INTERNATIONAL
MATHEMATICAL FORUM

Journal for Theory and Applications

Editorial Board

M. Amamiya (Japan)
J. M. Ash (USA)
K. S. Berenhaut (USA)
A. Biswas (USA)
R. Campoamor-Stursberg (Spain)
T. Colding (USA)
M. Fliess (France)
K. Fuller (USA)
J. Glimm (USA)
W. Goldman (USA)
F. C. Graham (USA)
T. Aaron Gulliver (Canada)
T. Hall (Australia)
D. Hong (USA)

S. Kichenassamy (France)
F. – H. Lin (USA)
J. Lyness (USA)
G. Marino (Italy)
K. Ono (USA)
Ju H. Park (Korea)
L. Reichel (USA)
P. C. Sabatier (France)
M. Sanguineti (Italy)
M. Tang (USA)
R. Underwood (USA)
W. Veech (USA)
J. Vigo – Aguiar (Spain)
X. Zhou (USA)

Managing Editor: Emil Minchev

Hikari Ltd
International Mathematical Forum

Aims and scopes: The main aim and scope of International Mathematical Forum is publishing of refereed, high quality original research papers in all areas of pure and applied mathematics.

The International Mathematical Forum publishes also refereed, high quality survey papers; expository papers; research announcements describing new results; short notes on unsolved problems, etc.

Call for papers: The authors are cordially invited to submit papers to the Managing Editor: Emil Minchev. Manuscripts submitted to this journal will be considered for publication with the understanding that the same work has not been published and is not under consideration for publication elsewhere.

Instruction for authors: The manuscript should be prepared using LaTeX processing system, basic font Roman 12pt size. The papers should be in English and typed in frames 14 x 21.6 cm (margins 3.5 cm on left and right and 4 cm on top and bottom) on A4-format white paper or American format paper. On the first page leave 7 cm space on the top for the journal's headings. The papers must have abstract not exceeding 200 words, as well as AMS Subject Classification and Keywords. The references should be in alphabetic order and must be organized as follows:

Managing Editor: Dr. Emil Minchev, Pres. of Hikari Ltd
e-mail: minchev@m-hikari.com

Published by Hikari Ltd

www.m-hikari.com
On Common Fixed Point and Approximation Results of Gregus Type

S. Al-Mezel and N. Hussain

Department of Mathematics
King Abdul Aziz University
P. O. Box 80203, Jeddah 21589, Saudi Arabia

Abstract

Fixed point theorems of Ciric [3], Fisher and Sessa [4], Gregus [5], Jungck [10] and Mukherjee and Verma [17] are generalized to a locally convex space. As applications, common fixed point and invariant approximation results for subcompatible maps are obtained. Our results unify and generalize various known results to a more general class of noncommuting mappings.

Mathematics Subject Classification: 47H10, 54H25

Keywords: Common fixed points, compatible maps, subcompatible maps, Minkowski functional, invariant approximation

1. Introduction and preliminaries

In the sequel, \((E, \tau)\) will be a Hausdorff locally convex topological vector space. A family \(\{p_\alpha : \alpha \in I\}\) of seminorms defined on \(E\) is said to be an associated family of seminorms for \(\tau\) if the family \(\{\gamma U : \gamma > 0\}\), where \(U = \cap_{\alpha \in I} U_\alpha\) and \(U_\alpha = \{x : p_\alpha(x) < 1\}\), froms a base of neighborhoods of zero for \(\tau\). A family \(\{p_\alpha : \alpha \in I\}\) of seminorms defined on \(E\) is called an augmented associated family for \(\tau\) if \(\{p_\alpha : \alpha \in I\}\) is an associated family with property that the seminorm \(\max\{p_\alpha, p_\beta\} \in \{p_\alpha : \alpha \in I\}\) for any \(\alpha, \beta \in I\). The associated and augmented associated families of seminorms will be denoted by \(A(\tau)\) and \(A^*(\tau)\), respectively. It is well known that given a locally convex space \((E, \tau)\), there always exists a family \(\{p_\alpha : \alpha \in I\}\) of seminorms defined on \(E\) such that \(\{p_\alpha : \alpha \in I\} = A^*(\tau)\) (see[16, page 203]).
The following construction will be crucial. Suppose that M is a τ-bounded subset of E. For this set M we can select a number $\lambda_0 > 0$ for each $\alpha \in I$ such that $M \subset \lambda_0 U_\alpha$, where $U_\alpha = \{x : p_\alpha(x) \leq 1\}$. Clearly $B = \bigcap_\alpha \lambda_0 U_\alpha$ is τ-bounded, τ-closed absolutely convex and contains M. The linear span E_B of B in E is $\bigcup_{n=1}^\infty nB$. The Minkowski functional of B is a norm $\| \cdot \|_B$ on E_B. Thus $(E_B, \| \cdot \|_B)$ is a normed space with B as its closed unit ball and $\sup_\alpha p_\alpha(x/\lambda_0) = \|x\|_B$ for each $x \in E_B$ (for details see [16,25]).

Let M be a subset of a locally convex space (E, τ). Let $I : M \to M$ be a mapping. A mapping $T : M \to M$ is called I-Lipschitz if there exists $k \geq 0$ such that $p_\alpha(Tx - Ty) \leq kp_\alpha(Ix - Iy)$ for any $x, y \in M$ and for all $p_\alpha \in A^*(\tau)$. If $k < 1$ (respectively, $k = 1$), then T is called an I-contraction (respectively, I-nonexpansive). A point $x \in M$ is a common fixed point of I and T if $x = Ix = Tx$. The set of fixed points of T is denoted by $F(T)$. The pair $\{I, T\}$ is called (1) commuting if $TIx = ITx$ for all $x \in M$, (2) R-weakly commuting if for all $x \in M$ and for all $p_\alpha \in A^*(\tau)$, there exists $R > 0$ such that $p_\alpha(ITx - TIx) \leq Rp_\alpha(Ix - Tx)$. If $R = 1$, then the maps are called weakly commuting [20]; (3) compatible [10,11,22] if for all $p_\alpha \in A^*(\tau)$, $\lim_n p_\alpha(TIx_n - ITx_n) = 0$ whenever $\{x_n\}$ is a sequence such that $\lim_n Tx_n = \lim_n Ix_n = t$ for some $t \in M$. Suppose that M is q-starshaped with $q \in F(I)$ and is both T- and I-invariant. Then T and I are called (4) R-subcommuting on M (see [21]) if for all $x \in M$ and for all $p_\alpha \in A^*(\tau)$, there exists a real number $R > 0$ such that $p_\alpha(ITx - TIx) \leq \frac{B}{k} p_\alpha((1 - k)q + kTx) - Ix$ for each $k \in (0,1)$. If $R = 1$, then the maps are called 1-subcommuting [7]; (5) R-subweakly commuting on M (see [8,9]) if for all $x \in M$ and for all $p_\alpha \in A^*(\tau)$, there exists a real number $R > 0$ such that $p_\alpha(ITx - TIx) \leq Rd_\alpha(Ix, [q, Tx])$, where $[q, x] = \{(1-k)q + kx : 0 \leq k \leq 1\}$. It is well known that R-weakly commuting, R-subcommuting and R-subweakly commuting maps are compatible but not conversely in general (see [10-12]).

If $u \in E, M \subset E$, then we define the set $P_M(u)$ of best M-approximants to u as $P_M(u) = \{y \in M : p_\alpha(y - u) = d_\alpha(u, M), \text{ for all } p_\alpha \in A^*(\tau)\}$, where $d_\alpha(u, M) = \inf(p_\alpha(x - u) : x \in M)$. A mapping $T : M \to E$ is called demiclosed at 0 if whenever $\{x_n\}$ converges weakly to x and $\{Tx_n\}$ converges to 0, we have $Tx = 0$.

In [4], Fisher and Sessa obtained the following generalization of a theorem of Gregus [5].

Theorem 1.1. Let T and I be two weakly commuting mappings on a closed convex subset C of a Banach space X into itself satisfying the inequality,
\[\|Tx - Ty\| \leq a\|Ix - Iy\| + (1 - a) \max\{\|Tx - Ix\|, \|Ty - Iy\|\}, \quad (1.1)\]
for all \(x, y \in C\), where \(a \in (0, 1)\). If \(I\) is linear and nonexpansive on \(C\) and \(T(C) \subseteq I(C)\), then \(T\) and \(I\) have a unique common fixed point in \(C\).

In 1988, Mukherjee and Verma [17] replaced linearity of \(I\) by affineness in Theorem 1.1. Subsequently, Jungck [12] obtained the following generalization of Theorem 1.1 and the result of Mukherjee and Verma [17].

Theorem 1.2. Let \(T\) and \(I\) be compatible self maps of a closed convex subset \(C\) of a Banach space \(X\). Suppose that \(I\) is continuous, linear and that \(T(C) \subseteq I(C)\). If \(T\) and \(I\) satisfy inequality (1.1), then \(T\) and \(I\) have a unique common fixed point in \(C\).

In this paper, we first prove that Theorems 1.1-1.2 can appreciably be extended to the setup of Hausdorff locally convex space. As applications, common fixed point and invariant approximation results for a new class of subcompatible maps are derived. Our results extend and unify the work of Al-Thagafi [1], Cirić [3], Fisher and Sessa [4], Gregus [5], Habisia [6], Hussain and Khan [7], Hussain et al. [8], Jungck [10], Jungck and Sessa [13], Khan and Hussain [14], Khan at el. [15], Mukherjee and Verma [17], Sahab, Khan and Sessa [18], Singh [23, 24] and many others.

2. Main Results

We begin with the definition of subcompatible mappings.

Definition 2.1. Let \(M\) be a \(q\)-starshaped subset of a normed space \(E\). For the selfmaps \(I\) and \(T\) of \(M\) with \(q \in F(I)\), we define \(S_q(I,T) := \cup\{S(I,T_k) : 0 \leq k \leq 1\}\) where \(T_k x = (1 - k)q + kTx\) and \(S(I,T_k) = \{\{x_n\} \subseteq M : \lim_n Ix_n = \lim_n T_k x_n = t \in M \Rightarrow \lim_n \|IT_k x_n - T_k I x_n\| = 0\}\). Now \(I\) and \(T\) are subcompatible if \(\lim_n \|IT x_n - TI x_n\| = 0\) for all sequences \(\{x_n\} \subseteq S_q(I,T)\).

We can extend this definition to locally convex space by replacing norm with a family of seminorms.

Clearly, subcompatible maps are compatible but the converse does not hold, in general, as the following example shows.

Example 2.2. Let \(X = \mathbb{R}\) with usual norm and \(M = [1, \infty)\). Let \(I(x) = 2x - 1\) and \(T(x) = x^2\), for all \(x \in M\). Let \(q = 1\). Then \(M\) is \(q\)-starshaped with \(I q = q\). Note that \(I\) and \(T\) are compatible. For any sequence \(\{x_n\}\) in \(M\) with \(\lim_n x_n = 2\), we have, \(\lim_n Ix_n = \lim_n T_{1/2} x_n = 3 \in M\), \(\Rightarrow \lim_n \|T_{1/2} x_n - T_{1/2} I x_n\| = 0\). However, \(\lim_n \|IT x_n - TI x_n\| \neq 0\). Thus \(I\) and \(T\) are not subcompatible.
$q \in F(I)$ and $T(M) \subseteq I(M)$. If the pair $\{I, T\}$ is subcompatible and satisfies, for all $p_{\alpha} \in A^*(\tau)$, $x, y \in M$, and all $k \in (0, 1)$,

$$p_{\alpha}(Tx - Ty) \leq p_{\alpha}(Ix - Iy) + \frac{1 - k}{k} \max\{d_{p_{\alpha}}(Ix, [q, Tx]), d_{p_{\alpha}}(Iy, [q, Ty])\}, \quad (2.2)$$

then I and T have a common fixed point in M provided one of the following conditions holds:

1. M is τ-compact and T is continuous.
2. M is weakly compact in (E, τ), I is weakly continuous and $I - T$ is demiclosed at 0.

Proof. Define $T_n : M \to M$ by

$$T_n x = (1 - k_n)q + k_nTx$$

for some q and all $x \in M$ and a fixed sequence of real numbers $k_n (0 < k_n < 1)$ converging to 1. Then, for each n, $T_n(M) \subseteq I(M)$ as M is convex, I is linear, $Iq = q$ and $T(M) \subseteq I(M)$. Furthermore, since the pair $\{I, T\}$ is subcompatible and I is linear with $Iq = q$ so, for any $\{x_m\} \subset M$ with $\lim_mIx_m = \lim_m T_n x_m = t \in M$, we have

$$\lim_m p_{\alpha}(T_nIx_m - IT_nx_m) = k_n \lim_m p_{\alpha}(TIx_m - ITx_m) = 0.$$

Thus the pair $\{I, T_n\}$ is compatible on M for each n. Also, we obtain from (2.2),

$$p_{\alpha}(T_nx - T_ny) = k_n p_{\alpha}(Tx - Ty) \leq k_n \{p_{\alpha}(Ix - Iy) + \frac{1 - k_n}{k_n} \max\{p_{\alpha}(Ix - T_nx), p_{\alpha}(Iy - T_ny)\}\} = k_n p_{\alpha}(Ix - Iy) + (1 - k_n) \max\{p_{\alpha}(Ix - T_nx), p_{\alpha}(Iy - T_ny)\},$$

for each $x, y \in M$, $p_{\alpha} \in A^*(\tau)$ and $0 < k_n < 1$.

1. M being τ-compact is τ-bounded and τ-complete. Thus by Theorem 2.6, for each $n \geq 1$, there exists an $x_n \in M$ such that $x_n = Ix_n = T_n x_n$. Now the τ-compactness of M ensures that $\{x_n\}$ has a convergent subsequence $\{x_j\}$ which converges to a point $x_0 \in M$. Since $x_j = T_j x_j = k_j T_j x_j + (1 - k_j)$ and T is continuous, so we have, as $j \to \infty$, $Tx_0 = x_0$. The continuity of I implies that

$$Ix_0 = I(\lim_j x_j) = \lim_j I(x_j) = \lim_j x_j = x_0.$$
(ii) Weakly compact sets in \((E,\tau)\) are \(\tau\)-bounded and \(\tau\)-complete so again by
Theorem 2.6, \(T_n\) and \(I\) have a common fixed point \(x_n\) in \(M\) for each \(n\). The
set \(M\) is weakly compact so there is a subsequence \(\{x_{j}\}\) of \(\{x_n\}\) converging
weakly to some \(y \in M\). The map \(I\) being weakly continuous gives that \(Iy = y\).
Now
\[
x_{j} = I(x_{j}) = T_{j}(x_{j}) = k_{j} Tx_{j} + (1 - k_{j})q
\]
implies that \(Ix_{j} - Tx_{j} = (1 - k_{j})[q - Tx_{j}] \to 0\) as \(j \to \infty\). The demiclosedness
of \(I - T\) at \(0\) implies that \((I - T)(y) = 0\). Hence \(Iy = Ty = y\).

An application of Theorem 2.7 establishes the following result in best
approximation theory.

Theorem 2.8. Let \(T\) and \(I\) be selfmaps of Hausdorff locally convex space
\((E,\tau)\) and \(M\) a subset of \(E\) such that \(T(\partial M) \subseteq M\), where \(\partial M\) denotes
boundary of \(M\) and \(u \in F(T) \cap F(I)\). Suppose that \(P_{M}(u)\) is nonempty
convex containing \(q\), \(q \in F(I), I\) is nonexpansive and linear on \(P_{M}(u)\) and
\(I(P_{M}(u)) = P_{M}(u)\). If the pair \(\{I, T\}\) is subcompatible on \(P_{M}(u)\) and satisfies,
for all \(x \in P_{M}(u) \cup \{u\}\), \(p_{a} \in A^{*}(\tau)\) and \(k \in (0, 1)\),
\[
p_{a}(Tx - Ty)
\]
\[
\leq \begin{cases}
 p_{a}(Ix - Iu) & \text{if } y = u, \\
 p_{a}(Ix - Iy) + \frac{1 - k}{k} \max\{d_{p_{a}}(Ix, [q, Tx]), d_{p_{a}}(Iy, [q, Ty])\} & \text{if } y \in P_{M}(u),
\end{cases}
\]
then \(P_{M}(u) \cap F(I) \cap F(T) \neq \emptyset\), provided one of the following conditions is
satisfied:
(i) \(P_{M}(u)\) is \(\tau\)-compact and \(T\) is continuous on \(P_{M}(u)\).
(ii) \(P_{M}(u)\) is weakly compact in \((E, \tau)\), \(I\) is weakly continuous and \(I - T\) is
demiclosed at \(0\).

Proof. Let \(y \in P_{M}(u)\). Then as in the proof of Theorem 2.6 of [15](see also
[9,12]) \(Ty \in P_{M}(u)\) which implies that \(T\) maps \(P_{M}(u)\) into itself and the
conclusion follows from Theorem 2.7.

Remark 2.9. (i) 1-subcommuting maps are subcompatible, consequently,
Theorem 2.2-Theorem 3.3 due to Hussain and Khan [7] and Theorem 2.3 of
Khan and Hussain [14] are improved and extended.
(ii) Commuting maps are subcompatible so Theorems 2.7-2.8 are proper
generalization of the main results of Brosowski [2], Habiniak [6], Sahab et al. [18],
Sahney et al. [19], Singh [23,24], Tarafdar [25], Theorems 6-7 due to Jungck
and Sessa [13] and Theorem 2.6 due to Khan et al.[15].
References

Received: November 21, 2006
E. Ballico, *Base point free pencils on multiple coverings of smooth curves*
1907

E. Ballico, *Projective schemes $X \subset P^n$ preserved by a subgroup of $PGL(n+1)$ with large dimension*
1911

E. Ballico, *Injectivity of the determinantal map for space of sections of stable vector bundles on curves*
1917

A. Taghavi, M. Jafarzadeh, *Essential ideals and Finsler modules*
1921

R. Khaldi, F. Aggoune, *Extremal polynomials with varying measures*
1927

H. Hosseinzadeh, G. A. Afrouzi, *A new method for finding solution of nonhomogeneous difference equations*
1935

H. Hosseinzadeh, G. A. Afrouzi, *Backward r-difference operator and finding solution of nonhomogeneous difference equations*
1945

H. Hosseinzadeh, G. A. Afrouzi, *Forward r-difference operator and finding solution of nonhomogeneous difference equations*
1957

Z. Cerin, *Formulae for sums of Jacobsthal-Lucas numbers*
1969

G. Tohidi, S. Razavyan, K. Ranjbar, *Ranking of extreme and non-extreme efficient DMUs*
1985

Jinjiang Yao, *Decentralized stabilization of interconnected neutral delay large-scale systems*
1989

Contents

B. Yang, *On a more accurate Hilbert’s type inequality* 1831

S. Al-Mezel, N. Hussain, *On common fixed point and approximation results of Gregus type* 1839

C.-S. Lin, *On chaotic order and generalized Heinz-Kato-Furuta-type inequality* 1849

Xin-Wei Zhou, Lin Wang, *Approximation of random fixed points of non-self asymptotically nonexpansive random mappings* 1859

K. Teerapabolarn, *A note on binomial approximation for dependent indicators* 1869

N. Ishii, *Rational expression for J-invariant function in terms of generators of modular function fields* 1877

M. Samman, N. Alyamani, *Derivations and reverse derivations in semiprime rings* 1895

E. Ballico, *Simple unstable rank two vector bundles with canonical determinant on a curve* 1903

(continued inside)