إفادة

 لتحديد الباحث الرئيسي في بحث مشترك مقدم للترقية العلمية

A FACILE SYNTHESIS of 8-SUBSTITUTED-4-
HYDROXY-2-METHYL-6,7-METHYLENEDIOXY-1,2,3,4-
TETRAHYDROISOQUINOLINES.

المؤلفون حسب ترتيب ظهورهم على البحث:

١. د. طارق ر. صبحي
٢. د. حمد الله بار سامي
٣. د. محمد سالم

النشر: مقابل النظر

جهة ونادي النشر: الجمعية العربية للكيمياء مستقلة

نشدد أن المؤلفين المشاركون في البحث المذكور أعلاه - أن الباحث الرئيسي لهذا البحث هو:

د. طارق ر. صبحي

أعضاء بروف. البحث:

١. د. حمد الله بار سامي
٢. د. محمد سالم

Attestation

The co-authors of the paper entitled A FACILE SYNTHESIS of 8-SUBSTITUTED-4-
HYDROXY-2-METHYL-6,7-METHYLENEDIOXY-1,2,3,4-
TETRAHYDROISOQUINOLINES

attest that Dr. Tariq R. Sobahi

is the principal investigator of this paper.

(Signature) ١٠/٦/١٤٣٩

A.M. ASIRI

(دوائر الرسالة)
A FACILE SYNTHESIS OF 8-SUBSTITUTED-4-HYDROXY-2-METHYL-6,7-METHYLENEDIOXY-1,2,3,4-TETRAHYDROISOQUINOLINES

Tariq R. Sobahi, Salem A. Basaif, Abdullah M. Asiri and Mohamed A. Hassan
Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah-21589, P.O.Box 80203, Saudi Arabia
(Received 29th April 2001; Accepted 16th July 2001)

Owing to the concomitant coordinating effect of the adjacent benzylamino and alkoxyl groups, N-methyl-N-(2,2-dithioxethyl)piperonylamine (3), which was used as a starting material for the synthesis of different 8-substituted-4-hydroxy-2-methyl-6,7-methylenedioxy-1,2,3,4-tetrahydroisoquinolines, is rapidly and exclusively lithiated at the position-2 with n-butyllithium in diethyl ether at 0°C. Successive reactions with electrophiles followed by cyclization in acidic medium give the corresponding 8-substituted-4-hydroxy-2-methyl-6,7-methylenedioxy-1,2,3,4-tetrahydroisoquinolines.

INTRODUCTION

The isoquinoline alkaloids are an important class of natural products including simple isoquinolines, like anhalamine produced by the cactus peyote, or benzoisoquinolines, such as morphine and codeine, present in the opiate poppies, whose powerful physiologic effects such as an anesthetics and analgesic effects are well-known. Probably due to this “bewitching” characteristics many chemists have attempted to synthesis these natural products as well as the synthesis of their analogues with the aim to modify their physiological activity [1-3].

It is well-known that different 8-substituted isoquinolines are rare due to their synthetic difficulties. In this general context we are engaged in the synthesis of 8-substituted isoquinolines via lithiation of N-methyl-N-(2,2-dithioxethyl)piperonyl amine followed by ring closure in an acid medium.

EXPERIMENTAL

Reagents: piperonal, bromoacetalddehyde diethyl acetal, dibenzyl disulfide, oxirane, paraformaldehyde and n-butyllithium (1.68M in hexane) were supplied by the Aldrich Chemical company, whilst p-toluene sulfonic acid was prepared by treatment of p-toluene sulfonic chloride with sodium azide.

Preparation of N-methylpiperonylamine (2).

Piperonal (1) (15g, 0.1mol) was added to 40% aqueous solution of methanamine, and the mixture stirred at room temperature for 1 hour. The crude reaction product was then extracted with ether (3x30ml). The combined ether extracts were washed with water (2x20ml), dried over MgSO₄, filtered and evaporated to yield the residue which was added to a solution of NaBH₄ (6.4g, 0.2mol) in anhydrous diethyl ether (50ml) while stirring under reflux for 1 hour. After cooling at 0°C, water (50ml) was cautiously added, the mixture filtered and the solid product was dissolved in chloroform (100ml) then washed.
General procedure for cyclization of 4-6: Formation of 8-substituted-4-hydroxy-2-methyl-6,7-methylenedioxy-1,2,3,4-tetrahydroisoquinolines 8-10.

The crude products of 4-6 were treated, individually, with 20% aqueous hydrochloric acid (150mL) and allowed to react at room temperature for 16 hrs with stirring. The resulting solution was treated with charcoal, filtered and basified with 40% aqueous sodium hydroxide, while keeping the temperature below 40°C. The aqueous solution was extracted with dichloromethane (3x100mL). The collected organic phase was dried over anhydrous sodium sulfate, filtered and the solvent was evaporated in vacuo to give the desired 8-substituted isoquinolines 8-10.

Compound 8: Pale yellow crystals from ethyl acetate, m.p 194-195°C; 1H NMR (200MHz, CDCl₃) δ 7.10 (3H, m, 5CH Ar), 6.79 (1H, s, CH Ar), 5.96 (1H, d, J=1.3 Hz, OCH₃), 5.94 (1H, d, J=1.3 Hz, OCH₃), 4.37 (1H, broad s, COH), 3.94 (2H, s, CH₂), 3.88 (1H, broad s, OH), 3.58 (1H, d, J=15.7 Hz, CH₂N), 2.82 (1H, ddd, J=11.7, 1.7, 0.9 Hz, CH₂CH), 2.64 (1H, d, J=15.7 Hz, CH₂N), 2.51 (3H, s, CH₃), 2.26 (1H, dd, J=11.7, 1.7 Hz, CH₂CH) ppm; C₁₃H₁₄NO₃S (329), Calcd.: C, 65.63; H, 5.81; N, 4.25. Found: C, 65.47; H, 5.73; N, 4.37.

Compound 9: colorless crystals from ethanol, m.p 182-183°C; 1H NMR (200MHz, DMSO-d₆) δ 6.80 (1H, s, CH Ar), 5.92 (1H, s, OCH₃), 5.91 (1H, s, OCH₃), 5.10 (1H, d, J=7.0 Hz, CHOH), 4.73 (1H, t, J=5.4 Hz, CH₂OH), 4.51 (1H, sym. m, CH₂CH), 3.50-3.30 (3H, m, CH₂OCH₂CH₂N), 3.29 (1H, d, J=14.7 Hz, CH₂CH₂N), 2.75 (1H, dd, J=10.9, 5.0 Hz, CH₂CH), 2.64 (2H, t, J=7.4 Hz, CH₂CH₂OH), 2.35 (3H, s, CH₃), 2.29 (1H, dd, J=10.9, 7.3 Hz, CH₂CH) ppm; C₁₃H₁₄NO₃S (329), Calcd.: C, 62.14; H, 6.82; N, 5.57. Found: C, 62.31; H, 6.74; N, 5.79.

Compound 10: colorless crystals from ligroin: ethanol (1:1), m.p 174-175°C; 1H NMR (200MHz, DMSO-d₆) δ 6.86 (1H, s, CH Ar), 5.95 (1H, s, OCH₃), 5.94 (1H, s, OCH₃), 5.14 (1H, d, J=6.5 Hz, CHOH), 4.94 (1H, t, J=5.0 Hz, CH₂OCH₂), 4.52 (1H, sym. m, CH₂CH), 4.39 (2H, d, J=5.0 Hz, CH₂OH), 3.62 (1H, d, J=15.1 Hz, CH₂N), 3.36 (1H, d, J=15.1 Hz, CH₂N), 2.78 (1H, dd, J=10.8, 5.3 Hz, CH₂CH), 2.34 (3H, s, CH₃), 2.28 (1H, dd, J=10.8, 7.3 Hz, CH₂CH) ppm; C₁₃H₁₄NO₃S (327), Calcd.: C, 60.56; H, 6.37; N, 5.90. Found: C, 60.71; H, 6.19; N, 6.02.

RESULTS AND DISCUSSION

In order to synthesise different 8-substituted-4-hydroxy-2-methyl-6,7-methylenedioxy-1,2,3,4-tetrahydroisoquinolines, N-methyl-N-(2,2-diehydroxyethyl) piperonylamine (3) was used as a starting material. Preparation of N-methyl-N-(2,2-diehydroxyethyl) piperonylamine (3) was achieved by treatment of N-methyl-piperonylamine (2), which was prepared by reacting 40% aqueous methylamine with piperonal (1) and successively adding of sodium borohydride, bromoacetoaldehyde diethyl acetal and aqueous potassium hydroxide solution at 100°C to produce the desired product 3 in very good yield 88% (Scheme 1).

Owing to the concomitant coordinating effect of the adjacent benzylamino and alkoxy groups, N-methyl-N-(2,2-diehydroxyethyl) piperonylamine (3) is rapidly and exclusively lithiated at the position-2 with n-butyllithium in diethyl ether at 0°C [4-6]. Successive reactions with different electrophiles such as dibenzyl disulfide, oxirane, paraformaldehyde and p-toluencesulfonyl azide give the corresponding substituted products 4-7, respectively (Scheme 2) [7,8].

Acid-catalyzed cyclization of the products 4-6 give access to a series of 8-substituted-4-hydroxy-2-methyl-6,7-methylenedioxy-1,2,3,4-tetrahydroisoquinolines 8-10, respectively, as shown in scheme 3 [9,10].

Reduction of the product N-methyl-N-(2,2-diehydroxyethyl)-2-azo-3,4-methylenedioxybenzylamine (7) with lithium aluminium hydride in anhydrous diethyl ether under reflux, under nitrogen, produced N-methyl-N-(2,2-diehydroxyethyl)-2-azo-3,4-methylenedioxybenzylamine (11) in excellent yield 95% (Scheme 4).

Unfortunately, cyclization of each azido- or amino-substituted products 7 and 11 respectively, gave a mixture of unidentified products.

REFERENCES