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Abstract

The estimation of the Weibull density is introduced by a goodness of fit tests. Some
numerical results were obtained through a simulation study to obtain the critical values for some
well known statistics, beside the power function for these tests.
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1. Introduction

We consider tests of fit based on the empirical distribution function (EDF). The EDF is a step
function, calculated from the sample, which estimates the population distribution function. EDF statistics
are measures of the discrepancy between the EDF and a given distribution function, and are used for
testing the fit of the sample to the distribution; this may be completely specified or may contain
parameters which must be estimated from the sample.

Suppose a given random sample of size n is X, X,,...., X, and let X, <....< X, be the

order statistics; suppose further that the distribution of X is F(x) and we assume this distribution to be
continuous. The empirical distribution function (EDF) is F, (x) defined by

Fils)= number of observations < x — )
More precisely, the definition is
0 x<Xg,
E()=|tln X, excXp 1212401, )
1 X . En

(m) =
Thus F, (x) is a step function, calculated from the data; as x increases it takes a step up of height 1/n as
each sample observation is reached. For any x, F, (x) records the proportion less than or equal to x,
while F (x) is the probability of an observation less than or equal to x. We can expect F,(x) to
estimate F(x), and it is in fact a consistent estimator of F(x); asn — o, | F,(x)- F(x)l decreases to

zero with probability one.

2-Empricial Distribution Function Statistics
A statistic measuring the difference between Fn(x) and F (x) will be called an Empirical
Distribution Function (EDF) statistic. We shall concentrate on several EDF statistics which have
attracted most attention. They are based on the vertical differences between F,(x) and F (x), and are
conveniently divided into two classes, “the supremum class” and “the quadratic class”.
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The supremum statistics. The first two EDF statistics, D* and D7 are, respectively, the largest vertical
difference when F, (x) is greater than F (x) and the largest vertical difference when F;(r) is smaller

than F(x); formally,

D" =sup {F, (x)-F(x)} ®)
and '

D™ =sup {F(x)-F,(x)}. (4)
The mos; well-known EDF statistic is D, introduced by Kolmogorov (1933) :
D=sup[ﬁ,(x)—F(x)]=max (D*,D" ) (5)

The quadratic statistics. A second and wide class of measures of discrepancy is given by the Cramér-
von Mises family

0- nj{F,,(x)-»F(x) Fu(x) dF () ©

where l,{/(x) is a suitable function which gives \ﬁeights to the squared difference { F, (x)— F (x)}2 ;
When r;/(x)zl the statistic is the Cramér - von Mises statistic, now usually called W?, and when
W(x)z[{F(x)} {l —F(x)}]_l the statistic is the Anderson-Darling (1954) statistic, called A2, A
modification of W2 is the Watson (1961) statistic U? defined by

2
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From the basic definitions of the supremum statistics and the quadratic statistic given above,

suitable computing formulas must be found. This is done by using the Probability Integral Transformation

(PIT), u=F (x); when F (x) is the true distribution of X, the new random variable u is uniformly
distributed between 0 and 1.
Then u has distribution function F (u)= u,0<u<1. Suppose that a sample X —.

gives values u, = F(x,), i=12,...,n, and let F, (u) be the EDF of the values u,. EDF statistics can
now be calculated from a comparison of F, (1) with the uniform distribution for . It i easily shown
that, for values wu and x related by u=F (x)-, the corresponding vertical difference in the EDF
diagrams for X and for u are equal; that is,

F,(x)=F(x)= F ()~ F*(u) = F; () - u; (8)
Consequently EDF statistics calculated from the EDF of the u, compared with the Uniform distribution
will take the same values as if they were calculated from the EDF of the X, compared with F(x]. This
leads to the following formulas for calculating EDF statistics from the u - values.
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The formulas involve the u - values arranged in ascending order Ug) S Uy =....Su,. Then,

with & = Zw

=1 N
+ i S (i-1) . .
D —?gg}:{;_“lf}}si) —E}g{u[)—T},D—max(D ,D ) (9)
V=D"+D", D =max(u-—: y Dy = “;“(HO'S) -Dazzmax[{i_m}’{”]—ﬂ}}
1=izn n‘+1 Tal n-}-l inl 1<i<n n n

i=1

W, = Z{u ')} : Z{u ——}2 W =w? (1 2:]
A = —n—-—Z(Z: ~1)[inugy +In{t-u,,., }]

=1

Another formula for 4 is A* :—n——i [(21’—1)[111:(‘} +(2n+1-2i) ln{l—u{,) }]
- {z{ 2i-1)ng, +(2i+1)In(1- M_,)}w{(2n+1)lnu"—In(l—un)}jl
A, (n+l)—ﬁZl{lnu +ln(l Ml_,)}

i=l

2
z (2i-1) I _
W2=Z{um— T G T U=w?-n(u-05)

Ay =-n-

A'=(1+4—f—:—ﬂ A (10)

3-Goodness Of Fit Tests Based On The EDF Tests
The general test of fit is a test of the null hypothesis

H : a random sample of n X - values comes from F(x; 9)

where F (x; 6’) is a continuous distribution and @ is a vector of parameters. When @ is fully specified
i.e. the parameters are known. Then u, = F (x(,.);é') gives a set u(, which, on H, are ordered
uniforms and equations (9) are used to give EDF statistics. On the other hand, F (x; 6) may be defined

only as a member of a family of distributions, but all or part of the vector & may be known.

When & is known, distribution theory of EDF statistics is well-developed, even for finite
samples, and tables are available for some time. When & contains one or more unknown parameters,
these parameters may be replaced by estimates, to give 6 as the estimate of . Then formulas (9)
may still be used to calculate EDF statistics, with Uy = F( X() ;é ) However, even when H | is true,
the u;,) willnow not be an ordered uniform sample, and the distributions of EDF statistics will be

very different from those when € is known, they will depend on the distribution tested, the



parameters estimated, and the method of estimation, as well as on the sample size. New points should
then be used for the appropriate test, even for large samples, otherwise a serious error in significance
level will result.

3.1-Unknown location and scale parameters
When the unknown components of @ are location or scale parameters, and if these are estimated
by appropriate method, the distributions of EDF statistics will not depend on the true values of the
unknown parameters. Thus percentage points for EDF for such distributions, depend only on the family
tested and on the sample size n. Nevertheless, the exact distributions of EDF statistics are very difficult
to find and except for the exponential distribution, Monte Carlo studies have been extensively used to

find points for finite #n. Fortunately, for the quadratic statistics W?*, U? and A2, asymptotic theory is
available; furthermore, the percentage points of these statistics for finite n converge rapidly to the
asymptotic points. For the statistics D*, D™, D and ¥, there is no asymptotic theory and even

asymptotic points must be estimated.
For the tests corresponding to many distributional families, Stephens (1970,1974, 1977,1979) has
given modification of the test statistics; if the statistic is, say, T the modification is a function of » and

T which is then referred to the asymptotic points of 7" orof T-/n . Asymptotic theory depends on using

asymptotically efficient estimators for the estimates of unknown components of € ; the asymptotic points
given will then be valid for any such estimators. Points for finite 7 will depend on which estimators are
used; usually these are maximum likelihood estimators.

3.2-Unknown shape parameters
When unknown parameters are not location or scale parameters, for example when the shape parameter
of a Gamma or a Weibull distribution is unknown, null distribution theory, even asymptotic, when the
parameters are estimated, will depend on the true values of these parameters. However, if this
dependence is very slight, a set tables, to be used with the estimated value of the shape parameter,
can still be valuable.

4-Miscellaneous Topics on EDF Tests
4.1-Power of EDF statistics when parameters are estimated
Different statistics were found to detect different types of departure from uniformity. When unknown
parameters are estimated from the same sample as is used for the goodness of fit test, the differences in
the powers of the statistics tend to be smaller. It appears that fitting the parameter or parameters makes
it possible to adjust the tested distribution to the sample in such a way that the statistics can detect a

departure from the null distribution with roughly the same efficiency; nevertheless, 4° tends to lead the
others, probably because it is effective at detecting departures at the tails.

Some asymptotic theory is available to examine power, at least for quadratic statistics. Dubrin
and Knott (1972) demonstrated a method by which asymptotic power results could be obtained, and
applied it to test for the normal distribution with mean 0 and variance 1, thatis, when the parameters are
known, against normal alternatives with a shift in mean or a shift in variance. Stephens (1974a) extended
the results to shifts in both mean and variance. The technique rests on a partition of the appropriate
statistics into components. Dubrin, Knott and Taylor (1975) showed how the decomposition into
components could be done also for the test for normality with mean and variance unknown, or for the
exponential test with scale parameter unknown and used their method to discuss the asymptotic power of

the components. Stephens (1976) followed the method and applied it to tests for the statistics W?, U*



and A° for these situations. The overall result when tests for normality or exponentially are made with
unknown parameters, is that A’ is slightly better than W?® for the alternatives discussed, with
U? not far behind 2.

The superiority of 4> has also been documented by various power studies based on Monte Carlo
sampling. Some of these, in comparisons of tests of uniformity and and normality, are by Stephens

(1974b). These power studies also included the statistics D* ., D", D and V.

The most famous statistic, the Kolmogorov-Smirnov D, tends to be weak in power. Statistics D and

D", on the other hand, often have good power but each one against only certain classes of alternatives. In
some applications the alternatives of interest may be clearly identified, and then it will be possible to

identify which statistic to use. However, D* and D~ will be biased when used against the wrong
alternatives, so these statistics must be used with caution.

4.2-The effect on power of knowing certain parameters

It is usually assumed in statistical testing that the more the knowledge the better. However, the
tests are (ideally) intended as tests for distributional form, not as tests for parameters values, and some
knowledge of parameters may not be very important in assessing distributional form. For example, it
may be unhelpful to know, and to use, the mean of the true distribution, when this is not the one
tested. Stephens (1974b) and Dyer (1974) have noted these effects in tests for normality; being given
means and variances changes the test from the case when parameters are unknown to the case when the
parameters are known, with a consequent loss of power. On the other hand, Spinelli and Stephens
(1983) have shown that in tests for exponentially it is better to use the value of the origin, when this is
known, than to estimate it. Further work is still needed on what parametric information is useful and what
is not.

4.3-Use of sufficient statistics
Some other interesting method have been proposed to deal with unknown parameters. When
sufficient statistics are available for @, Srinivasan (1970,1971) has sufgested using the Kolmogorov

statistic D calculated from a comparison of = (x) with the estimate F(x:0 ) obtained by applying the

Rao-Blackwell theorem to F (Jr;153 ), where 6 is, say, the maximum likelihood estimator of €. The

resulting tests are asymptotically equivalent to the tests using F (x;é) itself (Moore (1973)) and can be

expected to have similar properties for finite 7. The method will usually lead to complicated
calculations, and has been developed only for tests for normality (Srinivasan(1970) and Kotz ( 1973)) and
tests for exponentially. '

5-EDF Tests for The Weibull Distribution
In this section we are concerned with goodness-of-fit tests for the Weibull distribution which
is given by

f(x;a,ﬁ)=—§[§]ﬂ_lm{—(i]ﬁ}, x>0 (11)

and whose distribution function takes the form
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F(x;a,ﬂ):l—e:q:{—(iJ } x>0 (12)

when the parameters o and S are unknown and are estimated from a random sample. Let x,,x,,.....,X

*n

be a random sample from the Weibull distribution with parameters & and f. It is well known that the
maximum likelihood estimators of ¢ and /3 are obtained by solving

i
nY x’Inx
n lz=|: i i n
=L+ Y Inx, =0 (13)
ﬁ ZI;S i=l
i=l
and
" = """&
sl =5 (14)
i n

5.1-The test statistic
The null hypothesis is

H,: the random sample x,,x,,....,x, comes from the Weibull distribution S (x;o:, £ ) with the
unknown parameters & and S .

We will concentrate on the following main tests for goodness of fit for the Weibull
distribution.

1-Modified Kolmogorov-Smirnov statistic D :
B
D:suplF(x;d,E)—Fn(x)]=sup 1-exp —(ij ~F,(x)|,
a

(1) X =)

where F, is the empirical distribution function of the sample.
n
This is equivalent to D = max (D‘, 'E )Where
I . -1
D+=maX{‘——H{:}},D =max{u(,.]—( )} (15)
ISisn H Isisn n

2-Modified Cramér-von Mises statistic W° :

W =nf{F, ()= F)Y ar(e

where F, (x) is defined in equation (1). Put u = F(x) where



0 u<U,,

U,(n)=|i/n Uy<u<U,,,, i=12,.,n-1
1 Uny<n

Uoy=0 and  w,, =1.Then

w? = n_:{{U,,(n)-u ¥ du =nz":u{:fl) B-u]z du

i=0 )

Il

=

2
; (2i-1) I
Uy, — + i 16
,{ b2 12n i

3-Modified Anderson-Darling statistic A° :

£ =n[{F,6x)-F@)F = ar(x)

LA F(x)(1-F(x))

| , 1
=n£{U"(n)—u} u(l——uj du

=—n—%i(2i-l)[lnu(,)+ln{l—u(n+,_,] }] (17)
i=1

The results of David and Johnson (1948) imply that the distributions of D, W ?and A4* can be conducted
without loss of generality by fixing & = /8= 1. (See Tho-man, Bain and Antle (1969) for results may be
used to arrive at the same conclusion, specific to the Weibull distribution).

5.2-Simulation study
The idea of this simulation study is two things; first: to show the goodness of fit test for the

Weibull distribution by using the test statistics D, W?2 and 4% for the sample of size n and second: to
compare between the power functions of test statistics D, W?* and A for several distributions.

The following table represents the critical values of D, W? and A4° when n=10(5)40 at
a=.20,.15,.10,.05,.01 respectively.

We notice from the results shown in Table 5.1 that the critical values of D decreases while n
increases and they increase when & decreases. However, the critical values of W2 and A4 are varies
for different values of n while they increase when & decreases.

Table 5.2 represents the power functions of D, W? and A* for Weibull, pareto, and chi -
square distributions when n=10, 15, 20, 30 and a=.20,.15, .10, .05, .01 where we will compare between
the distributions using the critical values of D, W?and 4> from Table 5.1.

. 2 2 A x
We notice from table 5.2 that the power functions of 2, W and A’for Weibull and chi -
square distributions are similar to each other and they converge to the values of @ for different values



of n while the power functions of D, W~

and 4° for the pareto distribution diverges from the

; . 2 2
values of & when n increases. This shows that the power functions of D, W" and A° for

Weibull and chi-square distributions are better than the power functions of D, W~ and A’for the

pareto distribution.

Table 5.1 The critical values of D, W* and 4 when n=10(5)40.

Appendix

o
20 15 10 .05 01

n  statistic
10 D 0.2168 0.2269 02396 02594 0.2973
W 0.0789 0.0874 0.0988 0.1181 0.1627
e 0.5003 0.5439 0.6091 0.7156 0.9734
% B 0.1802 0.1883 0.1992 02162 0.2503
2 0.0797 0.0880 0.0996 0.1201 0.1664
w 0.5042 0.5522 0.6189 0.7316 0.9947

AZ
20 D 0.1579 0.1652 0.1748 0.1886 0.2188
W 0.0799 0.0884 0.1006 0.1208 0.1680
prd 0.5070 0.5554 0.6235 0.7371 0.9970
5 0.1417 0.1482 0.1566 0.1702 0.1947
25 i 0.0791 0.0877 0.0993 0.1198 0.1652
w 0.5041 0.5523 0.6189 0.7294 0.9832

AI
0.1298 0.1359 0.1435 0.1553 0.1795
30 D 0.0790 0.0879 0.0997 0.1195 0.1651
W 0.5063 0.5539 0.6219 0.7333 0.9922

2
4 0.1208 0.1264 0.1336 0.1448 0.1679
B 0.0790 0.0881 0.1003 0.1209 0.1675
35 -t 0.5059 0.5564 0.6218 0.7348 0.9933
A? 0.1130 0.1181 0.1251 0.1356 0.1581
0.0791 0.0877 0.0994 0.1202 0.1697
40 D 0.5049 0.5554 0.6235 0.7379 1.0074

WZ

AZ




Table 5.2. The power functions of D, W? and A4 for different distributions when n=10,15,20,30.

p.f.

Weibull

P(p) P(r?) p(s)

Pareto

P(D) P(w?) P(4?)

Chi square

P(D) Pw?) P(4?)

10

.01
.05
.10
N
.20

0.7290 0.8095 0.8185
0.0455 0.0490 0.0480
0.0960 0.0970 0.0925
0.1395 0.1420 0.1380
0.1840 0.1850 0.1845

0.2305 0.3765
0.4415 0.5875
0.5780 0.6965
0.6665 0.7670
0.7290 0.8095

0.3480
0.5920
0.6945
0.7700
0.8185

0.0130 0.0115 0.0100
0.0540 0.0570 0.0540
0.1065 0.1160 0.1075
0.1630 0.1710 0.1640
0.2165 0.2335 0.2150

15

01
05
.10
A5
20

0.0090 0.0110 0.0105
0.0540 0.0510 0.0545
0.0925 0.0925 0.0970
0.1435 0.1440 0.1420
0.1950 0.1995 0.1875

0.4485 0.6485
0.7030 0.8135
0.8085 0.8885
0.8605 0.9210
0.8605 0.9210

0.6590
0.8295
0.9035
0.9350
0.9350

0.0070 0.0100 0.0055
0.0490 0.0525 0.0470
0.0970 0.1100 0.1035
0.1610 0.1620 0.1555
0.2090 0.2170 0.2040

20

01
.05
10
15
.20

0.0090 0.0120 0.0135
0.0595 0.0590 0.0620
0.1105 0.1140 0.1160
0.1655 0.1695 0.1615
0.2160 0.2225 0.2125

0.6915 0.8290
0.8765 0.9310
0.9270 0.9575
0.9470 0.9690
0.9605 -0.9795

0.8565
0.9435
0.9690
0.9800
0.9910

0.0110 0.0135 0.0125
0.0670 0.0705 0.0635
0.1205 0.1275 0.1260
0.1765 0.1905 0.1855
0.2305 0.2315 0.2380

30

01
.05
10
15
.20

0.0120 0.0100 0.0080
0.0500 0.0555 0.0620
0.0995 0.1045 0.1105
0.1495 0.1560 0.1605
0.2070 0.2130 0.2140

0.9345 0.9670
0.9845 0.9935
0.9950 0.9985
0.9980 0.9995
0.9980 1.0000

0.9795
0.9980
1.0000
1.0000
1.0000

0.0150 0.0225 0.0180
0.0765 0.0870 0.0865
0.1310 0.1540 0.1520
0.1895 0.2065 0.2030
0.2400 0.2595 0.2515
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