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Abstract. Morphisms between Morita contexts with different pairs of base rings are studied by
adopting a comparatively generalized concept of homomorphisms between modules over different
rings.

P 1. Introduction

Let K; = (Ai, Mi, N;, B;,<,> A;, <,> B;) be a Morita context (MC), in which A; and B; are
rings, M; and N; are (A;, B;) bimodules, respectively, and <,> A; : N; ® Bi M; — A; and
<,> B; : M; ® A; N; — B; are the MC maps such that they satisfy the two associative conditions

(i) m' <n,m>A; = <m/,n>Bim
(i) <n,m>Ain' =n<m,n' > B;

In [1, p.275], Amitsur defined a map K = (a, B, p, ), between two MC's, K and K, where
a: A, — Ay and B : By = Bs are ring homomorphisms and p : My — Mp and v : N; = Ny are
respective bimodule homomorphisms. In this setting, the Morita elements (the pairs < n,m > A;)
of A; must map to the Morita elements of Ay and same holds with 8, and 2. This situation
seems to be ambiguous as, in general, the bimodule homomorphisms u and v do not satisfy the
scalar product property. So, in the following we have constructed a morphism between two MCs
by adopting a concept of homomorphisms between modules defined over different rings which is
obtained by “pullback along morphisms” (cf. (2, p.170]). We call such maps g-homomorphisms,

. where “g” stands for “generalized”.

g-homomorphisms along with some examples and elementary properties are introduced in
Section 2 and morphisms between Morita contexts are constructed and studied in Section 3. As
applications, in Section 4, we have outlined some transfer of properties in the cases of PMC and
nondegeneration. In the same section, morphisms between derived and induced derived contexts are
studied. In fact ring extension is extented to context extension and conversely via static modules.
In the end we proved a result for purity.

Unless otherwise stated all rings considered here are associative with the multiplicative identity,
ring homomorphisms are identity preserving and the modules or bimodules are unital. For any ring
A by the term ‘M is an A-module’ or ‘M}; we mean ‘M is a right A-module’.

Keywords and phrases : Homomorphism, Morita contexts.
AMS Subject Classification : 16D90, 16D20, 15A69.
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2. g-Homomorphisms
2.1. Definitions and Examples

g-Homomorphisms. Let A and B be rings and a : A — B a ring homomorphism. Let M and N
be right A and B - modules, respectively. An additive abelian group homomorphism p: M — N
is said to be a right generalized homomorphism, or in short, a right g-homomorphism, if for every
pair, (m,a) € M x A, p(ma) — u(m)a(a).

In order to emphasize the presence of the ring homomorphism «, we termed the above map
as a “right a-homomorphism” or simply an it “a-homomorphism” as long as its “left” rival is not
in action.

We say that, the a-homomorphism 4 : M — N is an a-monomorphism, a-epimorphism,
or a-isomorphism, according as y is an additive abelian group monomorphism, epimorphism, or
isomorphism. Note that, if B = A and a = 14, then the 14-homomorphism  : M — N is precisely
the regular A-homomorphism. Thus, we are justified to call the map defined abvoe a “generalized
homomorphism”.
g-Bimodule Homomorphisms. Let A,B,A’, and B’ be rings and let M and M’ be (B,A) and
(B, A") -bimodules, respectively. Ifa:A-— A and B : B — B’ are two ring homomorphisms,
then an additive group homomorphism g : M — M’ is said to be a g-bimodule homomorphism, or
a (B, a)-homomorphism, if for every triple, (b,m,a) € B x M x A, p(bma) = B(b)u(m)a(a).
Example 2.1.1. Let R and S be rings. Set A = Mn(R), B = Mo(S), M = R™ and N = §®.
Any ring homomorphism f : R — S, induces the ring homomorphism f,) = A — B defined
by fn)(laij]) = (f(ai;)] and the additive abelian group homomorphism g : M — N defined by
p([mi)) = (f(mi)]. Then

p(imillasz)) = p(lmal) finy(lais])

for all [mi) € M and [a;j] € A. Hence p is an f(n)-homomorphism. If we let M to be an (R, A)-
bimodule and N an (S, B)-bimodule, then p: M — N is an (f, f(n))-homomorphism.

Example 2.1.2. Let « : A — B bearing homomorphism and M be a right A-module. Considering
B as a left A-module, the map pu: M — M ®4 B, defined canonically, is an a-homomorphism. In
particular, p is injective if « is pure.

Example 2.1.3. Let R be a commutative ring and let A; and A; be R-algebras with an R-algebra
homomorphism a : Ay — Az. Also assume that M; and M, are A; - and Aj - modules with the R
- linear maps oa, : M1 ®r A1 — My and onp, : M2 ®r A2 — M, respectively. Then an R - linear
map g : My = My is said to be an o - homomorphism (of modules over algebras) if the rectangle

M; ®gr A1 43¢ My ®r A2
UMll J'UMz

M, H M,

commutes. In othe-r words
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(poon,) L(mi®ai) = |oago(k®a)](mi®ai)

= Oy [Z;U(mi) ® afai)]

where the ordered pair (mi,a;) € My X A;.
Analogously, only by reversing the arrows, one can construct g-homomorphisms between co-
modules over coalgebras, etc. Examples in other areas can similarly be constructed.

2.2. Some Elementary Properties

The Rng of Endomorphisms. By the term “Rng” we mean “Ring without multiplicative iden-
tity”. Let @ : A — B be a ring homomorphism and denote by H omqo(M, N) the set of all
a-homomorphisms p : M — N. Clearly, Homq(M, N) is an additive abelian group. Next, assume
that A, B, and C, are rings and M, N, and P are A, B, and C - modules, respectively. Ifa: A — B
and 8 : B — C are ring homomorphisms and if u € Homa(M,N) and v € Homg(N, P), then
the composition v o u € Homgea(M, P).

Now let @ : A — A be a ring endomorphism. An abelian group endomorphism g : M, — M is
called an —alpha-endomorphism if i is an a-homomorphism. We write Homa(M, M ) = Endo(M),
the set of all a-endomorphisms. Unfortunately, Endq(M) is not a ring, as the composition of two
a-endomorphism is an a?-endomorphism. The composition of two a-endomorphism if and only if
o is an idempotent. Moreover, since u(ma) = p(m)a(a), for allm € M, and a € A, thus if a # 1g,
then p can not be an identity homomorphism on M. Hence we conclude that
Proposition 2.2.1. If a: A - Ais an endomorphism of rings, then for the A-module M,

(i) Enda(M) is a rng if and only if a(# 14) is an idempotent.
(ii) Enda(M) is a ring if and only if a = I4. In this case we write End;,(M) = Ends(M).

Proposition 2.2.1 gives us ample examples of rngs which are not rings. The g Endq(M)

together with the identity endomorphism Ijs, that is, Endo(M) N {Im}, generates a ring. Note
that, this extension of a ring in a ring is similar to that of the Dorroh extension.
g-Strong Homomorphisms. Assume that a : A — B is a ring homomorphism and p : Mg — Np an
a-homomorphism. Note that the concept of g-homomorphisms immediately arises from, “pullback
along @”, in which N becomes an a(A)-module and so the image (M ) is an a(A)-submodule of N.
In general (M) is not a B-submodule of N. For example, Z is embedded in Q in Mod — Z but
not in Mod — Q. We say that an a-homomorphism yx : M4 — Np is an a-strong homomorphism
if (M) is a B - submodule of N.
Example 2.2.2. According to our above definitions, if M and N are A-module and if u: M = N
is an A-module isomorphism, then  is I4 - strong isomorphism. If N < M are A-modules, then
the natural epimorphism p : M — M/N and the natural embedding in : N — M are I - strong
epimorphism and I4 - strong monomorphism, respectively. In general, the term “strong” can go
along with the a-homomorphism p, if a: A— Borp: M — N is an epimorphism.

Following are some instances where g-homomorphisms are strong homomorphisms.
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Proposition 2.2.3. Let M be a divisible right A-module and NV a torsion free right B-module. If
@:A— Bis aring homomorphism then any a-homomorphism u: M — N is o - strong iff « is
an epimorphism.

Proof. One direction holds trivially. Assume that W is strong. Let b € B. For any m € M, if
p(m) = n, then nb e w(M), so there exists m’ e M, such that u(m’) = nb. As M is divisible, there
is an a € A, such that m’ = ma. So 1

u(m') = p(ma) = p(m)a(a) = nb

This implies n(a(a) — b) = 0. Hence a(a) = b.

Let @ : A - B be a ring homomorphisms. Call an a-homomorphism Bw: M — N inde-
composible if u(M) is an indecomposible A-submodule of N. Moreover, if v : M — N is an
a-homomorphism such that (M) = y(M), then we will write 4 = v, Also say that K is a direct
sum of u; and each y; is a direct summand of u and denote it by pu = DBicp i if

6P wi(M) = (ar)
€A

It is clear that if each component 4 is a-strong then /4 is also a - strong.

Krull-Schmidt theorem can be expressed in terms of o - strong homomorphisms as under. For
proof we refer to [4, p.115].
Proposition 2.2.4. Let #: M — N be a non-zero q - strong homomorphism. If u(M) satisfies
both acc and decc, then there exist indecomposible « - strong homomorphisms Hi : M - N,
i:l,—--,n,suchthatnz,ui@—--eapﬂ. :
Proposition 2.2.5. (Krull-Schmidt Theorem) Let o # #: M — N be a-strong and N satisfy
both acc and dce, if

K=Wi® - @us=vd---@u

in which each y; and v; is indocomposible « - strong, then s = ¢ and y; & Vo(i) for some permutation
o(i)(i=1,--.,s).

Tensor Product of g-Homomorphisms. Let a.: A — A’ be a ring homomorphism and consider the
modules M = My, N = 4N, M’ = M}, and N’ = 4, N'. Let u: M — M’ be right and v : N —s N’
left & - homomorphisms. Then: BV : M @4 N — M' @4 N’ can be evaluated in the usual way by
the formula :

(W&V)[3 (mi @ ni)]) = 3 [u(ms) @ w(ny)]

The above map is well defined, as we can see that there is no ambiguity in the uniqueness of
the images under this tensor product map. In particular, if m € M, n e N, and a € A, then the
image of the identity ma @ n = m @ an can be evaluated as
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(v@v)(ma®n) = u(ma)®v(n)
= u(m)a(a) ® v(n)
= u(m) ® a(a)v(n)
= p(m) ® v(an)

= (u®v)(m ®an)
In order to make the tensor product of two g-bimodule homomorphisms a g-bimodule homo-
morphism, we lock at the following
Proposition 2.2.6. Let A A, B,B, C,C'be rings. Let a: A — A’ 3: B - B',andy:C - ¢’
be ring homomorphisms. If B:BMg — pM}, and v : 4No — A'Ng, and (B,a) - and (a,y) -
homomorphisms, respectively, then the tensor product of 4 and v, denoted by u®v : M Qa4 N —
M@y N, isa(8,y) - homomorphism given by the formula

(L®V)[D_(mi @ ma)] = 3" [u(ma) ® v(ny)]

for all (m;,n;) € M x N.
Proof. Clrearly, the map u®@v is well defined and is an additive group homomorphism. Moreover
for any b€ B and ¢ € C,

(u®V)[bY(m; @ ni)e] = 2lu(bmi) ® v(nic)]
= Z[BO)u(mi) ® v(ni)y(c)]

= BO)(#®v) 3>(m; @ ni)]y(c)

Hence we conclude that u®v is a (B, 7) - homorphism.

Note that, the bar on the tensor is Jjust to remind us the change of intermediate rings from A
to A’ .
If p and v are epimorphisms, then u®v is an epimorphism. If any one or both of 4 and v are
monomorphisms, then u@uv may not be monomorphism. In that case the results from purity and
flatness can smoothly be transferred. For g-strong morphisms the following holds.
Proposition 2.2.7. Let # be left 3 - strong and v right + - strong. Then u@v is a (B,7) - strong
homomorphism.

3. Morphisms between Morita contexts

3.1. Morita Context Morphisms

In short we will represent an MC by the four basic ingradients (A, M, N, B), while the rest are
assumed to be presented with the MC by default.
Basic Construction. Let K; = (A, M;, N;, B;), i=1,2, be two MCs. A four fold set of maps
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: k= (a,pu,v,B) : K1 - K>
is said to be Morita context morphism from K into K if the following are satisfied:

(1) a: A - Ay and B : By — By are ring homomorphisms,
(2) p: My -5 My and v : Ny — N, are (8, a) - and (@, B) - homomorphisms respectively,

(3) The following diagrams commute

N, ®p, M; blay Ay M ®a, My Rs By
v l « l and p@vl ﬁl
Ny ®p, M, {:-)_;12 Ay M; ®4, Ny (,—)_,;z By
via
Ymi®@mi)  —  F(ni,m)a,
2lv(ni) ® p(m;)] — 2(v(ni), pmy)) a,
and

Lmi®n) —  S(min)g,

I | l

2 pu(mi) @ v(ng) —s 2(u(mi), v(ni)) g,

e

respectively.
Note that the commutativity of above diagrams is equivalent to the following identities:

3"(3.) <1>A2 L2 (V@p.) = <s >A1

31’(”) <:)Bz 0 (“@’UJ =po (:)B;L

These two identities or the commutativity of above diagrams assure that the Morita elements
of A; (respt. of By) will map to the Morita elements of Ay (respt. of By). Thus, a(I) C I, and
B(J1) € Ja, where I; and J; are the trace ideals of the MCK; for i = 1,2,

A morphism & = (a, y, v, B) : K - K' from an MCK into another MCK’' is said to be
an epimorphism (respt. a monomorphism) if all maps «, fB,u and v are epimorphisms (respt.
monomorphisms). In case x is an epimorphism, we say that K’ is a homomorphic image of K. If
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Kk is both, an epimorphism and a monomorphism, then x; is an isomorphism and the two contexts
K and K' are isomorphic.

Associativity Under MC Morphisms. Now we demonstrate that both maps p and v satsify the
associativity conditions of MCs. Let m,m; € M, and n € N. Then

plim,m)pma] = B(m,n)pu(m)
= (u(m),v(n)) pu(m1)
= plm)(v(n), u(ma)) a
= u(m)a(n,mi)a
‘ = p[m(n,m1) ]
In fact, in above, we have confirmed the commutativity of the diagram

(M@AN)®sM  “28™  peeM 2 M

(n®v)&u| Bdu| I

—
o

s
(M'®a N)®@p M' (,)r®1yy B ®p M’ M’

Similarly, the other symmetric of diagram is also commutative.
The Compositions of MC Morphisms. Let K; = (A;, M;, N;, B;); i =1,2,3, be MCs and
Kij = (aij,mj,vij,ﬁij) K — Kj, 1,3~ 1,2,3

MC morphisms in which a;; : A; - A; and 3;; : B; — B; are ring homomorphisms and p;; : M; —
M; and vij : N; = Nj are (i, @i;) and (aij, Bij)-bimodule morphisms. The compositions of these
’ morphisms can be obtained by chasing the following commutative diagram.

N ®B, M, % Ay
V12®#1_21 0121

2
Ny ®p, My {—A-; Az

V3@ 93 l 0:231

')
N3 ®B, M3 {—Ag Aj

via the maps
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Y(ni® ml.) = 22(ni,m;) 4,

l l

Yla(n) ® pa(my)) —s lv12(ni)piz(my))

! l

Ylvas(ni) ® pas(mi)] —» 2o[vas(ni)ugs(m;)]

Similarly, by interchanging the variables, the other diagram can also be considered. Hence

Proposition 3.1.1. K ry= (a,;j, Hij, Vij, Bij) : K; — K; are MC morphisms, then the composition
Kjk o Kij : Kj — rightarrowK, is also an MC morphism.,
Examples 3.1.2. Let K = (A,M, N, B) be an MC and let M, and N; be submodules of M and N,
respectively. If K = (A, My, Ny, B) is also an MC, then k = (1a, p, v, 1) : K1 - Kisa morphism
of MCs K, into K, where y and v are the embeddings y = My My = M and v — in, M - M.
In [5], Miiller called K a subcontext of K If we assume K — (A, M/MI,N/Nl, B) and K is also
an MC, then x = (Lasp1n18) 2 K'% B s o MC morphism, where 1 and v are the natural
epimorphisms. K is a homomorphic image of K.

Following example is a continuation of Example 2.1.1.

Example 3.1.3. Let By = R be any ring and Ay = Mp(R), My = R(™) (row wise), and N; = (W R
(column wise). Considering M a (B1, A1) - bimodule and N; an (Ay, By) - bimodule, one can
always get an MC, K, = (A1, My, Ny, By) where the first MC map (,) 4, is defined by the dyads

ny By -2 mamy,
( ![ml"'mﬂJ)Alz € A4
nn nnml S nnmn

and the second M(C' map (,)p, is defined by the dot product

n
([ml---mn], sy =rany 4o+ mang & By

T

If we choose another ring, say, By — S, then on the similar pattern one can construct another
MC K3 = (A3, M3, Ny, By).
Let f:R—> Sbea homomorphism of rings. Then

f5S (f{n):f-‘:v:f)

is a morphism of MCs from K into K5, where fm) : A1 = Ay and 1 : My — M, are as defined
in Example 2.2.1 and v : N1 — Nj can similarly be defined as K, but on column vectors. Clearly,
K= (f(nJ,p,, v, f) mostly depends on f:By— By. In particular, if f is monic or epic then so is x.
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3.2. Morphisms Between Rings of Morita Contexts

A; N;
For any MC K; = (A;, M;, N;, B;), let us denote its context ring by T; = . Define
‘ M; B,;
map
a v
T= . Tl g 4 T2
n B
by
a v a n a(a) v(n)
p B||m b u(m) B(b)

Then we have

Examples 3.2.1. Let K; = (A;, M;, N;, B;) be MCs and k = (a,p,v,B8) : K1 = K2 an MC
a v

morphism. Let T; be the MC rings of K;. Then the map v = : Ty — 15 is an

p B

identity preserving ring homomorphism. Moreover, Ker(7) is an ideal of T} and if p is (3, )
- strong and v is (a,f) - strong, then Im(7) is a subring of Tb. In this last case, Im(k) =
(a( A1), p(M1),v(N1), B(B1)) is an MC and I'm(7) is the ring of the context I'm(k).

Proof. The axiom under addition is trivial, while the axiom under multiplication is proved as
follows.

a n][d n ad + (n,m')a,  an'+nb
m b m Y ma +bm’  (m,n')p, + bb
a(a)a(a’) + (v(n),u(m') s, ala)v(n’) +v(n)B(Y)
p(m)a(a) + pO)u(m’)  (u(m),v(n'))s, + B(b)BD)
ala) v(n) ala’)  v(n)

u(m) B(b) u(m')  B(b')

Remaining parts can be proved by using commutative diagrams given in the construction of
the MC morphisms.

4. Applications

4.1. Projective Morita Contexts (PM(C). An MC K is termed as a PMC, the abbreviation
for a projective Morita context, if the two Morita context maps are surjective. K is a PMC iff it
satisfies Morita Theorems I and II ([3, Sectjep 5.12') The term PMC is used in [7] just to shrink
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the phrase “Morita context satisfies Morita Theorems Iand IT”. We also say that an MC ring T is
a PMC ring if its context K is a PMC.

Theorem 4.1.1. Let k = (a,p,v, B) : K - K' be a context morphism between MCs
K =(A,M,N,B) and K’ = (A',M',N', B").

(i) If K’ is a PMC, « and f3 are monomorphisms, and u and v are (8, a) and (e, B) - epimor-
phisms, respectively, then K is a PMC.

(ii) If K is a PMC and k an epimorphism then K’ is also a PMC.

Proof. (i) Let K’ be a PMC, that is the two Morita context maps (,) 4/, and (,)p: are epimor-
phisms. Consider the commutative daigram:

MeouN Y8 g
#®vl lﬁ

—_
M.' ®A" NF (, )B“ Br

Since p and v are epic, u®v is epic, also 4 is monic and (:)'p is both monic and epic, so (,)B is
epic. Similarly (,) 4 is also epic. Hence K is a PMC.

Proof of (ii) is similar to (i).

In this theorem in (i) in fact we have proved that the homomorphic image of a PMC is a
PMC. While in (i) we have proved its partial converse. The combined result is the following
Corollary 4.1.2. Let K = (A, M, N, B) and K’ = (A, M',N', B) be two MCs with the common
base rings A and B. If kK = (1a,p,v,18) : K — K’ is an epimorphism, then K is a PMC.

4.2. Nondegenerate Morita Context

Recall that an MC K = (A, M, N, B) is nondegenerate iff it satisfies any one of the conditions of
following lemma. For the proof one may refer to [5,8, & 9]. Let us also an MC ring T' nondegenerate
if its context K is nondegenerate.

Lemma 4.2.1. For an MC K = (A, M, N, B) the following are equivalent.

(i) Ma, Ng gM and 4N are faithful and the two MC maps (,)4 and (,)p are also faithful.
(ii) My is faithful and (N, m)4 # 0 whenever 0 #me M.
(iii) All A-modules and B-modules associated are I-free and J-free.

Theorem 4.2.2. Let k = (a,pu,v,8) : K — K’ be a homomorphism of MCs K and K’ such
that a and p are monomorphisms and v is an epimorphism. If the MC K’ (respt. MC ring T') is
nondegenerate, then K (respt. T') is also nondegenerate.

Proof. Assume that Mya = 0,4, for some a € A. Then for all m € M, ma = 0ps. Or

plrma) = p(m)afa) = 0y
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But M, is faithful, so a(a) = 0 and since a is a monomorphism, a = 04. Hence M is faithful.
Next, assume that (N, m)4 = 04. Then

a(N,m)a = (v(N),u(m))a = (N', p(m)) a» = O

which implies that pu(m) = 0. But according to the hypothesis, p is monic, m = 0. Hence both
conditions of Lemma 4.2.1 (ii) are satisfied and which implies that K be nondegenerate.
Theorem 4.2.3. Let k = (o, u, v, §) : K = K’ be a morphism of an MC K into another MC K’
such that a and p are isomorphisms. If K (respt. T') is nondegenerate, then K’ (respt. 7") is also
nondegenerate. A

Proof. Let the MC K = (A, M, N, B) be nondegenerate. Assume that in K’ = (A’,M',N’, B'),
M'a’ = 0pp for some o’ € A’. Since u(M) C M’ and «a is an epimorphism, there exists a € A such
that

M’ = u(M)a(a) = u(Ma) = {Opr}

Since p is monic, Ma = {0y} and as My is faithful, @ = 04, which implies a’ = 0p.
Now assume that (N',n’) = {04/}. Since ¥(N) C N’ and p is epic, then for some m € M

(v(N), s(m)) 4 = (N, m) = {04}

But « is monic, so (N,m) = {04} which implies that m = 0py. Hence u(m) = m’ = 0, and by
Lemma 4.2.1 we conclude that K’ is nondegenerate.

4.3. Context Existence/Ring Extensions

This section poses another example of morphisms between Morita contexts. In fact, in the following
context extensions and ring extensions are mutually studied.

Let A and B be rings and as previously, @ : A — B, a ring homomorphism such that
a(l4) = Ig. Assume that M is an A - module and D = Endj(M), the ring of endomorphisms
on My. Next we assume that £ = Endg(M ®4 B), the ring of endomorphisms on M ®4 B in
Mod — B. Then M ®a B becomes an (E, B) - bimodule, and there is a ring homomorphism
o : D — E defined by

o(d)(m®b) =d(m)®b,

where b€ B, d € D and m € M. Clearly, a(Ip) = Ig.

The Context Induced from the Derived Contexts. Now consider the dual module
M* = Homu(M,A) of M. Let K = (A,M,M*, D) be the derived context of M. Instead of
putting some conditions on M, assume that M* ®p E is left B-module. We will continue this
assumption up to the end. Now we claim that K' = (B,M ®4 B, M*®p E, E) is a Morita context.
We call it a context induced from the derived context of M. Indeed
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(M*®pE)@r(M®aB) =& M*@pMQ@aB
— A®aB
R
where the arrow is the MC map (,)4 : M*®p M — A of the first MC K. Simiarly
(M*©4B)@s (M*®pE) % M@sM OpE

— D®pE

~ FE ,

The Morphism Between Derived and Induced Contexts. Assume that kK = (o, u,v,0) : K = K, is
a map in which @ : A — B and 0 : D — E are as given above, p : M — M ®4 B is defined by
u(m) =m® 1p for all in € M and v : M* -+ M* ®p B is defined by v(m*) = m* ® 1g. Then we
have 4

Theorem 4.3.1. If A, B,D,E,M,M* a,0,u and v are as given above, then x = (o, u,v,f3) :
K — K' is an MC morphism.

Proof. First we verify that y and v are (o, @) - and (@, o) - homomorphisms, respectively. Indeed,
forallae A, d € D, m ¢ M, and m* € M*, we can write the following relations

p(dma) = o(d)(m® 1p)a(a)
= d(m)®a(a)
and
viam*d) = a(a)(m*® 1g)o(d) ?
= afa)[m* @ a(d)]

Next we establish the commutativity of the following diagrams

M ®s M* QB) D

- I

(M ®4 B)®p (M*®p E) (TE E

and
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M*®p M 94 A
o] o
.
(M" ®p E) ®e (M ®4 B) (s)B B
In the first diagram, in one direction

[0o()plX(mi®@m]) = o[ (mi,m{)p € E

and from the other direction we get

(()eopdv]E(miemi) = ()eXlumi) ®v(m])]

Il

Z(m‘ ® 1B)m: ® IE)E

e E
Note that, forany n € M and b€ B
| o(m,m*)p(n®b) = (m,m*)pn®b
] = m[m*(n) @b

Similarly
(mM®1p)@(M*®1lg) — (MEmM")®lg
— (m,m*)p®1lg
— (m,m*)plg € E

Then, by evaluating n ® b at the last function, we get

(m,m*)plp(n®b) = m[m*(n)] @b

Hence we conclude

(JEop®v=00()p

For the second diagram one can similarly prove that

[a o(,)al= [(r)B e véﬂ']

Hence we conclude that « is morphism between contexts.
The following is an immediate consequence of above theorem.
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Corollary 4.3.2. Let T and 7" be the rings of MCs K and K’, respectively. Then the MC map
k : K — K' of above theorem induces the ring homomorphism 7 : T — T".

4.4. Static Modules

M -Static Modules. An object V' of Mod — A is static if it remains invariant under the composition
of the adjoint functors Hom4 (M, —) and — ® p M. In particular, the ring A as an A - module is
M - static if M* ®p M = A via the natural isomorphism m* ® m — m*(m) for all m € M and
m* € M*.

In case the ring A is M — static, by [6, Lemma 3.5] we have
Lemma 4.4.1. If the ring A is M — static, then

M*®p E = (M ®,4 B)*

as E-modules via the map

k l
(m*® f) (Z m; ® bi) =Y (m*,nj)e
i=I j=1

where mi,n; € M, m* € M* and b;,c; € B and f € E is such that

k 1
f (st®b,-) =) n;®c;
i=1 j=1

Hence we state that
Theorem 4.4.2. If the ring A is M — static, then the induced derived contex of M is isomorphic
to the derived context of M ® 4 B. The respective rings of contexts are also isomorphic.
Proof. It follows from Theorem 4.3.1 and Lemma 4.4.1 that there is an MC morphism from the
induced derived context of M to the derived context of M ®4 B given by

= (o, 4,V B) : K' - K"

where

K" = {B,M ®4 B,(M ® B)*,E}

Clearly, o/, 3 and p’ are the identical maps while

vV :M*®p E — (M ®a B)*

is an isomorphism as given in the Lemma 4.4.1. Hence &' : K’ — K" is an MC isomorphism. The
last statement follows from Corollary 4.3.2.

Corollary 4.4.3. If the ring A is M — static, then there always is a morph1sm (respt. ring
homomorphism) between the derived contexts (respt. rings of derived contexts) of M and of
M ®a B.
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Proof. By Proposition 3.1.3, the composition of the MC morphisms
K % K' 55 K"

is an MC morphism.
If the derived context of M is a PMC, then A becomes M — static. By using Theorems 3.3

and 3.4 of [6] we restate that ;
. Corollary 4.4.4. (a) If K, the derived context of M, is a PMC, then K', the induced derived

context of M, and the derived context K" of M ®4 B are also PMCs.
(b) If & : A — B is a monomorphism then K is a PMC if and only if K’ (or K”) is a PMC.

4.5. Purity

Let the ring homomorphism a : A — B be a pure homomorphism. Then for every M € Mod — 4,
the a-homomorphism p : M ®4 B is injective (Example 2.1.2). i

Recently, in studying relationship between effective descent morphisms a_nd‘ pure homomor-
phisms, Mesablishvili in [4;3.2. Theorem| proved that

Theorem 4.5.1. If o : A — B is a pure homomorphism of commutative rings and if for any
M € Mod — A, M ®, B is f.g., flat, and f.g. flat, and f.g. projective in Mod — B, then M is f.g.,
flat, f.g. flat, and f.g. projective in Mod — A, respectively.

By using Corollary 4.4.4 (b), we can add one more property in the above list without involving
commutativity of rings.
Corollary 4.5.2. If « : A — B is a pure (or simply injective), then M is a progenerator of
Mod — A if and only if M ®4 B is a progenerator of Mod — B.
Proof. Recall that M is a progenerator of Mod — A if and only if any arbitrary MC
K =(A,M,N,C)isa PMC (cf. B & 7]). Then g\N¢ = M* and C = End (M4) = D. This holds
if and only if the derived context of M, K = (A, M, M?*,D) is a PMC. Note that, ifa: A = B
is a pure then it is also injective. By Corollary 4.4.4(b), K is a PMC if and only if the induced
context K’ of M®4 B is a PMC, which holds if and only if M ®4 B is a progenerator of Mod — B.
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