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Siham Jalal Al- Sayyad

Abstract

In this paper we used the nations of guasi-gauge space and of
a Banach operator to conselidate the technique of the proof of Banach’s -
contraction principle. Several examples are given to illustrate the results.

§ 1. Introduction

Calling a non-negative real function d on X = X, ( for a non-void set X ) a
quasi-pseudo metric on X provided d( x, x ) = 0 for-every x'in X and
d(x,y) < d(x,v) + d(z,y) for all elements x,y,zin X ..

Definition 1.1 : A:quasi-gauge structure for space (X,T) is a family P of
quasi-pseudo metrics on X such that T has as a subbase the family
{B(x,p,e)}:xinX,pinP,e>0} where B(x,p,¢)istheset {yin
X | p (xy) <e }. If a topological space { X, T ) has a quasi-gauge
structure P it is called a-quasi~gauge space and is denoted by ( X, P ).

Remark : Every topological space is a quasi-gauge space. { See Theorem
2.6 [4]). If {(X,d)is a ' metric space ' we take P to consist of d alone.

For our purpose we need the following concept of a Cauchy saquence
due to Reilly [4] in a quasi-gauge space, generalizing the classical
concept.

Definition 1.2 : If ( X,P ) is a quasi-gauge space then the squence {x,} in
X is called left P-Cauchy. If for each p in P and each £ > 0 there is a point
x in X and an integer k such that p(x,x,) < € forall m > k . ( x and k may
dependoneandp).

More explicitly the sequence {x,} is a right P-Cauchy sequence if for
each ¢ > 0 and p ¢ P there is an element x of X and an integer k such that
p(Xp,x) < ¢ for all m > k . The following example shows that a right P-
Cauchy sequence need not be a left P-Cauchy sequence and vice versa.
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Example 1.1: Let X be the interval (0.1) of real numbers and define the
x—y if x=2vy

1 if x <y’
X, = 1mn=1,2, ..., p(X. , %) < I/ng for all n > n, the sequence x, = 1/n
is left P-Cauchy in X. However, this sequence is not right P-Cauchy as

quasi-pseudo-metric p on X by p(x,y) = { Since for

P(Xm,%) = 1, for each x in X after a stage. On the other hand the sequence
{Xa) = {1-1/n}*— is right P-Cauchy, as P(Xy, X, )<1/ng where X, = 1-1/m
and m > n,. But for each x in X, p(X,xn) = 1, since x, > X after a certain
stage. So { 1 —(1/n)} ™= is not a left P-Cauchy sequence.

Definition 1.3: A quasi-gauge space (X,P) is left (right) sequentially
complete, if every left (right) P-Cauchy sequence in X converges to some
element of X.

Definition 1.4 : An operator T on a quasi-gauge (X,P) is called a left
Banach operator of type k if for each p in P there exists k (depending on
p) such that 0 <k < 1 and for x in X, p(T(x), Tx)) <k p(x,T(x). T is
called a right Banach operator of type k if for each p in P there exists k
(depending on p) such that 0 <k <1 and for all x in X, p(TA(x), TX)) <
kp(T(X),x).

Remark : The operator x -> %/2 on the space introduced in example 1 is
readily seen to be a left Banach operator, although it is not a right Banach
operator.

In case P reduces to a single metric, we shall say that the Banach operator
is of type k. |

§ 2. Main Results

Theorem 2.1 : Let T be a continuous left (right) Banach operator on a

Hausdorff left (right) sequentially complete quasi-gauge space (X,P) into
itself. Then T has a fixed-point.

Proof : We shall prove the theorem in the case of a left Banach operator,
omitting the case of the right Banach operator as the details are similar.

Ifx is in X, for each p in P it follows by induction that p (T"(xg), T (xg))

< k" p (X0, T(x0)). Let m and n be two positive integers such that m > n.
Then
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m-—-n
p(T(xo), T"60)) < ) p(T™(x0), T(x0)
i=1

m—-n

< ) K (n, T
i=1
n
As 0 <k <1 for each p associated with p in P, Z kK’ converges and

hence is a Cauchy sequence of real numbers. So glven ¢ > 0 we can find

n such that for all m > n, Z K™ p(xq, T(xe)) < & S0 p (T(p), T™(xo)) < &
i=0 -

for all m = n. Thus for each p in P and & > 0 we may choose x as T"(x,)
and see that { T'(xo) } is indeed a left P-Cauchy sequence in the sense of
definition 2. Since (X P) is left sequentially complete, {T"(xg)} is
convergent to some y in X. As T is a continuous operator, {T""(xo)} is
converges to T(y). {T™(xo)} being a subsequence of {T%(x0)} and X
being a Hausdroff space, it follows that T(y) =y.

Remark Reilly’s result ({4], Theorem 2) becomes a special case of
Theorem 2.1 .

Theorem 2.2 : If T is a contractive operator on a quasi-gauge space (X,P)
(i.e. for each p € P and some k (depending on p) with 0 <k < 1, p(T(x),
T(y)) <k p (x,y) for all X, y in X), then T has a unique fixed-point in X,
provided X is a left (right) sequentially complete Hausdroff space.

Proof : It can be easily seen that T is continuous and satisfies the
hypothesis of theorem 2.1. So T has a fixed-point. Uniqueness of the
fixed point is obvious, as X is Hausdroff.

Corellary 2.3 : If T be a continuous Banach operator on a complete
metric space (X,d) then T has a fixed point .

Corollary 2.4 : If T be an operator on a complete metric space such that
T7 is a continuous Banach operator with at most one fixed pomt then T
has a unique fixed-point.
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Proof : By Corollary 2.3 of Theorem 2.1, T™ has a fixed-point y, which is
unique (by our assumption). Since y = T™(y), T(y) = T™"(y) = T™(T)y)),
and the fixed-point of T is unique, it follows that T(y) =y.

Remarks : Corollary 2.4 fails if T has more than one fixed-point .

Example 2.2 : Let X be tha unit circle {(x,y) : &>+ y* = 1} with the usual
Euclidean metric, and T be the map (x,y) > (-x,y). T being the identify
map is a continuous Banach operator. However T has no fixed point.

We have actually shown in Theorem 2.1 that every sequence of iterates of
a continuous left (right) Banach operator on a left (right) sequentially
complete quasi-gauge space converges to some fixed point. However a
discontinuous Banach operator on a sequentially complete quasi-gauge
space, even if it has a fixed point, need not have this property for the
iterates. This is illustrated by the following example of a metric space.

Example 2.3 : Consider the set (0) U {(1/n) : n is a natural number} U (2)
with the usual metric. Let T be the operator defined by T (0} =1, T (1/n)
= (1/2n) for positive integral n and T (2) = 2. It is readily seen that
PT(x) — Tx) | < (3/4) | x - T(x) | for each element x. 2 is the only
element whose iterates coverge to the fixed-point of T, which is evidently
not a continuous operator.

The following example shows that a left sequentially complete quasi-
gauge space need not be right sequentially complete.

Example 2.4 : Let X be the space (0,1) having the quasi-pseudo-metric p
defined by

Py)= JOifx<y

lifx>y

The topology induced by p has as a base all the sets of the form [x,1], for
x in X. X is not right sequentially complete since the right Cauchy
sequence {1/n} is not convergent in X . If {x,} is any left Cauchy
sequence in X, then there is, by definition an element x in X such that for
alln > M, p (x,%,) <% . From the definition of p. it now follows that for
all n = M, x, = x. This shows that {x,} converges to x, since it lies
eventually in [x,1}. So X is left sequentially complete.

It may be noted that all sequences in the space of Example 4 are right
Cauchy sequences.
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For other results in this directionsee [ 1,2, 5].

Theorem 2.5 : Let (X, P) be a Hausdroff sequentially complete quasi-
gauge space generated by the family P of pseudometrics and T be an
operator on X satisfying the following condition : for any x, y in X and
foreach pin P, .

p{IG), Ty sap (5T) + b p ,T() + cp (£ T(Y)) + d p (,T(x)) +
e plxy) @2.1)
where a, b and e are real constants (varying with p) and ¢ and d are non-
negative numbers (varying with p). If forall p € P,

either

] atcte

N (i) I=b—c > 0 and 0< 15 ¢ <1
. btd+e

'(lz) l—a—~d >0 and 0< m <1

then T has a fixed-point. If in addition to either of these condition, for
eachpmmP,c+d+e = ¢(p) +d(p)+e(p) <1, then the fixed-point is
unique. _

Proof Putting y = T(x) in (2.1) and using p(x,T(x)) < p(x,T(x)) + p(T(x),
T%(x)), we have for all x in X and p in P, as ¢ and d are non-negative,

p (T(x), T(x) <a p (T()) + b p (T(x), TXX) + ¢ p (xTx)) +d p
T(x) T(x)) + e p (x,T(x)) . If for all p€P,]1-b-c>0, then for each
xinXandp&P.

a+c+e

p (T(x), T"(x)) < p(x,T(x)) (2.1.8)

Putting x = T(y) in (2.1), we get simiiarly, xinXand 1 >a+d,

p(T00, 1) s 25228 5 (7)) @.1b)

for all p in P . Therefore if T satisfies (i) or (ii) then T must be a Banach
operator .

since (X,P) is sequentially complete and (T"(x)) is a P-Cauchy sequence
for each x in X, it converges to an element u of X.

For each natural number n > 1, p(u, T(u)} < p(u,Tn(x)) for each pseudo-
metric p € P. If (2.1.a) is true, then putting x = T"'(x) and y = in (2.1)
and using triangle inequality, we get, for each p in P,
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PTG, TW) < a p(T™'(x), TG)) + b plu, TW) +
. o[p(T™(,w) + p(u,TW)] + d p(w, TY(x)) + & p(T* (x)u ).
0O
p(uT() £ T35 [0+ ) p(uT() + (¢ + (™ (X))

+b p(T™'(x),T"x)] .
If (2.1.b) is true, then putting x = u and y = T"'(x) in (2.1) and using
triangle inequality, we similarly get for all p in P,

PLT(W) < T [(1+Op@T"(0) + (¢Hep(T™(0,) +

bp(T™'(x) T" (x)]

since [T"(x)] comverges to u and p (T™'(x) , T° (x)) tends to zero, it
follows from the preceding inequalities that for each p in P, p(u,T(u)) = 0
. It now follows from the Hausdroof assumption that u = T(u).

If ¢ +d+e <1, then the fixed point of T is unique. For, if u and v are two
fixed-points of T, then p(u,v) = p(T(u), T(v) < (c+d+e) p(u,v), which
follows from (2.1) on putting u = T(u) and v = T(v). Since c+d+e < 1, it
follows that p(u,v) = 0 for all p in P. Since X is Hausdorff this in turn
implies thatu =v . :

Remarks

1. Kannan [3] has provel the following result : Let T be an operator on a
metric space (X,d) satisfying the condition that there exists a real
number k with 0 <k < such that for any x,y in X.

D(TG),T(y)) <k [d(x,T(x)) + d(y,T(y))] (2.2)

Then T has a unique fixed point, if X is complete. The above result

follows from Theorem 2.5 by taking P = {d}, c =d = e = 0 and a = d with

0<atb<l. _ - '

2. In Theorem 2.5 all the real numbers a, b and e need not be positive as

is evident from the following example :

Example 2.5 : Let T be the operator on [0,1] U {~ 4} (with the usual
metric) defined by : T(~ 4) and = — 4 and T (x) = 0 for each x in [0.1].
Using elementary inequalities it may he seen that T satisfies (2.1) with

a=b=-4%,c=d=e="%.Moreover %-jb-«ﬁ{—mf =Yand1l~b-¢>0.

3. Interchanging x and y in (2.1) and using the symmetry of each o the
pseudo-metrics, (2.1) is reduced to the following : for x,y in X,

PTEA,TE) <222 [p0eT60) + (TN + 252 (o, T(y))

*p(y, T(x)] + ep(x,y) (2.2)
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The condition for T to be a Banach operator then becomes 2 # atbtctd

and
atbh+c+d+2e
0< F=Toverdy <L

But this condition is more restrictive than what has been assumed in
Theorem 2.5 . For instance the operator x = x°on [0,%4] satisfies (2.1) for
a=b=c=0,d=2ande=%. Since a+ b+ ¢ +d =2, this criterion

.. +e+
cannot be used to deduce that it is a Banach operator. But %——g——f =

Now we have a stronger theorem, using the notion of a Banach operator .

Theorem 2.6 : Let (X.d) be a complete metric space and T be a
continuous Banach operator having at most one fixed point and of type
k<Y . Then T satisfies :

d(T(x), T(y)) <k [d(x, T(y)) + d(y, T(x))] (2.4)

Proof : For each x,y in X, it follows by induction that

n-1 . . . .
dTeO, TN < X [T T (0) + d(Ti(), T ()] + d(T°(), T(v))

i=1
Since T is a Banach operator of type k, it follows that

noo
dTELTONS 2 K [d&TE) + dy,T(y)] + dT"x),T°(v)) (2.5)
i=1
By Theorem 2.3, T has a fixed point which is unique by assumption.
Moreover d(T"(x),1"(y)) tends to zero as n tends to co, since each
sequence of iterates converges to the fixed-point. So proceeding to the
limit in (2.5) and noting that k < 1 we have

d(T(a), TEN < 2 K [deT()) + dly, T(y))]
P=1
Sk [d(x,T(x)) + d(y, T(yNV(1-k)
Since k <4, it follows that k/(1-k) < % and so T satisfies (2.2).

Corollary 2.7 : If T is a continuous Banach operator of type k ( < ¥ }and
having at most one fixed point in a complete metric space (X,d) then T
satisfies (2.4)

Proof : From Theorem 2.6 it follows that T satisfies (2.2) for the constant k’
= k/(1- k). Since k < ¥4, it follows that k¥’ < %. Hence by the discussion
preceding Theorem 2.6, T satisfies (2.4) also for k” = k’/( 1-2k’) = k/(1~3k).
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