / %
% %

Quotient(integer division), modulo function
(remainder)
% / % and % % always satisfy e1 = = (e1 % /
% e2))e2+e1 % % e2

cumsum(x), cumprod(x)
Returns an object which, for each element, is
the sum (product) of all of the elements to
that point.

gamma Gamma function

 17

Examples

> ceiling(2.4)
[1] 3
> floor(2.4)
[1] 2
> trunc(2.4)
[1] 2
> w=2.346789
> round(w)
[1] 2
> round(w,3)
[1] 2.347
> round(w,-1)
[1] 0
> w=50.34
> round(w,-1)
[1] 50

> x<-1:5
> x%%2 # calculate the reminder from the division
[1] 1 0 1 0 1
> x%/%2 # calculate the integer of the division
[1] 0 1 1 2 2
> x/2 # give exact value of division
[1] 0.5 1.0 1.5 2.0 2.5

> cumsum(x)
[1] 1 3 6 10 15
cumprod(x)
[1] 1 2 6 24 120

> Betafun<-function(a,b)
+ {
+ x<-gamma(a)
+ y<- gamma(b)
+ z<- gamma(a+b)
+ beta<-x*y/z }
> Betafun(1,2)
> x<-Betafun(1,2)
> x
[1] 0.5

Experiment with the following R functions to predict what they do and give the answer

 18

Example 1:

ceiling(c(-1.9,-1.1,1.1,1.9))
floor(c(-1.9,-1.1,1.1,1.9))
trunc(c(-1.9,-1.1,1.1,1.9))

x<-c(123456,.123456,.000123456)
round(x)

> ceiling(c(-1.9,-1.1,1.1,1.9))
[1] -1 -1 2 2
> floor(c(-1.9,-1.1,1.1,1.9))
[1] -2 -2 1 1
> trunc(c(-1.9,-1.1,1.1,1.9))
[1] -1 -1 1 1>
> x<-c(123456,.123456,.000123456)
> round(x)
[1] 123456 0 0
> round(x,3)
[1] 123456.000 0.123 0.000
> round(x[1],-1)
[1] 123460
> round(x[1],-2)
[1] 123500

Example 2:

Calculate the sin, cosine and tanget for numbers ranging from 0 to 2*pi with distance 0.1
between them. Note that tan(x)=sin(x)/cos(x)
Calculate difference between tan(x) and sin(x)/cos(x) for the values above. Which
values are exactly equal? What is the maximum differences.

Example 3:

Calculate the first 50 powers of 2, (i.e. 2*1, 2*2, 2*2*2)
Calculate the squares of integer numbers from 1 to 50.
Which pairs are equal?(i.e 2^n=n^2). How many are there?

 19

Sol. of Example 2:

> x<-seq(0,2*pi,0.1)
> a<-sin(x)
> b<-cos(x)
> c<-tan(x)
>
> diff<-c-a/b
>
> diff==0
 [1] TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE
FALSE FALSE FALSE
[13] FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
FALSE TRUE
[25] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
TRUE FALSE
[37] TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE
TRUE FALSE
[49] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
TRUE FALSE
[61] TRUE TRUE TRUE

> length(diff)
[1] 63
> sum(diff==0)
[1] 43
> max(abs(diff))
[1] 1.421085e-14

Sol. of Example 3:

> int<-1:50
> int
 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
[26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50
> x<-2^int # first 50 power of 2
> y<-int^2 # square 1:50
> eq<-x==y # examine which pairs are equal
> eq
 [1] FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE

 20

[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE
[37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
FALSE FALSE FALSE
[49] FALSE FALSE
> sum(eq) # sum of equal pairs
[1] 2
> int[eq] # list all equal pairs
[1] 2 4
> length(x[eq]) # how many such that x=y
[1] 2

 21

II.Matrix

 A matrix is a two dimensional array, it consists of elements of the same type and
displayed in rectangular form. The first index denotes the row; the second index denotes
the column of the specified elements, i.e. Xij represents the element in the i

th row and jth
column.

A) Creating matrix

 The following table has some related R functions

Function Description Example

matrix(
)

Creates matrix, takes a vector argument
and turns it into a matrix

matrix(data, nrow, ncol, byrow =
F)

matrix(1:12,3,4)
matrix(1:12,3)
matrix(1:12,ncol=4)
matrix(1:12,3,4,byrow=T)

cbind() Combines vectors column by column x <− cbind(c(1:4),c(5:8))

rbind() Combines vectors row by row x <− rbind(c(1:4),c(5:8))

dim()
Returns or changes the dim attribute,
which describes the dimensions of a
matrix, data frame or array

x <− 1:8

dim(x) <− c(2,4)

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)

Arguments:

 data: an optional data vector.

 nrow: the desired number of rows

 ncol: the desired number of columns

 byrow: logical. If 'FALSE' (the default) the matrix is filled by
 columns, otherwise the matrix is filled by rows.

dimnames: A 'dimnames' attribute for the matrix: a 'list' of length 2
 giving the row and column names respectively.

Examples:

matrix(1:12)
matrix(1:12,nrow=3,ncol=4)
matrix(1:12,nrow=3,ncol=4, byrow=TRUE)
matrix(1:12, ncol=4, byrow=TRUE) # same as above – simple division
matrix(1:12, ,4, byrow=TRUE) # same as above

 22

matrix(1:13, 3, 4)
matrix(1:13, 3)

Use of dimnames argument

mdat <- matrix(c(1,2,3, 11,12,13), nrow = 2, ncol=3, byrow=TRUE,
+ dimnames = list(c("row1", "row2"), c("C.1", "C.2", "C.3")))
> mdat
 C.1 C.2 C.3
row1 1 2 3
row2 11 12 13

Or write after you defined the matrix mdat

dimnames(mdat) = list(c("row1", "row2"), c("C.1", "C.2", "C.3"))
dimnames(mdat) = list(paste("row", letters[1:3]), paste("Col",
letters[1:3]))
> dimnames(mdat) = list(paste("row", letters[1:2]), paste("Col", 1:3))
> mdat
 C.1 C.2 C.3
row1 1 2 3
row2 11 12 13

&ote :

To suppress either row or column labels use the NULL

> dimnames(mdat) = list(NULL, c("C.> dimnames(mdat) = list(NULL, c("C.> dimnames(mdat) = list(NULL, c("C.> dimnames(mdat) = list(NULL, c("C.1111", "C.", "C.", "C.", "C.2222", "C.", "C.", "C.", "C.3333"))"))"))"))
> mdat
 C.1 C.2 C.3
[1,] 1 2 3
[2,] 11 12 13

*** Try this ***
mat1=rep(1:4,rep(3,4))
matrix(mat1,3,4)
matrix(mat1,3)
matrix(mat1,4,byrow=T)

is.matrix(mat1)

x<-rbind(c(1:4),c(5,8))
x<-cbind(c(1:4),c(5,8))

y=1:9
w=2:10
z=3:5

 23

see what you get from

rbind(y,w)
cbind(y,w)
rbind(y,z)
rbind(y,w,z)

cbind(0, rbind(1, 1:3))

 [,1] [,2] [,3] [,4]
[1,] 0 1 1 1
[2,] 0 1 2 3

x <− 1:8

dim(x) <− c(2,4)
dim(x) <− c(4,2)

B) Matrix arithmetic

The arithmetic operation (+, - , *, /) are applied in an element wise manner (element by
element), the matrices should be the same dimension.
% * % operator performs matrix multiplication on two conformable matrices.

Example :

x <− matrix(1:4,2)
 1 3
 2 4

y<− matrix(c(1:2, 1:2),2)
 1 1
 2 2

Calculate: x+y; x-y; x*y; x/y

 24

The following table has some related R functions

Function Description

nrow(), ncol
()

Returns the number of row or the column of the
matrices

dimnames()
Returns or changes the dimnames attribute of a
matrix or array

diag()
Either creates a diagonal matrix or extracts the
diagonal elements of a matrix

Solve() Calculate the inverse

var() Covariance matrix of the columns

t(x) Transpose of x

eigen(x) Eigenvalues and eigenvectors of x

Solve: Solve a System of Equations
Description:
 This generic function solves the equation 'a %*% x = b' for 'x',
 where 'b' can be either a vector or a matrix.
Arguments:
 a: a square numeric or complex matrix containing the
 coefficients of the linear system.
 b: a numeric or complex vector or matrix giving the right-hand
 side(s) of the linear system. If missing, 'b' is taken to be
 an identity matrix and 'solve' will return the inverse of
 'a'.
The function solve is used to solve a system of equations
Z1+2z2+3z3=3
2z1+3z2+2z3=0
3z1+2z2+z3=1

mat=rbind(c(1,2,3),c(2,3,2),c(3,2,1))

y=c(3,0,1)

z=solve(mat,y)

To make a check do this

mat%*% z # you should get y

 25

 C) Matrix indexing:

R uses square brackets, [row num, col num], to select elements of a matrix, also you can
use the labels of row and column to access the element.
Access the elements in the x matrix

x[a,]
x[,b]
x[-a,]
x[,-b]
x[a:b,c:d]

x[1,2] # returns the element x12
x[,2] # returns all elements in the second column
x[1,] # returns all elements in the first row
x[-3,] # remove third row
x[1:3,2:3] # select sub matrix consists of row 1-3 and column 2-3
x[-(1:2),2:3]
x[“rowa”,”colb”] # it is equivalent x[1,2]
x[“rowc”] # it is equivalent x[3,]

m=matrix(1:36,9,4)
m[2,3]
m[,3]
m[2,]
cbind(m[,3])
m[,-3]
m[-(3:8),2:4]
diag(m)
m[1:4,1:4]
diag(diag(diag(diag(m[1:4,1:4])
diag(4)

 26

Example:

The following table contains information of cars

 price mileage weight

USA 8895 33 2560

Korea 7402 33 2345

Japan 6319 37 1845

Answer the following:

1. Create a matrix.
2. Find the price of Korea car.
3. Give the mileage of all cars
4. Find information of USA car
5. Remove the information of Japan car
6. Select sub matrix consists of rows1-3 and column 2-3
7. Remove rows 1-2 and select column 2-3

 27

Apply() Function:

Apply Functions Over Array Margins

Description:

 Returns a vector or array or list of values obtained by applying a
 function to margins of an array.

Usage:

 apply(X, MARGIN, FUN, ...)

Arguments:

 X: the array to be used.

 MARGIN: a vector giving the subscripts which the function will be
 applied over. '1' indicates rows, '2' indicates columns,
 'c(1,2)' indicates rows and columns.

 FUN: the function to be applied: see Details. In the case of
 functions like '+', '%*%', etc., the function name must be
 backquoted or quoted.

 ...: optional arguments to 'FUN'.

Examples:

 ## Compute row and column sums for a matrix:

 x <- cbind(x1 = 3, x2 = c(4:1, 2:5))
 dimnames(x)[[1]] <- letters[1:8]
 apply(x, 2, mean, trim = .2)
 col.sums <- apply(x, 2, sum)
 row.sums <- apply(x, 1, sum)
 rbind(cbind(x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))

 ## Sort the columns of a matrix

 apply(x, 2, sort)

 ma <- matrix(c(1:4, 1, 6:8), nr = 2)
 ma
 apply(ma, 1, table) # a list of length 2
 apply(ma, 1, quantile) # 5 x n matrix with rownames

 28

R actually has built-in functions to compute column or row sums, means,
variances and standard deviations which are faster than using apply:
> colMeans(x)
> colSums(x)
> colVars(x)
> colStdevs(x)
> rowMeans(x)
> rowSums(x)
> rowVars(x)
> rowStdevs(x)

Outer() Function:

 outer(X, Y, FUN="*", ...)
 X %o% Y
Arguments: X, Y: First and second arguments for function 'FUN'. Typically a
 vector or array.
 FUN: a function to use on the outer products,

Examples:
> x=1:3
> y=rep(3,5)
> outer(x,y,FUN="+")
 [,1] [,2] [,3] [,4] [,5]
[1,] 4 4 4 4 4
[2,] 5 5 5 5 5
[3,] 6 6 6 6 6
 > outer(x,y)
 [,1] [,2] [,3] [,4] [,5]
[1,] 3 3 3 3 3
[2,] 6 6 6 6 6
[3,] 9 9 9 9 9
> outer(x,y,FUN="^")
 [,1] [,2] [,3] [,4] [,5]
[1,] 1 1 1 1 1
[2,] 8 8 8 8 8

[3,] 27 27 27 27 27

 29

III. Array

The syntax for creating an array is:

Array (data, dim)Array (data, dim)Array (data, dim)Array (data, dim)
Example

> x=array (1:24, c (3, 4, 2))
> x
, , 1

 [,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

, , 2

 [,1] [,2] [,3] [,4]
[1,] 13 16 19 22
[2,] 14 17 20 23
[3,] 15 18 21 24

> dimnames(x)<- list (c("A","B","C"),c("a","b","c","d"),c("first", "
second"))
> x
, , first

 a b c d
A 1 4 7 10
B 2 5 8 11
C 3 6 9 12

, , second

 a b c d
A 13 16 19 22
B 14 17 20 23
C 15 18 21 24

 30

Exercise:

Use of apply function on array

> array(1:4, c(2,2,3))
, , 1
 [,1] [,2]
[1,] 1 3
[2,] 2 4
, , 2
 [,1] [,2]
[1,] 1 3
[2,] 2 4
, , 3
 [,1] [,2]
[1,] 1 3
[2,] 2 4

> apply(array(1:4, c(2,2,3)),2,sum)
[1] 9 21
> apply(array(1:4, c(2,2,3)),1,sum)
[1] 12 18
> apply(array(1:4, c(2,2,3)),3,sum)
[1] 10 10 10

The following table contains information of 3 countries:

 GDP Pop Inflation

Austria 197 8 1.8

France 1355 58 1.7

Germany 2075 81 1.8

Answer the following:

1. Create a matrix name it country.data
2. Find the total population for all three countries.
3. Add variable area (84,544,358)
4. Add country Switzerland (265, 7, 1.8,41)
5. Find the maximum value for all variables.
6. Find the mean for all variables.
7. Change the population of Austria to 10 millions
8. Give data for France.
9. Find population for Germany.
10. Define variable EU=c("EU","EU","EU","non-EU") and add it to the variables
11. Find the maximum value for all variables and see what the entries look like

(Error)????.

 31

VI. Data frame

 Are very similar to matrices except that they allow the columns to contain different
types of data of the same length, whereas a matrix is restricted to one type of data only.
Data frames still have to be in rectangular form as matrices.
A) Creating Data frame:

• read.table read data from external files.

• Data.frame binds together objects of different kinds.
The syntax for creating a data frame is:
data.frame(data1,data2,…)

B) Data frame Arithmetic:

You can only apply numeric computations to numeric variables in data frame
C) Data frame Indexing:

 Same tools used with matrix indexing can be used and also we can use $ to

extract vector, part of list, or an array.

Example:

country.frame<-data.frame(country.data,EU)

apply(country.frame[,1:4],2,max)

#to access each variable in data frame

country.frame$pop

country.frame[,"pop"]

country.frame[,2]

Car information Example

car.inf=matrix(c(8895,33,2560,7402,33,2345,6319,37,1895),3,3,byrow=T)

country=c("USA","Korea","Japan")

inf=c("Price","Mileage","Weight")

dimnames(car.inf)=list(country,inf)

dimnames(car.inf)

Compute the price of cars after 25% discount, then add this variable to car.inf data

frame

dis=car.inf[,1]-car.inf[,1]*0.25

car.inf=cbind(car.inf,dis)

type=c("sporty","compact","van")

car =cbind(car.inf,type)

car

car.frame =data.frame(car.inf,type)

car.frame

car.frame$millage

car.frame["USA",] #Select info. of USA cars

 32

To add a row to data frame

SA=data.frame(7000,40,2000,4000,"van")

inf=c("Price","Mileage","Weight","dis","type")

dimnames(SA)=list("SA",inf)

d1=rbind(SA,car.frame)

d1

 Price Mileage Weight dis type

SA 7000 40 2000 4000.00 van

USA 8895 33 2560 6671.25 sporty

Korea 7402 33 2345 5551.50 compact

Japan 6319 37 1895 4739.25 van

What happen if you use this

d2=rbind(SA=c(7000,40,2000,4000,"van"),car.frame)?????

see the output of this

d2$dis

d1$dis

Access data.frame with logical vector

car.frame$Price[dis>5000]

car.frame$Price[Weight>2000] # Problem!!! Weight was not defined

car.frame$Price["Weight">2000] # another problem try "Weight">2000

car.frame["USA",]

can write

car.frame$Price[car.fram$Weight>2000]

dis was defined separately so did not make a problem

car.frame$Mileage[car.frame[,1]>7000]

car.frame$Mileage[car.frame$Price>7000]

what is car.frame?????

car.frame[dis>4000,1:4]

car.frame[dis>5000,1:4]

subset:
returns subsets of vectors or data frames that meet specific requirements

new.frame=subset(car.frame,subset=dis>4000,select=1:4)

 33

V.List

 A list allows a programmer to tie together related data that do not have the same
structure (different lengths or modes).
A) Creating List:

Used (list) function.

B) List Indexing:

To access the elements in a list, used a double square brackets [[]] then the sub
elements by using a single square brackets.

Example:

g=list(1:10,c(T,F),c("Hey","You"))
#to name all elements in a list
names(g)=c("number","bool","message")
g=list(number=1:10,bool=c(T,F),message=c("Hey","You"))
#add another element
g$comment="we assign a new element"

Example:

Create list contains four components, first component: car.inf data frame, second
component: vector of the names of the companies that made the cars, third component:
vector of model numbers of the cars.

company=c("Toyota","Kia","Mersedis")
modl=c(1990,2005,2006,2004)
#carlist=list(car.inf,company,modl)
carlist=list(car.frame,company,modl)

#to name component in a list
names(carlist)=c("car.information","company","model")
names(carlist)

#Acces the elements in carlist
carlist[[2]] # gives company vector
carlist $car.information
carlist $car.information$type
carlist $company[2]
carlist[[3]][2]
apply(carlist[[1]][,1:4],2,max)

#make a list inside a list
m=matrix(1:4,2)
carlist2=list(carlist,m)
names(carlist2)=c("e","p")

 34

carlist2ecar.information$dis
carlist2[[1]][[1]][,"dis"]
carlist2[[1]][[2]][3]

The lapply and sapply Functions

lapply and sapply operate on components of a list or vector

• lapply will always return a list

• sapply is a more user friendly version of lappy and will attempt to simplify the
result into a vector or array
Example 1: lapply # Example 2: sapply

> l <- list(Sex=Sex,Eth=Eth) > l <-

list(Sex=Sex,Eth=Eth)

> lapply(l,table) > sapply(l,table)

$Sex Sex Eth

F M F 80 69

80 66 M 66 77

$Eth

A N

69 77

Example: (lapply,sapply)

x <- list(a = 1:10, beta = exp(-3:3), logic =c(TRUE,FALSE,FALSE,TRUE))
 # compute the list mean for each list element
 lapply(x,mean)
 # median and quartiles for each list element
 lapply(x, quantile, probs = 1:3/4)
lapply(x,"-",1)

#better look
sapply(x, mean)
sapply(x, quantile)

• lapply: takes any structure, gives a list of results

• sapply: like lapply, but simplifies the result if possible

• apply: only used for arrays

• tapply: used for ragged arrays: vectors with an indexing specified by one or more

factors.

Adding elements to a list can be achieved by

 35

• adding a new component name:
> L1=list(Item1=c(7,2,5,8),Item2=c(T,T,F,T),Item3=c("a","h","m","t"))
> L1$Item4=c("apple","orange","melon","grapes")
alternative ways

> L1[["Item4"]]=c("apple","orange","melon","grapes")
OR
> L1[[4]]=c("apple","orange","melon","grapes") #without name
> names(L1)[4]="Item4"

What is names(L1)???

> names(L1)
[1] "Item1" "Item2" "Item3" "Item4"

 36

VI.Factor:

A factor is a vector object used to specify a discrete classification (grouping) of the
components of other vectors of the same length.

EXAMPLE:

 Suppose we have a sample of 30 tax accountants from all the states and territories of
Australia and their individual state of origin is specified by a character vector of state :

> state<- c("tas", "sa", "qld", "nsw" ,"nsw", "nt", "wa", "wa", "qld", "vic", "nsw",
 "vic"," qld", "qld", "sa", "tas", "sa", "nt", "wa", "vic", "qld", "nsw",
 "nsw", "wa", "sa", "act", "nsw", "vic", "vic", "act")

> statef <- factor(state)
>statef

To find out the levels of a factor the function level() can be used.

> levels(statef)
[1] "act" "nsw" "nt" "qld" "sa" "tas" "vic" "wa"
>table(statef)

A&OVA

To encode a vector as a factor use

factor(rep(c("tr1","tr2"),c(10,10)))
 [1] tr1 tr1 tr1 tr1 tr1 tr1 tr1 tr1 tr1 tr1 tr2 tr2 tr2 tr2 tr2 tr2 tr2 tr2
[19] tr2 tr2

The function tapply():

To continue the previous example, suppose we have the incomes of the same tax
accountants in another vector (in suitably large units of money)

> incomes <- c(60, 49, 40, 61, 64, 60, 59, 54, 62, 69, 70, 42, 56, 61, 61, 61, 58, 51, 48,
 65, 49, 49, 41, 48, 52, 46, 59, 46, 58, 43)

To calculate the sample mean income for each state we can now used the special
function tapply():

> inc.means <- tapply(incomes, statef, mean)
> inc.means

 qld act nsw nt qld sa tas vic wa
56.00 44.500 57.33333 55.50 53.00 55.00 60.50 56.00 52.250

