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Abstract

Generalised model operator Bloch equations are derived for some models in the
field of quantum optics. These include:- (i) The behaviour of a single 2-level atom

coupled with a broadband squeezed vacuum (phase-sensitive) reservoir outside the

familiar “rotating wave approximation”, (ii) The bistable behaviour in a ring cavity
configuration subject to an extra “intense” coherent field és part of its environmen-
tal reservoir. [n case (i) the average atomic inversion exhibits “transient and steady
oscillatory” behaviour while in case(ii) a further “non-linear structure” shows in
the characteristic input-output state relation due to field-dependent relaxation pro-

Cces5es,
I- Introduction

simplicity and idealisation in mathematical modelling of physical systems are es-
sential as a basic step to study the behaviour of such systems. Improvement towards
realistic modeling is usually stimulated by experimental results and scientific data.
The field of quantum optics (quantum operator treatment of matter and radiation
interaction). since the invention of the laser in 1960's. is rich of continuous experi-

mental achieverment s which stimulate the improverent of mathematical modelling
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(e.g. 1, 2]). For our purpose, we quote two scientific experimental achievements,
namely, (1) The femtosecond time resolution technique [3] to probe the very initial
stage (= 10719 5.) of the spontaneous radiation by an atomic/molecular svstent and
hence detect any fast I(t.rausient}' timescale oscillatory behaviour outside the range
of rotating wave approximation (RWA ), (i) The availability of infense laser beams
(= 10" - 10" W em' *) [4, 5] and their interaction with atomic systems have shown

interesting results, such as enhanced dispersion and positive atoric inversion [6]-]8].

Tn the present article, motivated by points (1) and (ii) above, we review and

present governing model Bloch equations in two specific cases:

(a) A single 2-level atom in interaction with a broadband squeezed vacuum reser-

VOIr,

(b) A bistable model of a collcetion of (idert ical) 2-level atoms in a ring cavity and

subject to an additional intense laser field.

II- Study of single 2-level atom in a broadband squeezed vac-

uum outside RWA

The Hamiltonian for a single 2-level atom with trausition frequency wy interacting
with the quantised radiation field taken in dipole approximation and withont the

RWA cau be pur in the form [9]

1
H = §ﬁ.w'00: + % h-u-/'kf?-i)\ah\,\ - p.e. (1)

Operators o,,. are Pauli spin operators while k. A label modes of the quantised
radiation field: wy = k. The dipole operator p=podi=pla, +a )i pis the

matrix element and @ the direction of p.

The total field operator e, quantised in a large box of volunie V. iy

et) = 1) g, (aealt) = al (1) (2]
kA
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and the vector coupling g, , = (2mhwiV/ “y2 gt the gy, are the unit polarisa-

tion vectors.

{n the RWA, the operator poy couples only to the positive frequency part of the
field operator ay » while po_ couples only to the negative frequency part of the field

operator aL_A_

The Su(2) Lie algebra for the atome spin-3 operators is

logo-] = @ [0..02] = £20% _
(3)
ool =1, o-.0.], =0.
While the field boson operators obey,
i [(1[1_)\, a;_)\,] = 5]53_(0‘)\‘}“, L—l)
3
E

Similarly the spin operators and field operators commute at the same time.

According to the Hamiltonian (1), Heisenberg's equation of motion for the atomic

operators in the normal ordering prescription [9) are (p = pu) :

o(t) = —2ih plem () (o-() - ou(8) + (o-(B) —or(D) M) (D)

o (t) = —iweo_(t) — ihp e (toa(t) + o (et (t}] = ((T"'_(f.)jT, (6)

Here the total field operator e(t) = e*(t) + e~ (#} where e*(t) are the positive and

negative frequency parts and {10, 11],

E(t)i = gj(i) + Q:itm(f) (7]
where the free fields,
ay 1 (0) _
ity = DTN kA, L (3)
kA 5 (0)

. 2w _ S . 2 s . ; :
et ) = i-agl—c‘i)"ga;(t) + E(fﬁgmu,ﬁw@][o.(m—r;_{z_}];_ (9)

w, s the cut-off frequency for w and ¢an be taken as the Compron frequency.
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-

Using the forms (7-9) into (5), (6) with the use of the algebraic commutation

relations (3} we get the coupled set of linear operator equations

0.t} = —y(1+a.()) - 25‘13-](22_! [0 5 (0) o (1) et
() aga (@) 1 ] (10)
7L = (—3r=ilo () + (by- iAoy ()
= H 71 T g e l0) 0.(0) 1 = (1) g 0)e ]
= (o) a1)

where v = 4p%03/(3h¢?) is the Einstein A-(damping) coefficient. w, is the atomic
frequency wy shifted by the ordinary vacuum (wy = wy — Ag; Ay = ¥ In{we fung)

8, 9. 11] and Agw;! = Ofruwg ).

Now. we derive the equation for the mean atomic inversion raft) =< o, (t) >
where [> is the initial state of the combined system {atom+squeezed vacuum field),
The formal integration of the operator equation (11) for o_(t) gives

—» 1 4—1u 1 . 3 £
ot o [letreeOy s ()
2.3 g, (000 () ¢ — 0, (f Y (0)e Y
2. 9

= {(a.{t))". (12)

a_(t)

I

Inserting this result into equ.(10) we get,
cf{ty=—y(l+o.(t)) + A+ B + C. (13)

The t-dependent operators A, B and ¢ are

A = *2&‘12.22}”{@.)\(0} [0 {0)e Te!
kx
— o';L([))(%‘r:’r]ci““”‘r + h.e.} {14a}
B = —-2ﬁ._1£. 225_,\/{%)- 0)[ ’} — i) o (t e Tolt- )
)
—(l‘er?lAU_)o_(t Je T Oghnt gy eV (14b)

2
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and

t ; * - i
| (ko (0006 ay o (0) ¢~ Fott=rmitant—g
1] = ,

+al oy (D)o () ay a(0)e 7T t=t )=kt )
. L’,)\’ (0) (.Tz(t’) o= Tolt --e']+a'(u,cafuk,t']

=0 () ay o (0) ag A (0) e Tl mtlntru ) h.c.}dt (14c)
where [y = %";‘ + iw,. The operator expressions in (14) are complete and their
expectation values are to be taken with respect to the initial combined (squeezed
vacuum field4-atom) state. Within the RWA (i.e. dropping the terms in a;’\ru and
o_ay » in the Hamiltonian (1)}, the mean atomic inversion shows a purely decaying

behaviour [11] just as in the case of broadband thermal field case [12]. (also see[13]).

As in [11] we assume the squeezed vacuum field is characterized by the following

relations
Eerby < apyap e >= Ny(kK) 'k — &) (U - kk) (15 a)
AA
Eeabiey < agaal > =M (kE) ok + & = 2k,) (U — k) (15 b)
AN -
<ga> = <al, > =0, (15 ¢)

The notations are; U is the unit tensor and k is the direction of the wave vector
k = kk with dyadic kk, while & is the mode wavenumber, w = ck is the mode
frequency and. in particular, 2w, = (2 kp)c is the frequency of the field pumping the

squeezed vacuum.

The squeezed vacuum field parameters: the real N, and the complex number
My o = My, (for simplicity) are the average photon number at wave nuntbers & and
degree of squeezing respectively, with | M, [*= Nu(N, + 1) for minimum uncertainty

9. and refs therein].

New, with the relations (15) for the squeezed vacuum field we notice the followin
2

regarding the operator expressions on the right side of equation (133
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(1) < A>=0 by equ(ls o),

(i) The terms in B will give rise to smaller terims O(+*/w?) [9, 12] upon substituting
for ¢4(t) by its integral form, equ{13). We drop these small order terms as we

keep terms Of~/w,) outside the RWA.

(iii) For the expression in € we use the unequal-time free field-matter operators [12]

within Markov approximation,

[c;{f‘),a{’z’_) =0 Tt > (16)

with o(#') is any atomic operator and the statistical field-atom de-correlation proce-
dure (see [11, 12] for detail) and finally reach the peneralised rate equation for the

atomic inversion,

) = —a = {(1+2N) + 2| M| cos(2wy t — o) r4(t) (17)
where N oand M =| A7 | ¢ are the values of Ny and M at the resonant mode
k= w,/c, and @ s the squeezed vacuum phase.  Within the RWA | the highly

oscillatory term in cos 2wt is ignored and hence (17) reduces to the Lamiliar rate
equation in the thermal field case [12]. Thus the new feature in {17} is related to

the squeezed vacuum parameters M outside tlhe RWA.

‘The formal solution of (17} is.

!'q[f,} . {:—‘_rl:l‘-‘.ff\'-)f n—bﬁit][?;‘;[]?‘—cﬂj{T_:j({);]( —bsinign
| ' f
C ol 2N LB sint et g .
—~ dr ¢ v Er 2N b osind 2 of (‘J]}‘ I.\-lh]
Al

where b = 4 | A1 | /g is the correction parameter outside the RWA. The integral
i (18) can be expressed in terms of the modilied Bessel functions 7,(8). For long

tune (steady state) we got

’ < (o — iV -
L e 1 L (a0 —an)l, () g bx e
ra(x) = (20 Tem MR L+ 2 Re Y e
& e {1+ [ ; ok { ) }
Cr =1 l\('i.‘ _+ Té= )

(10
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in which & = (14 2V)/2w,. The factor e™"24¢ also has an expression in terms

of the 7, (5] and the non-oscillatory component easily proves fo be

T S 1 Lo Tl | _.
(rgloe))y, = 1+ U( LY 1+2( ¥ ) T

The transient oscillatory behaviour of r3{t) outside the RWA according to (18) is

shown in fig(1} as compared with the purely damped behaviour within the RWA. The

steady oscillatory behaviour (of period m/w!) of ry(xc), equ(l 9), is shown in fig(2)
for the parameter {~v/w)}=2(10 *). The rest of the seneralised Bloch equations.
~0.31

=032

-0.33
ra{t}

1] 180 380 40 7o 900 10840 1280 1440

Figure 1: The mean atomic inversion against the normalised time r = 2w0f for (v/2w’ 1=10"2 for

= /2 and & =10.

witially inverred atom {r3{0) = 1) with squeezed vacuum parameters ¥ = 1, |!

The full curve is the solution (18} outside the RWA aud the broken curve is the RWA solution,

namely the equations for the polarisation components r-(t) =< o {t) >, can be
derived by a similar procedure and have the following forms (all shifts are dropped

for simplicity [9]),

r_(t)

il

e Podeiel Yo [ sy [(.-'U]rf'm“"”“ — Alfe )“"”) A+ e r‘J

= (). (21)

The system (21) has harnonic coefficients and its solutions contain all harmonics at
(2w,). Analysis of the spectrum using (21) was given in [0]. Generalisation to the
case of two-cooperative atoms in a similar sitnation [14] shows that the amplirtde

of the steady oscillation is larger compared with the siugle atom case,

A L e o VR R ORI
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Figure 2: The steady oscillatory atomic inversion ra{ac), equ(19), against the uormalised time

To =t for values N =1, |AM| = vZ und ¢ = 0, (/2 )=10—1,

ITI- Multi-stable behaviour with field-dependent relaxation

in a ring cavity

Here we consider the model of a collection of 2-level atoms subject to an intense
ficld {as part of its environmental reservoir) and placed inside a driven ring cavity
(see fig{8)). The intense field (b) driving the atoms is introduced at the mirror Ay
50 that no interference or interaction takes place between the coherent input field

M at mmirror M) or the cavity field and the intense field & at Ay
Intense field

b
A
@i / a4y Two level | R ot
atoms M
3 LY 5]
,:’1'11‘1 — - S
1 Ly 131
5 /
.ﬂf 4\'\. / 1'1:{3

Figure 3: Schematic representation of a ring cavity containing 2-level atoms intensely driven by
field & at mirror Afs while the cavity is driven by a coherent ficld input a,, at mirror Af,. a,,, is
the output field at Ms: T and R are the transmissivity and refractivity of the mirrors A, Ao, L

is the cavity lengtlL
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The generalised model Bloch equations for the above system for the averaged atomic

polarisation components Jy and the inversion J; within the RWA are of the form,

a.j_ y y
F il —(g +iA) J_ 4+ 15e™ 4+ (g — i, €0 .

- (%Y 22

T\ ot (22)
aJ. i : :
EUE e i) (el L b Ll
ot ”(2'7"}2)4'730(5 P d g™ M)

Q, . QL
—{gor + ?I-Que”:'f Yy — (ga® — -i~§-r3”‘q’f) y . (23)

The notations are: {2, is the Rabi frequency of the intense laser field 6. 7, =
3'}')\/4\/@, A = w, — wr, w, is the atomic frequency, wy is the laser ficld fre-
gquency, = (1 + 3'/\51/\/1—4-(}?), 8 =(A/Q) < 1A= (Qfwr) < 1. 8= n+iA
and ¢, is the phase of the intense laser field b, o is the cavity field and ¢ is the

coupling constant between the cavity field and the atoms,

Note that in the absence of the cavity {a = 0) and for A = 0, equations {22) and
(23) reduce to those derived in [6] at exact resonance. I'ull derivation of equations
{22} and (23) using operator reaction field theory are outside the scope of the present
article and will be presented elsewherce [15]. The boundary conditions according to

the scheme in fig(3) are: At mirror AM:
i) = \/?(Lm + \/ﬁt‘lﬁ; (24)

From mirror M, to mirror My;

Ay = dy+1 %—J_ (25a)
" gL
= (VT am+ VRay) +1 f’—g--,} (25b)

The output at mirror 3s:

g = ﬁag +VRb (26)
L ;o
= Ta.i,l+\/TRa,1+'é\/Tg—c-J_+v/§b (27)

where we used (25b) in (27).

From mirror Afy to mirror M;:

i
b
%
E
2
k]
%
%
*
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' iy = \/ﬁag +vTh (28}
Substituting eq(25h) into eq(28} we get;
uy = Rag + TRa.m—H\/EQ—}J_-i-ﬁb (29)
From mirror Af, through mirrors Af; and My to mirror A,
Gy = a36'% (30)

where ¢, is a phase shift dependent on the cavity detuning. Using (29) into {30} wo

get
Qg = ¢ (R(14+\/___am+n/ﬁi~—} +fb) | {31)
Putting ¢, = 6 7" where 8 = is the normalised cavity detuning we get from (31);
ag = T (\/—Ram + e\/———f +V1 b) (1-- Re®Ty~1, (32)
Using (32) into (27) we got
(1- Re®TY g = Tay, + ¢ \/2‘“5’;; + VR [(2T - 1)e'" 4 1] . (33)

Up to O(T) and using the steadv solution for J_ {oDtained from equs(22-23) by
putting %J + = () one gets (after some manipulation) the generalised input-output

steady state relation,

i = (1~ i0) x| e + Q, Ao (2 — i) — 2037 (70 + (] ¥ — i63,) 4, /Bifl (34)
where
1 Bo 1450 o 5o
4, = ~ 57 |3 + 77 — 0 [(,’.J’ SR (:.(:.) [z]| — .ZSEUAJ
Bi = |;'I2 — T l (_5” et 4 C'.(.’,) | = 2§0,A w
+2 (ol = 02) ~ 249, || cos(o) (35)
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where 7, = /v n = g/, 3 = By A = N5 C = g Ln,/(vT) is the co-
operativity paramoter, g = 200/ {(vWVT) = || €%+ i the scaled output field, y =
29 2i,/(vVT) is the scaled mput feld at mirror M. Q, = W/ (VT = ph 13)}/(7\/?)
is the scaled nfense Held at mirror My o= ¢, — @ 15 the relative phase of the oyt-
pur field  with respect to the phase of the intense field €2, and A, = 2g\/ﬁ/(pﬁ_l)

is essentially the ratio of the two coupling constants between both fields y. (O, and

the atoms. Putting Q, = ¢ in eq{34) it reduces to the nsual form [16] in the weak

3 (independent-field) damping case.

The relation (34) is plotted in figs(4-6) for the given parameters dats. In the

resonant case {A = ¢ = ). the system shows tri-bistability for the cases of phase
valne @ = 0, =7 /2 (but not for ¢ = . m/2}. figs(4). Tu the off-resonance case where

A# > 0 similar behaviour ocenrs for small values of A, § but for larger A == § = 5

bistability ocenrs for ¢ = /2 while for A = 8 = —5 , tri-bistability oceurs for
o= —7/2 (fig.h). Oun the otlier hand. for Af < 0 with small values A = —f = 401
tri-histability occurs for ¢ = (. —a/2. For larger values of A = —§ = +5 the

tri-bistability occurs only for plase value ¢ = ~r/2 (fig.G}.

1
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Figure 4: 7| - lyi plot for Q, = C = 100.6 ~ 6 = ¢ (

(a)¢p = 0 and (bl = ~7/2. The enset

shows the part of the curve for I = [0.5]

pure resonant), A = 0.01, A, = 7' = 001
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Figure 50 br| —ly plot for 0, = C = 100. 8 =8 = =5, A = 0.01. Ay = 7 = 0.01 and ¢ = —x/2.

The enset shows the part of the curve for (g € 10, 50]

Sty g o s R

bd]
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Figure 6: |z — !y| plot for €2, = C =100, 6 = -8 = 5. A = 0.01, Ay = T = 6.01 and o= -m/2

The enset shows the part of the curve for |y € [0.100]
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IV- Summary

Motivated by the availability of the femtosecond time resolution technicque and the
high power laser sources we have given two examples of quantum mathematical

modelling which predict new features, sSpecifically,

{(a) A single 2-level atom bathed in a phase-seusitive (squeezed vacuuin) reservoir is
treated outside the RWA (i.c. by keeping the fast oscillatory terins}. The mean
atonuce inversion exhibits both transient. and steady oscillation that could be

detected in principle by the technigue in [3].

(b} A collection of identical 2-level atoms subject to an nicnse field (as part of
its environnental reservoir) and placed inside a ring Ccavity 1s treated within
the RWA to show ficld-dependent damping coefficients. The efioct of such
coefficients causes the usual bistable curve to become tri-stable curve for the
inprt-output field relationship. The availability of intense laser fields stipnu-
lates the appetite for such investigation. Further nvestigation concerning the

asymmetry in the absorption/dispersion spectra will be given in [15]
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