The Egyptian Journal of Hospital Medicine

http://www.geocities.com/Hospital_Medicine/

Papers are publishing in chemical abstracts (U.S.A)

VOL. 18
March 2005
Protective Effect Of Ascorbic Acid On Cisplatin Genotoxicity In Male Mice Bone Marrow Cells

Nada, H.A. Al- Twaty
Department of Biology, King Abdelaziz University

Abstract

Cisplatin (cis-diamminedichloroplatinum II) is an effective antitumor agent with a wide spectrum of activity against varies solid tumors, but it has serious side effects on nontumour cells. Cisplatin produces intra- and interstrand DNA cross-linking effects and chromosomal aberrations in mammalian cells. Vitamin C (ascorbic acid) is an antioxidant that can scavenge free radicals and protect cellular macromolecules, including DNA, from oxidative damage induced by different agents. Pretreatment administration of ascorbic acid on cisplatin induced chromosome aberrations has been determined in bone marrow cells of Swiss albino mice. Results showed that cisplatin (7.5 & 10mg/kg bw)IP injection to male mice induced significant increase in the frequencies of chromosomal aberrations. The results of pre-treatment with ascorbic acid (66mg/kg bw) showed a significant decrease in the number of chromosomal aberrations induced with cisplatin tested doses. Ascorbic acid did not exhibit any clastogenic effect in male mice bone marrow cells. We concluded that ascorbic acid has a protective role against the genotoxicity induced by antitumor drug cisplatin.

Key words: Cisplatin- Antioxidants- Ascorbic Acid-Chromosomal Aberration- genotoxicity- Bone Marrow Cells- Mice.

Introduction

Cisplatin (cis-diamminedichloroplatinum II) is an effective antitumor agent with a wide spectrum of activity against varies solid tumors, but it has serious side effects on nontumour cells, including free radical generation (Masuda et al., 1994). Cisplatin produces intra- and interstrand DNA cross-linking effects (Costa et al., 1996). This cytostatic induces chromosomal aberrations in cultured mammalian cells (Nefic, 2001) mouse bone marrow cells (Wiencke et al., 1979) and peripheral blood lymphocytes in patients (Osanto et al., 1991) and sister-chromatid exchanges in human lymphocytes in vitro (Wiencke et al., 1979; Bradley et al., 1979) and in vivo (Wiencke et al., 1979). The frequency of occurrence of cells with micronuclei is increased by cisplatin in human lymphocytes in vitro (Gebel et al., 1997; Nefic, 2001) and in erythrocytes in bone marrow cells of mice (Nakagawa et al., 1995). Identification and analysis of agents with anticlastogenic activity that reduce the frequency of chromosomal aberrations and possibility of practical application of natural protectors against the clastogenic (and mutagenic/ carcinogenic) action of chemical mutagens have a great importance (Nefic, 2001). Ascorbic acid (AA) is an essential micronutrient for man, with many biological roles. It is a powerful antioxidant both directly via scavenging of reactive oxygen species and indirectly through regeneration of other antioxidant systems (Griffiths and Luneeb, 2001). Many in vivo assays found that Vitamin C successfully reduced the clastogenic effects of many antitumour agents. Vitamin C inhibited tumor cell growth, binding of the
active carcinogenic metabolite to cellular DNA (Gentile et al., 1998). As an antioxidant, Vitamin C may also have a potential anticancer activity, but its possible role and its mechanism of action in cancer prevention has not been clearly established (Nefic, 2001). Therefore, the present study was undertaken to investigate the protective effects of Vitamin C on cisplatin induced chromosomal aberrations in mouse bone marrow cells.

Materials And Methods

This experiment was carried out on male Swiss albino mice 10-12 weeks old and weighing approximately 30g. Animals were kept and bred in an environmentaly controlled room with a temperature of 23± 1. Chow and water were available ad. Litemum. Each experimental group was consisted of six animals for each treatment and control as shown in table (1).

Doses of cisplatin were selected on the basis of its effectiveness in inducing chromosomal aberration (Weijl et al., 1997). The dose of ascorbic acid was calculated according to the therapeutic dose and converted to mice according to Paget and Barner, (1967). Ascorbic acid was administered by gavage, 24 hrs prior to the injection of IP single dose of cisplatin. Animals of control group were treated IP with saline in the same volume. All animals were injected IP with colchicines 2 hrs before sacrifice to arrest the cell division at metaphase.

Scoring Of Slides

Bone marrow preparation for the analysis of chromosomal aberrations in metaphase cells were obtained by Yosida and Amano, (1965). One hundred metaphases per animal were analyzed in order to determine the frequencies of different chromosomal aberrations.

Statistical Analysis

Data of chromosomal aberrations examination were analyzed statistically using one way analysis of variance (ANOVA) according to Gupta (1995).

Results

The types of structural and numerical chromosomal aberrations induced by cisplatin and their frequencies in male mice bone marrow cells (at the concentration of 7.5 and 10mg/kg body weight) in the absence and the presence of Vitamin C (at the concentrations of 66 mg/kg B.w) are presented in Table (2) & Fig. (1). Results showed that the treatment with Vitamin C alone at the tested concentration did not change the frequencies of chromosomal aberrations when compared with the untreated control. Intra-peritoneal injection with Cisplatin alone 7.5 mg & 10 mg/kg bw induced a statistically significant increase in the frequencies of total chromosomal aberrations ($P < 0.001$) when compared with control. The results also showed that Vitamin C pre-treatments significantly decreased the number of total chromosomal aberrations induced by Cisplatin ($P < 0.001$) in male mice bone marrow cells when compared with the animals treated with cisplatin alone. However, the number of these aberrations was not reduced to the control number of chromosomal aberrations as shown in Fig. (1).

Table (1): Experimental groups and treatment protocol.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Groups</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>I</td>
<td>vehicle only(dist. water)</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>II</td>
<td>66 mg/kg b.w</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>III</td>
<td>7.5mg/kg b.w</td>
</tr>
<tr>
<td>Ascorbic acid + cisplatin</td>
<td>IV</td>
<td>66 mg/kg + 7.5mg/kg b.w.</td>
</tr>
<tr>
<td>Cisplatin 10mg/kg</td>
<td>V</td>
<td>10 mg/kg bw</td>
</tr>
<tr>
<td>Ascorbic acid + cisplatin</td>
<td>VI</td>
<td>66 mg/kg + 10 mg/kg bw</td>
</tr>
</tbody>
</table>
Table 2: Frequencies of different chromosomal aberrations in male mice bone marrow cells of all experimental groups.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Numerical aberrations</th>
<th>Structural aberrations</th>
<th>Total aberrations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2n-</td>
<td>2n+</td>
<td>deletion</td>
</tr>
<tr>
<td>Control</td>
<td>0.50</td>
<td>0.00</td>
<td>3.67</td>
</tr>
<tr>
<td></td>
<td>0.55</td>
<td>0.00</td>
<td>0.84</td>
</tr>
<tr>
<td>Ascorbic acid</td>
<td>1.33</td>
<td>0.17</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>1.20</td>
<td>0.41</td>
<td>0.82</td>
</tr>
<tr>
<td>7.5mg/kg Cisplatin</td>
<td>1.17</td>
<td>0.33</td>
<td>2.17*</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>0.52</td>
<td>0.75</td>
</tr>
<tr>
<td>Ascorbic acid + 7.5mg/kg Cisplatin</td>
<td>1.00</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>0.63</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>10mg/kg Cisplatin</td>
<td>1.00</td>
<td>0.50</td>
<td>2.30*</td>
</tr>
<tr>
<td></td>
<td>0.63</td>
<td>0.65</td>
<td>1.37</td>
</tr>
<tr>
<td>Ascorbic acid + 10mg/kg Cisplatin</td>
<td>1.00</td>
<td>0.17</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td>0.63</td>
<td>0.41</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Data represent the mean ± standard error of each chromosomal aberrations in six animals.
* statistically significant at p ≤ 0.05.
** statistically significant at p ≤ 0.01.

Fig. (1): Histogram Showing the reduction in cisplatin induced genotoxic damage in presence of ascorbic acid.
Discussion

The use of natural dietary antioxidants to prevent antitumor agents—induced chromosomal damage is currently eliciting considerable interest. Antitumor agents are known to interact with specific biological molecules, and evidence has been obtained that treatment with antitumor drugs from different categories leads to generation of free radicals in nontumor cells both in vivo and in vitro (Weijl et al., 1997). Cisplatin is an effective antitumor drug but it has serious side effects on non-tumor cells, including free radical generation (Masuda et al., 1994). Cisplatin produces intra- and interstrand DNA cross-linking effects (Costa et al., 1996). This cytostatic drug induces chromosomal aberrations in cultured mammalian cells (Nefic, 2001), mouse bone marrow cells (Wiencke et al., 1979) and peripheral blood lymphocytes in patients (Osanto et al., 1991) and sister-chromatid exchanges in human lymphocytes in vitro and in vivo (Bradley et al., 1979). The frequency of occurrence of cells with micronuclei is increased by cisplatin in human lymphocytes in vitro (Gebel et al., 1997) and in erythrocytes in bone marrow cells of mice (Nakagawa et al., 1995). Results of the present study markedly showed that a single IP injection of both doses (7.5 and 10 mg/kg body weight) of Cisplatin significantly increased the frequencies of chromosomal aberrations in mice bone marrow cells. The chromosomal aberrations pattern revealed that chromatid breaks and gaps occurred more frequently. However, the results of pre-treatment with Vitamin C indicated that the number of aberrant metaphases induced by cisplatin in mice bone marrow cells were statistically significantly decreased. Vitamin C shows most efficient anticlastogenic effect in the treatments with cisplatin. This result was in agreement with (Giri et al., 1998) they suggested that vitamin C has a definite protective role on chromosomal aberrations and micronucleus formation induced by cisplatin. Vitamin C also has in vivo anticlastogenic effects against chromosomal damage and number of abnormal metaphases induced by cisplatin in rodents (Gentile et al., 1998, Antunes et al., 2000). Vitamin C successfully reduces the clastogenic effect of many other antitumor drugs like cyclophosphamide (Ghaskadbi et al., 1992), doxorubicin (Antunes and Takahashi, 1998, 1999) and bleomycin (Anderson et al., 1994 & 1995). Also, Vitamin C reduces the chromosomal aberrations induced by trenimon (Gebhart, 1984), H2O2 (Dallapiccola, 1985), ethyl methanesulfonate (Kuroda, 1987, Kojima, et al., 1992), levodopa, noradrenalin and dopamine (Iwawaki, et al., 1988) and pesticides (Khan and Sinha, 1993) and sister chromatid exchanges (SCEs) induced by cyclophosphamide, mitomycin C (Krishna et al., 1986), thiopeta, l-thionine (Lialiaris et al., 1987). Odin (1997) showed that continual oral consumption of large amounts of Vitamin C for a long period is able to significantly decrease the number of chromosomal breaks induced in human lymphocytes by various xenobiotics. Similar results were obtained by Duthie et al. (1996). They showed that supplementation of the diet with Vitamin C results in a highly significant decrease in

<table>
<thead>
<tr>
<th>CO</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Ascorbic Acid</td>
</tr>
<tr>
<td>T1A</td>
<td>Cisplatin 7.5 mg + Ascorbic Acid 66 mg</td>
</tr>
<tr>
<td>T1</td>
<td>Cisplatin 7.5 mg</td>
</tr>
<tr>
<td>T2A</td>
<td>Cisplatin 10 mg + Ascorbic Acid 66 mg</td>
</tr>
<tr>
<td>T2</td>
<td>Cisplatin 7.5 mg</td>
</tr>
</tbody>
</table>
endogenous oxidative base damage in the DNA of lymphocytes of patients, and lymphocytes of antioxidant-supplemented subjects showed an increased resistance to oxidative damage in vitro. The protective role of Vitamin C observed here suggests that Vitamin C has an antioxidative effect on damage induced by free radicals generated during the metabolic activity of cisplatin in mice bone marrow cells. Thus, the present study clearly indicates the protective role of vitamin C against cisplatin induced genotoxicity.

References

exchanges in mice by Vitamin C. Cancer Res. 46 : 2670–2674.

التأثير الوقائي لحمض الأسكوربيك على السمية الوراثية لعقار السيسيلباتين في
نخاع عظام ذكور الفئران

ندي النوائي
قسم البيولوجى - جامعة الملك عبدلاriz

تهدف هذه الدراسة إلى توضيح دور حمض الأسكوربيك في الوقاية من التأثيرات السمية الوراثية لعقار السيسيلباتين المضاد للسرطان.

استخدم في هذه الدراسة 36 فأر أبيض عمر 10 - 12 أسبوع وقُسمت الحيوانات إلى 6 مجموعات في كل مجموعة 6 فئران.

حققت المجموعة الأولى مرة متكررة واعتبرت المجموعة الضابطة بينما المجموعة الثانية حظيت بـ 36 ملجم / كجم من حمض الأسكوربيك واعتبرت المجموعة الضابطة الوجبة. وحققت المجموعة الثالثة والخامسة بمركب السيسيلباتين 7.5 ملجم / كجم على التوالي وأخيراً المجموعة الرابعة والسادسة ثم حققت 36 ملجم / كجم حمض الأسكوربيك بالإضافة إلى 7.5 ملجم سيسيلباتين على التوالي.

وقد أوضحت النتائج التحليل على أنها التأثير الواقفي لحمض الأسكوربيك على السمية الوراثية لركب السيسيلباتين حيث انخفض معدل التشوهات الكروموسومية عند إعطاءه مع عقار السيسيلباتين مقارنة بالمجموعة التي أعطت السيسيلباتين فقط وهذا يعني أن هذا يحد من التأثير الواقفي ضد التشوهات الكروموسومية لحمض الأسكوربيك في خلايا نخاع العظام.