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Abstract

Necessary and sufficient conditions for 7 ¢ controliability of linear

systems are investigated.
1. Introduction

Let X be a Banach space with norm denoted by - I, and consider the
dynamical system

% = Ap + b(t)u + c(t), (L)

where pe X, A is a closed linear operator generating the semigroup
{f@t)}, t 2 0, for the class Cy of bounded linear operator on X into itself,
and b{t) and c{t) are continuous vector functions with vélues in X. The
function u(t) € 1;[0, T'] is called a control. The solution of (1.1) can be

represented by the Cauchy’s formula

O, p,u)=ft)p + j(:f(t ~ Ub{tu{t)dr + J.Ot Jit - the(z)dr, 0 <1 g T (1.2
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Definition 1.1. A point p is said to be TM ¢ conirollable at the
point ¢{7" > 0, M > 0), if for arbitrary g, there is a control u(t) e L;]0, T,
2 “Ll < M suchthat {®(T, p,u)-qf <.

If M = o, we omit the letter M and use the term T - ¢ controllability

or g controllability for a time T, a point p and a point g.

Definition 1.2. The dynamical system (1.2) is called T controllable if,
for arbitrary p, ¢ € X and arbitrary € > 0, there is a control u(t} such
that | @Y, p,u)-q| <& It is called T -¢ controllable at zero if, for
arbitrary pe X and e >0 there is a control u{t) ensuring that

| (T, p,u)| <=

2. Main Results

In this section we give necessary and sufficient conditions for

e controllability.
Theorem 2.1. Let k[0, T'] be a linear manifold, dense in L[0, T]. If

the point p is TM —¢ controllable at the point q on L[0, T), then it is
TM - ¢ controllable at the point g on k{0, T'].

Proof. This is obvious because ®(f, p, u) depends continuously on u.

In fact, if

lu-ug g, =0 [ p,w) -t pug)ly =0,

and the result follows.

We write 157 (), where M > 0, and I' = {y} is an arbitrary set in X,

N

for the closure of the set of all finite linear combinations Z Ay, (vp el
i=1

N
and the positive integer N is arbitrary) for which Z| A; | s M. The
=1

‘smallest linear subspace containing I will be denoted by =(I').
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Theorem 2.2. A point p is TM — e controllable at a point q for (1.1} if
and only if

T
f(Tp - q+ j‘o fit ~e(t)dr e npg{fE-)b(x): 0 <t < T} (@D
Proof of Necessity. Let r = f(T)p - g + J'(;F fi — te(t}dr. 1t follows

from our condition and Theorem 2.1 that there is a continuous

function u(t) such that ||u1]L1 <M, and [O(T, p,u)-qly <~; or

r+JffﬂV—ﬂMﬂMﬂdT

< % Corresponding to each decomposition

0=19 <1 < <1y =T of [0, T}, we choose a set of numbers {0;}%

t=0’
N-1

T, £8; <71, so that Ziu,(e,;)lmi is a lower Darboux sum for
=0

T . . . . .
L) |uf{t)|dr. Since the integrand is continuous, we can consider

T
fﬂ F(T' - 1)b(r) u{r)dr as a Riemann integral and select the decomposition

WL of [0, T so that

N-1 T
> AT = 8360,)u®) i - [ AT - )b(a)uto)ds
=0

<E
SR

Thus

<

T
r+ f (T = tyb(t)ult)dr
0

N-1
Ara T - 0)b0)ule;) A
p=0

<tif=g
3737

N-l T
o) 3 AT -850l - | AT - Dblo)ule)ds
i=0

This can be rewritten as

< g,

N-1
r- > AT - 60,68 ool
=0
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and we have

N-

,....«

T
-~ uf@;)Ar; | < f | u(tyde| < M.
z=9 0

Hence r ¢ npy {f(T ~ )bz} 0 < 1 < T},

Proof of Sufficiency. If r e np; {f(T -~ ©)b(x); 0 £ 1 < T}, then there

N
are numbers N, A, and i, suchthat 0 <t <ig < <iy =T, Z[ Ay i

n=1

< M, and
(2.2)

N
M_Zaﬂmmmm>
n=1

Without loss of generality, we assume that N > 2, and %, #0, and

introduce the function w(t, o, B), 120, 0 S o < p,

1

e o B) = {ﬁw if 1 e[, Bl
0 if © ¢ {a, P

Putting o, =t,, for n=12, ., N~-1 and By =1N. The B,
(n=1,2 .., N-1)and oy can be chosen so that, for n =1, 2, ..., N,

“B— BWW*WWwﬂﬂwmm

a]l

P
o [N

(see [1, 3]), and [, B,} © [0, T']. These inequalities can be written as

J‘: VAR T)b(T)W(T’ Ays B, )dr - ft - tn,)b(tn)

LS
20, N

N
Let u{t) = —anl At oy, By). Then

Zh,,f(T £ )b(t,) + j AT - 1)b(xulr)dr

n=1
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N

S T -0 [ AT - Dut o, e

n=l 0

N
< & =&
"Xl?\‘ﬂlzl}\‘”‘N 2
n=1
Besides (2.2), we obtain

< g,

T
r+ L (T — 1)b{t)ul(t)dr

ie.,

Fo(T, p,u)-ql<e

Moreover

" N T
luly, = [, 10 20 1] v e, )

N
=Y A <N,
n=1

The control u(t) obtained in the proof of sufficiency is discontinuous.

However, since |0, T| = I,[0, T], we can use Theorem 2.1 to prove the

existence of a continuous control uft) such that
&l <M; | p,7)-qlx <&
Corollary 2.1. Consider the equaiion

ap

= 2.
o Ap + bu, (2.3)

where the vector b is constant and ¢ = 0. Then (2.1) becomes
f@)peny{fx)b; 01 <Th

Here {f(1)b, 0 € 1 < T'} is a finite arc of a trajectory of the point b for

the equation %%) = Ap.
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Corollary 2.2. The point p is T — & controllable at the point q, if and
only if

Fp - a+ | /T - Oete), di < AT - )b 0 5 w5 T,

In particular, we have the following conditions for 7' —e¢ controllability

of point p at zero for (2.3) under the assumptions of Corollary 2.1,
f(Tp e a{f(x)b; 0 <t <Th

Corollary 2.3. For the dynamical system (1.1) to be T —¢ controllable,
it is necessary and sufficient that

f(T -)b(1); 0 <1 T)=X.
The sufficiency is obvious, the necessity is easily proved.

If ¢t} = 0, then the dynamical system (1.1) is 7' ~¢ controllable at

zero if and only if
m{f(T - 1)b(x); 0 £ v < T} = R[A(T)}.

Here R[f(T)] is the range of the operator f{t).
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