A NOTE ON CONTROLLABILITY OF LINEAR SYSTEMS

SIHAM J. AL SAYYAD

Department of Mathematics, Faculty of Science King Abdul Aziz University, P. O. Box 30305 Jeddah 21477, Saudi Arabia

Abstract

Necessary and sufficient conditions for $T-\epsilon$ controllability of linear systems are investigated.

1. Introduction

Let X be a Banach space with norm denoted by $\|\cdot\|$, and consider the dynamical system

$$\frac{dp}{dt} = Ap + b(t)u + c(t), \tag{1.1}$$

where $p \in X$, A is a closed linear operator generating the semigroup $\{f(t)\}$, $t \geq 0$, for the class C_0 of bounded linear operator on X into itself, and b(t) and c(t) are continuous vector functions with values in X. The function $u(t) \in L_1[0, T]$ is called a *control*. The solution of (1.1) can be represented by the Cauchy's formula

$$\Phi(t, p, u) = f(t)p + \int_0^t f(t-\tau)b(\tau)u(\tau)d\tau + \int_0^t f(t-\tau)c(\tau)d\tau, \ 0 \le \tau \le T. \ (1.2)$$

2000 Mathematics Subject Classification: 47D03, 47E05, 47L05.

Key words and phrases: linear system controllability.

Received June 16, 2003

© 2003 Pushpa Publishing House

Definition 1.1. A point p is said to be $TM - \varepsilon$ controllable at the point $q(T>0,\ M>0)$, if for arbitrary ε , there is a control $u(t)\in L_1[0,\ T]$, $\|u\|_{L_1}\leq M$ such that $\|\Phi(T,\ p,\ u)-q\|<\varepsilon$.

If $M = \infty$, we omit the letter M and use the term $T - \varepsilon$ controllability or ε controllability for a time T, a point p and a point q.

Definition 1.2. The dynamical system (1.2) is called T controllable if, for arbitrary $p, q \in X$ and arbitrary $\varepsilon > 0$, there is a control u(t) such that $\| \Phi(Y, p, u) - q \| < \varepsilon$. It is called $T - \varepsilon$ controllable at zero if, for arbitrary $p \in X$ and $\varepsilon > 0$ there is a control u(t) ensuring that $\| \Phi(T, p, u) \| < \varepsilon$.

2. Main Results

In this section we give necessary and sufficient conditions for ϵ controllability.

Theorem 2.1. Let k[0, T] be a linear manifold, dense in L[0, T]. If the point p is $TM - \varepsilon$ controllable at the point q on L[0, T], then it is $TM - \varepsilon$ controllable at the point q on k[0, T].

Proof. This is obvious because $\Phi(t, p, u)$ depends continuously on u. In fact, if

$$\|u-u_0\|_{L_1} \to 0, \|\Phi(t, p, u)-\Phi(t, p, u_0)\|_X \to 0,$$

and the result follows.

We write $\pi_M(\Gamma)$, where M>0, and $\Gamma=\{\gamma\}$ is an arbitrary set in X, for the closure of the set of all finite linear combinations $\sum_{i=1}^N \lambda_i \gamma_i$, $(\gamma_i \in \Gamma)$ and the positive integer N is arbitrary) for which $\sum_{i=1}^N |\lambda_i| \leq M$. The smallest linear subspace containing Γ will be denoted by $\pi(\Gamma)$.

Theorem 2.2. A point p is $TM - \varepsilon$ controllable at a point q for (1.1) if and only if

$$f(T)p - q + \int_0^T f(t - \tau)c(\tau)d\tau \in \pi_M\{f(t - \tau)b(\tau) : 0 \le \tau \le T\}.$$
 (2.1)

Proof of Necessity. Let $r=f(T)p-q+\int_0^T f(t-\tau)c(\tau)d\tau$. It follows from our condition and Theorem 2.1 that there is a continuous function u(t) such that $\|u\|_{L_1} \leq M$, and $\|\Phi(T,p,u)-q\|_X < \frac{\varepsilon}{2}$ or $\|r+\int_0^T f(T-\tau)b(\tau)u(\tau)dT\| < \frac{\varepsilon}{2}$. Corresponding to each decomposition $0=\tau_0<\tau_1<\dots<\tau_N=T$ of [0,T], we choose a set of numbers $\{\theta_i\}_{i=0}^N$, $\tau_i\leq\theta_i<\tau_{i+1}$, so that $\sum_{i=0}^{N-1}|u(\theta_i)|\Delta\tau_i$ is a lower Darboux sum for $\int_0^T |u(\tau)|d\tau$. Since the integrand is continuous, we can consider $\int_0^T f(T-\tau)b(\tau)u(\tau)d\tau$ as a Riemann integral and select the decomposition $\{\tau\}_{i=0}^{N-1}$ of [0,T] so that

$$\left\| \sum_{i=0}^{N-1} f(T-\theta_i)b(\theta_i)u(\theta_i)\Delta\tau_i - \int_0^T f(T-\tau)b(\tau)u(\tau)d\tau \right\| < \frac{\varepsilon}{2}.$$

Thus

$$\left\| r + \sum_{i=0}^{N-1} f(T - \theta_i) b(\theta_i) u(\theta_i) \Delta \tau_i \right\| < \left\| r + \int_0^T f(T - \tau) b(\tau) u(\tau) d\tau \right\|$$

$$+ \left\| \sum_{i=0}^{N-1} f(T - \theta_i) b(\theta_i) u(\theta_i) \Delta \tau_i - \int_0^T f(T - \tau) b(\tau) u(\tau) d\tau \right\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This can be rewritten as

$$\left\| r - \sum_{i=0}^{N-1} f(T - \theta_i) b(\theta_i) [-u(\theta_i) \Delta \tau_i] \right\| < \varepsilon,$$

and we have

$$\sum_{i=0}^{N-1} \left| -u(\theta_i) \Delta \tau_i \right| \leq \int_0^T \left| u(\tau) d\tau \right| \leq M.$$

Hence $r \in \pi_M\{f(T-\tau)b(\tau); 0 \le \tau \le T\}.$

Proof of Sufficiency. If $r \in \pi_M\{f(T-\tau)b(\tau); 0 \le \tau \le T\}$, then there are numbers N, λ_n and t_n such that $0 \le t_1 < t_2 < \cdots < t_N \le T$, $\sum_{n=1}^N |\lambda_n| \le M$, and

$$\left\| r - \sum_{n=1}^{N} \lambda_n f(T - t_n) b(t_n) \right\| < \frac{\varepsilon}{2}. \tag{2.2}$$

Without loss of generality, we assume that $N \ge 2$, and $\lambda_n \ne 0$, and introduce the function $\psi(\tau, \alpha, \beta)$, $\tau \ge 0$, $0 \le \alpha < \beta$,

$$\psi(\tau, \alpha, \beta) = \begin{cases} \frac{1}{\beta - \alpha} & \text{if } \tau \in [\alpha, \beta], \\ 0 & \text{if } \tau \notin (\alpha, \beta). \end{cases}$$

Putting $\alpha_n = t_n$, for n = 1, 2, ..., N-1 and $\beta_N = t_N$. The β_n (n = 1, 2, ..., N-1) and α_N can be chosen so that, for n = 1, 2, ..., N,

$$\left\|\frac{1}{\beta_n-\alpha_n}\int_{\alpha_n}^{\beta_n}f(T-\tau)b(\tau)d\tau-f(T-t_n)b(t_n)\right\|<\frac{\varepsilon}{2|\lambda_n|N}$$

(see [1, 3]), and $[\alpha_n, \beta_n] \subset [0, T]$. These inequalities can be written as

$$\left\| \int_0^T f(T-\tau)b(\tau)\psi(\tau,\,\alpha_n,\,\beta_n)d\tau - f(t-t_n)b(t_n) \right\| < \frac{\varepsilon}{2|\lambda_n|N}.$$

Let
$$u(\tau) = -\sum_{n=1}^{N} \lambda_n \psi(\tau, \alpha_n, \beta_n)$$
. Then

$$\left\| \sum_{n=1}^{N} \lambda_n f(T-t_n) b(t_n) + \int_0^T f(T-\tau) b(\tau) u(\tau) d\tau \right\|$$

$$= \left\| \sum_{n=1}^{N} \lambda_n [f_n(T - t_n)b(t_n)] - \int_0^T f(T - \tau)b(\tau)\psi(\tau, \alpha, \beta)d\tau \right\|$$

$$\leq \sum_{n=1}^{N} |\lambda_n| \frac{\varepsilon}{2|\lambda_n|N} = \frac{\varepsilon}{2}.$$

Besides (2.2), we obtain

$$\left\|r+\int_0^T(T-\tau)b(\tau)u(\tau)d\tau\right\|<\varepsilon,$$

i.e.,

$$\|\Phi(T, p, u) - q\| < \varepsilon.$$

Moreover

$$\| u \|_{L_{1}} = \int_{0}^{T} | u(\tau) | d\tau \leq \sum_{n=1}^{N} | \lambda_{n} | \int_{0}^{T} \psi(\tau, \alpha_{n}, \beta_{n}) d\tau$$

$$= \sum_{n=1}^{N} | \lambda_{n} | \leq N.$$

The control u(t) obtained in the proof of sufficiency is discontinuous. However, since $\overline{c[0,T]} = L_1[0,T]$, we can use Theorem 2.1 to prove the existence of a continuous control u(t) such that

$$\parallel \overline{u} \parallel_{L_1} \leq M; \parallel \Phi(T, p, \overline{u}) - q \parallel_X < \varepsilon.$$

Corollary 2.1. Consider the equation

$$\frac{dp}{dt} = Ap + bu, (2.3)$$

where the vector b is constant and q = 0. Then (2.1) becomes

$$f(T)p \in \pi_M\{f(\tau)b; 0 \le \tau \le T\}.$$

Here $\{f(\tau)b,\ 0 \le \tau \le T\}$ is a finite arc of a trajectory of the point b for the equation $\frac{dp}{dt} = Ap$.

Corollary 2.2. The point p is $T - \varepsilon$ controllable at the point q, if and only if

$$f(\tau)p - q + \int_0^T f(T - \tau)c(\tau), d\tau \in \pi\{f(T - \tau)b(\tau); 0 \le \tau \le T\}.$$

In particular, we have the following conditions for $T - \varepsilon$ controllability of point p at zero for (2.3) under the assumptions of Corollary 2.1,

$$f(T)p \in \pi\{f(\tau)b; \ 0 \le \tau \le T\}.$$

Corollary 2.3. For the dynamical system (1.1) to be $T-\epsilon$ controllable, it is necessary and sufficient that

$$\pi\{f(T-\tau)b(\tau);\ 0\leq\tau\leq T\}=X.$$

The sufficiency is obvious, the necessity is easily proved.

If c(t) = 0, then the dynamical system (1.1) is $T - \varepsilon$ controllable at zero if and only if

$$\pi\{f(T-\tau)b(\tau);\ 0\leq\tau\leq T\}=R[f(T)].$$

Here R[f(T)] is the range of the operator f(t).

References

- [1] W. Arveson, Noncommutative Dynamics and E-semigroups, Springer for Maths., 2003.
- [2] J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, 1977.
- [3] E. B. Lee and L. Markus, Foundations of Optimal Control, SIAM Series in Appl. Math., 1968.
- [4] A. M. Letov, On the theory of nonlinear control systems, Contr. Differential Equation 1(2) (1966), 139-147.
- [5] W. Rudin, Real and Complex Analysis, McGraw-Hill Co., 1974.