MWCNTs decorated with Mn$_{0.8}$Zn$_{0.2}$Fe$_2$O$_4$ nanoparticles for removal of crystal-violet dye from aqueous solutions

M.A. Gabal a,*, E.A. Al-Harthy a,b, Y.M. Al Angari a, M. Abdel Salam a

a Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
b Center of Excellence in Environmental Studies, King Abdulaziz University, PO Box 80216, Jeddah 21589, Saudi Arabia

Highlights
- Mn$_{0.8}$Zn$_{0.2}$Fe$_2$O$_4$ was prepared using spent Zn–C batteries through sucrose method.
- MWCNTs/Mn$_{0.8}$Zn$_{0.2}$Fe$_2$O$_4$ nano-composite was prepared via same method.
- The nano-composite was characterized and investigated to remove crystal violet dye.
- After removal, the nano-composite can be easily separated using a normal magnet.
- The optimum condition for the efficient removal was investigated and discussed.

Abstract
In the present study, a simple, economic and environmentally friend method was utilized for the production of multi-walled carbon nanotubes (MWCNTs) decorated with Mn$_{0.8}$Zn$_{0.2}$Fe$_2$O$_4$ nanoparticles, synthesized via recycling process of Zn–C battery. The chemical composition and structure of the MWCNTs/Mn$_{0.8}$Zn$_{0.2}$Fe$_2$O$_4$ composite were confirmed by X-ray diffraction and Fourier transform infrared measurements. The morphology as well as the decoration process was characterized using transmission electron microscopy. The results showed that the MWCNTs are homogeneously decorated with cubic loosely agglomerated ferrite particles having mean crystallite size of 20 nm. An appropriate decoration mechanism was suggested and discussed. The hysteresis measurements exhibited reasonable magnetic characteristics for the obtained composite which facilitate its separation from their dispersed solution using normal magnet. Surface area measurement indicates relatively large specific surface enhances its use in adsorption process. The adsorption capacity of the entire composite was investigated using crystal violet dye. The effect of composite mass, contact time, solution pH and solution temperature on the adsorption process was investigated. The adsorption process was found to follow a pseudo-second-order model. The calculated adsorption thermodynamic parameters (ΔG, ΔH and ΔS) suggested the spontaneity of the thermodynamically favorable adsorption process.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Due to their unique structure, carbon nanotubes (CNTs) were found to exhibit many fascinating characteristics including mechanical, electronic and chemical properties [1,2]. Recently, they have been investigated as a promising adsorbent for many organic and inorganic pollutants depending on their large surface area, fibrous shape and layered structure [3–5]. The adsorption capacity can be easily modified through chemical treatment with some metal oxides [6,7]. In this category, unique magnetic characteristics can be obtained through magnetic modification of CNTs with iron oxides [8] as well as some ferrite materials [3], which enhances their uses as magnetic data storage [9], microwaves-absorbing materials [10], magnetic composites for drug delivery [11], etc. besides their uses as adsorbents [12].

Many researchers in the literature were reported on the synthesis and characterization of multi-walled carbon nanotubes (MWCNTs)/ferrite nano-composite for different applications [13–17] but on the other hand, very few works dealing with the adsorption capability of these nano-composites are presented.

Farghali et al. [18] presented a simple hydrothermal precipitation method for producing MWCNTs decorated with CoFe2O4 nanoparticles used to investigate the adsorption capability of methylene blue dye.

Abdel Salam et al. [12] synthesized MWCNTs/NiFe2O4 nano-composite and used it for the removal of aniline from aqueous solution.

Zhang et al. [16] synthesized Mn1−xZnxFe2O4/MWCNTs (0 < x < 1) via solvothermal method. The obtained composites were characterized by XRD, TEM, SEM and vibrating sample magnetometry (VSM). An appropriate mechanism for the nano-composite formation was also investigated. To the best of our knowledge, this is the only work in the literature dealing with MWCNTs/Mn–ZnFe2O4 nano-composite. In the present work, we prepared similar nano-composite via an alternative simple, cheap, economic and environmentally friendly method using sucrose [19]. The contents of the entire ferrite, viz. manganese, zinc and iron will be obtained through recycling process of Zn–C battery previously described [20]. The prepared nano-composite will be characterized and investigated to remove crystal violet (CV) dye from aqueous solutions as an example of organic pollutants.

2. Experimental

2.1. Preparation of the MWCNTs/ferrite magnetic nano-composite

MWCNTs with average diameters of 60–100 nm were obtained from Shenzhen Nano-Technologies, China, and were used as received.

A recycling process of Zn–C battery was carried out, as previously described [20] to extract Mn, Zn and Fe required for ferrite preparation. Then, the stoichiometric ratios of each metal to prepare Mn0.8Zn0.2Fe2O4 were achieved using analytical reagents metal nitrates. The procedure for the preparation of entire ferrites using sucrose method is followed as previously reported in [19]. Stoichiometric amounts of metal nitrates in 100 ml distilled water and sucrose aqueous solution (12 g dissolved in 50 ml distilled water) are mixed thoroughly and kept at 60 °C for 30 min under vigorous stirring. The pH was adjusted to 7 by the addition of ammonia solution. The sticky gel obtained was evaporated until the combustion process occurs. The obtained loose as-prepared powder was then grounded and stored in dessicator.

MWCNTs/ferrite magnetic nano-composite (containing 70% w/w MWCNTs) was prepared by thoroughly mixing of MWCNTs with the stoichiometric amount of the entire metal nitrates during the preparation of the respective ferrite nanoparticles. The suspension obtained was then subjected for 1 h sonication process after which the same above procedures are followed until obtaining nano-composite.

2.2. Characterization techniques

The chemical composition of the battery contents was determined using atomic absorption spectrophotometer (AAS). The crystal phase was characterized by XRD using a Bruker axs D8 high-resolution diffractometer employing Cu-Kα radiation (λ = 0.15418 nm). The morphology was characterized by transmission electron microscopy using a JEOL-2010 instrument running at an accelerating voltage of 100 kV. Fourier transform infrared spectra were measured using a FT-IR, Perkin–Elmer in the range of 600–200 cm−1 using KBr-pellet technique. Magnetic properties were measured at room temperature using a vibrating sample magnetometer (VSM-9600 M) at applied magnetic field up to 5 kOe. The specific surface area was determined from nitrogen adsorption/desorption isotherms measured at 77 K using a model NOVA 3200e automated gas sorption system (Quantachrome, USA).

2.3. Adsorption experiment

Adsorption experiments were performed to determine the effect of the MWCNTs/ferrite magnetic nano-composite mass, solution pH, time and temperature on the adsorption process. The experimental procedures were performed as follows: (1) 20 ml of 10.0 mg L−1 solution of CV was prepared; (2) the initial pH was measured, and a defined amount of the magnetic nano-composite was then added to the solution; (3) these solution was stirred on a magnetic stirrer for a certain period of time, at room temperature; (4) at definite time intervals, a certain volume of the solution was removed and immediately using ordinary magnet the clear supernatant was collected using a glass pasture pipette; and (5) the residual CV concentration in the supernatant was determined using Perkin Elmer Lambda 25 UV–Vis spectrophotometer, USA at wavelength 588 nm. The amount of CV removed was determined by measuring the difference in the concentrations of the samples that were obtained at two consecutive time intervals over the course of the adsorption experiment using the following equation:

\[\% \text{ Crystal Violet Removed} = 100 - \frac{C_t}{C_0} \times 100 \]

where C0 and Ct are the concentrations of CV in solution (mg L−1) at time t = 0 and t, respectively.

2.4. Real water samples collection

The efficiency and applicability of MWCNTs/ferrite magnetic nano-composite for the removal of CV was explored using real water samples. A tap water sample (TWS); collected from our lab was used. After allowing the tap water to flow for 10 min, a wastewater sample, collected from the Waste Water Treatment Plant (Membrane Bio-Reactor Technology) – King Abdulaziz University (KAUWW), Jeddah City (Latitude deg. North 21.487954, Longitude deg. East 39.236748). Both samples were filtered through 0.45 μm Millipore filter paper and kept in Teflon™ bottles at 5 °C in the dark.

3. Results and discussion

3.1. Characterization of MWCNTs/ferrite magnetic nano-composite

3.1.1. X-ray diffraction

Fig. 1 shows XRD patterns of the as-prepared Mn0.8Zn0.2Fe2O4, using Zn–C battery extract, and MWCNTs/Mn0.8Zn0.2Fe2O4 compo-
The appearance of the diffraction peaks corresponds to (1 1 1), (2 2 0), (3 1 1), (2 2 2), (4 0 0), (4 2 2), (5 1 1) and (4 4 0) crystal planes, in consistent with the database found in the JCPDS file No. 74-2402, indicate the formation of single-phase cubic Mn$_{0.8}$Zn$_{0.2}$Fe$_2$O$_4$. The observed diffraction peak appeared around 26°, corresponds to the graphite (0 0 2) plane of CNTs [21], which confirms the retaining of CNTs structure without any destruction. The broadness of the diffraction peaks indicated the nano-crystallinity of the samples. The average sizes of the pure Mn$_{0.8}$Zn$_{0.2}$Fe$_2$O$_4$ and when coated on MWCNTs, were calculated using the Debye–Scherrer formula [22] and are found to be 39.5 and 17.9 nm, respectively. This decrease in the size on coating can be attributed to the adsorption of the entire ions on the surface of CNTs during sonication process. This spreading on the surface can be consequently prevented the accumulation of particles during the combustion process and ferrite formation. The values of the lattice parameter calculated using the interplanar distance (d) along with peaks reflections according to the Bragg’s equation [22] exhibited an obvious decrease from 8.4359 Å for pure ferrite to 8.4039 Å after coating. This behavior agrees well with the decrease in the particle size previously described. In addition, the observed increase in the calculated density from 5.15 to 5.21 g cm$^{-3}$ on coating can also be attributed to the size change.

3.1.2. TEM images
TEM images of Mn$_{0.8}$Zn$_{0.2}$Fe$_2$O$_4$ MWCNTs as well as their composite are represented in Fig. 2. The image of the entire ferrite (Fig. 2a) exhibited regularly shaped cubic agglomerated particles with size of about 20 nm. The agglomeration behavior of the particles can be due to the magnetostatic interaction between magnetic particles or the experience of the nanoparticles for a permanent magnetic moment proportional to their volume [23]. MWCNTs image (Fig. 2b) showed micro-sized tubes with a diameter of about 20 nm. Fig. 2c exhibited the interaction between Mn$_{0.8}$Zn$_{0.2}$Fe$_2$O$_4$ and MWCNTs. From this image, it is clear that most of the MWCNTs are homogeneously decorated with ferrite particles. The ferrite particles appeared to be loosely agglomerated and exhibited regularly shaped cubic particles with mean crystallite size of 20 nm, which is smaller than that of the original ferrite. The interaction seems to be sufficiently strong, as demonstrated by the absence of any free ferrite particles especially after prolonged sonication subsequent to TEM measurement. Generally, the obtained sizes via TEM measurements agrees well with those obtained previously using XRD measurements.

3.1.3. FT-IR spectroscopy
FT-IR spectrum of pure MWCNTs as well as MWCNTs/Mn$_{0.8}$Zn$_{0.2}$Fe$_2$O$_4$ nano-composite is illustrated in Fig. 3. As can be seen from comparing the two spectrums all the bands appeared above 800 cm$^{-1}$ can be assigned to MWCNTs. The two broad bands observed in the range 400–600 cm$^{-1}$ can be assigned according to Waldron [24] to the oxygen–metal absorption bands of spinel structure, especially ferrites. The higher frequency band appeared at 567 cm$^{-1}$ can be corresponded to the intrinsic stretching vibrations of the metal at the tetrahedral site, while the lower frequency band at 449 cm$^{-1}$ can be ascribed to the octahedral-metal stretching.

3.1.4. Magnetic properties
The magnetic properties of the uncoated MWCNTs and coated with Mn$_{0.8}$Zn$_{0.2}$Fe$_2$O$_4$ as well as the as-prepared ferrite were measured by VSM, as shown in Fig. 4. From the figure, different magnetic parameters such as saturation magnetization (M_s), coercivity (H_c) and remnant magnetization (M_r) were estimated and given in Table 1.

The magnetization value of the entire ferrite is observed to be significantly higher than that of the bulk ferrite ($M_s = 45$ emu/g) [19]. On coating, the saturation magnetization of the composite was lowered to 28 emu/g, which can be attributed mainly to the contribution of the magnetization of the weak-magnetic MWCNTs to the total composite magnetization. The inset of Fig. 4 showed that these magnetic MWCNTs could be easily separated from their dispersed solution by using a normal magnet. This indicates the high magnetic sensitivity of our nano-composite besides its high surface area, which enhances its use in the remediation applications.

3.2. Decoration mechanism and composite formation
The proposed mechanism for the decoration process and nano-composite formation is shown in Fig. 5. On soaking MWCNTs in the metal nitrates solution and during the sonication process, the entire metals tend to adsorb on the surface of MWCNTs. As previously described [19], in the sucrose auto-combustion process, the metal nitrates are acting as oxidizing agents while sucrose acts as a fuel. Under the entire experimental conditions, in the presence of H$^+$ from nitric acid, the sucrose can be hydrolyzed to glucose and fructose, which can be further oxidized into saccharic acid, glycolic acid and trihydroxy-butyric acid with a number of –COOH and –OH groups [25,26] and in this case, sucrose can be functioned as a complexing agent for the entire metal ions. On adjusting pH of solution to about 7 a polyesterification reaction was promoted with the formation of viscous resin complex [27]. On successive heating and at the point of spontaneous combustion, the sticky gel constituents were decomposed with the evolution of dense gases which make the gel to expand more than 10 times with the formation of highly porous ferrites. The combustion reaction can be written as follows [19]:
$$0.8\text{Mn(NO}_3\text{)}_2 \cdot 4\text{H}_2\text{O} + 0.2\text{Zn(NO}_3\text{)}_2 \cdot 6\text{H}_2\text{O} + 2\text{Fe(NO}_3\text{)}_3 \cdot 9\text{H}_2\text{O} + \text{C}_{12}\text{H}_{22}\text{O}_{11} + 2\text{O}_2$$

$$\rightarrow \text{Mn}_{0.8}\text{Zn}_{0.2}\text{Fe}_2\text{O}_4 + 12\text{CO}_2 + 4\text{N}_2 + 33.4\text{H}_2\text{O}$$

Finally, MWCNTs are coated by ferrite nanoparticles and form MWCNTs/$\text{Mn}_{0.8}\text{Zn}_{0.2}\text{Fe}_2\text{O}_4$ nano-composite.
of 1.5–3.0 nm. This corresponding small value can be attributed to the coating of CNT by ferrite.

3.3.2. Adsorption/removal of crystal violet (CV)

The adsorption capacity of MWCNTs/Mn$_{0.8}$Zn$_{0.2}$Fe$_2$O$_4$ nano-composite was examined via studying the adsorption/removal of CV dye from aqueous media. A certain amount of nano-composite was added to the CV solution and collected after a period with magnet and the concentration of CV removed was calculated. In this category, different parameters, which affected the removal process such as the mass of the solid adsorbent, solution temperature and pH, and the contact time between the adsorbent and the adsorbate were studied (Fig. 7).

The effect of the adsorbent mass usually determines the solid adsorbent’s capacity for a given initial concentration of adsorbate in a solution. Fig. 7a shows the effect of the nano-composite mass on the adsorption of CV from an aqueous solution (Experimental condition: at solution pH 8.0, 120 min, solution temperature 298 K, and CV concentration 10 mg L$^{-1}$). It is clear from the figure that the %CV removed increased gradually as the nano-composite mass increased, until it reached 88% when 50 mg of nano-composite was employed. This enhancement in the %CV removed principally due to the increase in the active sites on the nano-composite available for adsorption of CV molecules. Further increase in the dosage of nano-composite to 70 mg accompanied by further increase in the %CV removed to 100%.

Further experiments were conducted using 50 mg nano-composite to be able to observe the changes in the %CV removed from solution. Fig. 7b shows the effect of contact time on the adsorption of CV from an aqueous solution (Experimental conditions: 50 mg nano-composite, 20 ml sample, pH 8.0, 298 K, and CV concentration 10 mg L$^{-1}$). As it is clear from the figure, %CV removed increased gradually with increasing the contact time, till almost 75% of the CV removed within the first 30 min. Further increase in the contact time accompanied with slow increase in the% CV removed till it reached 91.0% after 120 min. The experiment time was extent to 240 min and it was observed that most of the CV was removed after 150 min; 95% was removed. This may indicated that the adsorption start very fast on the external surface followed by a slower adsorption on the internal surface of the nano-composite.

The solution pH plays important role on the removal of CV from aqueous solution because the dye is very sensitive to the pH condition. Fig. 7c presented the obtained data for the removal capacity of the entire nano-composite over a pH range from 2 to 11 (Experimental conditions: 50 mg nano-composite, 20 ml sample, 120 min contact time, 298 K, and CV concentration 10 mg L$^{-1}$). Generally, it can be observed that %CV removed was enhanced by increasing solution pH. At a pH value of 2.0, the % removed was 76.8%, which increased to 84.7% at pH value of 8.0, then increased to 100% at a pH value of 11.0. This observed change may be due to the decrease in the charge density of the dye solution as a result of increasing pH, which greatly enhanced the electrostatic attraction between the positively charged CV molecules and the negatively charged nano-composite surface [30,31].

3.3.3. Kinetic studies

Adsorption kinetics is the study of the adsorption process rate to understand the factors that affect the adsorption process to attain equilibrium in a reasonable length of time. The effect of time on the removal CV from an aqueous solution by nano-composite was studied kinetically at different temperature and the results were presented in Fig. 8. In general, the CV removal was slightly enhanced by rising the solution temperature, and more importantly, the time required to reach equilibrium was decreased. The equilibrium time was decreased from 120 min, to 45 min, and 30 min, at 298 K, 313 K, and 328 K, respectively. This may indicated the endothermic nature of the removal of CV by nano-composite.

Kinetic studies usually use mathematical models to describe the interactions between the adsorbent and the adsorbate. The most frequently used kinetic models are the pseudo-first-order [32]
and pseudo-second-order kinetic models [33]. The linearized rate equations for both models are:

\[
\ln \left(\frac{q_e}{q_t} \right) = \ln \frac{q_e}{C_0} - k_1 t
\]

\[
\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e}
\]

where \(k_1 \) and \(k_2 \) are the pseudo-first-order and pseudo-second-order adsorption rate coefficients, respectively and \(q_e \) and \(q_t \) are the values of the amount adsorbed per unit mass at equilibrium and at any time \(t \), respectively.

Plotting \(\ln (q_e - q_t) \) vs. \(t \) for the experimental data at different temperatures gave straight lines with unacceptable regression coefficients (Table 2), indicating the unsuitability of the pseudo-first-order for modeling the adsorption of the CV by nano-composite. On the other hand, by applying of the pseudo-second-order kinetic model, the plotting of \(t/q_t \) versus \(t \) (Fig. 9) give a linear relationship, with excellent regression coefficients \((R^2 > 0.99) \), from which \(q_e \) and \(k_2 \) were estimated from the slope and intercept, respectively (Table 2). Also, the table shows that the amounts CV adsorbed per unit mass of nano-composite at equilibrium \((q_{e,calc}) \) were in good agreement with experimental values \((q_{e,exp}) \). These findings confirm the suitability of the pseudo-second-order rate equation for modeling the adsorption of CV by nano-composite.

According to the present study, the maximum adsorption capacity of CV by nano-composite obtained from an aqueous solution is 5.0 mg g\(^{-1}\) (Table 2). This value is much higher than the other adsorbents that are used for the removal of CV from aqueous solutions. For example, different nano-composite hydrogels with various clay contents were evaluated as a potential adsorbent for the removal of CV from aqueous solutions and the adsorption capacities were in the range 2.74–4.71 mg g\(^{-1}\) after 12 h [34]. In another study [35], soil-silver nano-composite was used for the removal of CV, and the adsorption capacity was 1.918 mg g\(^{-1}\) for
monolayer coverage. Also, in another study [36] the adsorption capacities for the removal of CV were 2.56 mg g$^{-1}$ using coir pitch, 4.14 mg g$^{-1}$ using Calotropis procera leaf and 6.25 mg g$^{-1}$ using coal. On the other hand, there were many studies reported substantially higher adsorption capacities compared with the present work, such as activated sintering process red mud (12.0 mg g$^{-1}$) [37] and powdered mycelial biomass of Ceriporia lacerate (239 mg g$^{-1}$) [38].

3.3.4 Thermodynamic studies

Thermodynamic parameters: Gibbs free energy change (ΔG), enthalpy change (ΔH) and, entropy change (ΔS), were calculated to explore the spontaneous nature of the adsorption process. Thermodynamic parameters were calculated from the variation of the thermodynamic distribution coefficient D with a change in temperature according to the equation [39]:

$$D = \frac{q_e}{C_e}$$ \hspace{1cm} (4)

where q_e is the amount of CV adsorbed per unit mass of nano-composite (mg/g) at equilibrium, and C_e is the equilibrium concentration of CV in solution (mg/L). The ΔH and ΔS could be calculated according to the following equation [40,41]:

$$\log D = \frac{\Delta S}{R} - \frac{\Delta H}{2.303RT}$$ \hspace{1cm} (5)

The plotting of $\log D$ vs. $1/T$ (Fig. 10) exhibited straight lines from which ΔH and ΔS values were calculated from the slope and the intercept of the straight line, respectively. The ΔG values were calculated at 298 K from the relation:

$$\Delta G = \Delta H - T \Delta S$$ \hspace{1cm} (6)

Table 2

Pseudo-first-order, and pseudo-second-order kinetic models parameters for the adsorption of crystal violet by nano-composite at different temperatures.

<table>
<thead>
<tr>
<th>R^2</th>
<th>k_1 (1/min)</th>
<th>$q_{e,calc}$ (mg/g)</th>
<th>$q_{e,exp}$ (mg/g)</th>
<th>Temperature (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudo-first-order kinetic model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.959</td>
<td>0.034</td>
<td>3.34</td>
<td>5.00</td>
<td>298</td>
</tr>
<tr>
<td>0.883</td>
<td>0.069</td>
<td>3.12</td>
<td>5.00</td>
<td>313</td>
</tr>
<tr>
<td>0.764</td>
<td>0.093</td>
<td>1.68</td>
<td>5.00</td>
<td>328</td>
</tr>
<tr>
<td>Pseudo-second-order kinetic model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.996</td>
<td>0.028</td>
<td>5.15</td>
<td>5.00</td>
<td>298</td>
</tr>
<tr>
<td>0.997</td>
<td>0.040</td>
<td>5.23</td>
<td>5.00</td>
<td>313</td>
</tr>
<tr>
<td>0.999</td>
<td>0.065</td>
<td>5.17</td>
<td>5.00</td>
<td>328</td>
</tr>
</tbody>
</table>

Fig. 8. Effect of temperature on the removal of CV. (Experimental conditions: 100 mg nano-composite, 100 ml sample volume, pH 8.0, and CV concentration 5 mg L$^{-1}$).

Fig. 9. Pseudo-second-order plots for the removal of CV by nano-composite at different temperatures. (Experimental conditions: 100 mg nano-composite, 100 ml sample volume, pH 8.0, and CV concentration 5 mg L$^{-1}$).
3.3.5. Environmental applications

Finally, real water samples were used to study the feasibility and applicability of the entire nano-composite for the adsorption/removal of the CV. The concentration of the CV was measured first on TWS and KAUIWW samples and the results indicate the absence of the CV in both real water samples. Accordingly, the two real water samples were spiked with concentrated CV solution to obtain final concentration of 10.0 mg L⁻¹ for both real water samples, and both solutions left over night to equilibrate. Then, 70 mg of the nano-composite was added to the spiked real water samples at pH 8.0, 298 K, for 120 min. The% CV removed was found to be 99.2% and 98.1% for the TWS and KAUIWW, respectively. These values agreed very well with those obtained in the model solution as the% CV removed was 100%, under the same experimental conditions.

4. Conclusions

Multi-walled carbon nanotubes (MWCNTs) were successfully decorated with magnetic MnₓZn₁₋ₓFe₂O₄ using simple sucrose method. The synthesized nano-composite was characterized using XRD, FT-IR, TEM, BET and VSM techniques to explore its structure, morphology and magnetic properties. The magnetic measurements indicated that the nano-composite could be easily separated from their dispersed solution using a normal magnet, which enhance its uses in the remediation applications depending on its surface properties. The adsorption/removal experiments for the crystal violet dye from aqueous solution, as an example, using the entire nano-composite was found to be greatly depending on mass, contact time, pH and temperature. The optimum condition for the efficient removal was investigated and discussed.

Acknowledgements

This paper was funded by the Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia. The authors therefore acknowledge with thanks this technical and financial support.

References

R. Gimenes, M.R. Baldissera, M.R.A. da Silva, C.A. da Silveira, D.A.W. Soares, L.A. Perazolli, M.R. da Silva, M.A. Zaghetto, Structural and magnetic characterization of Mn$_{x}$Zn$_{1-x}$Fe$_2$O$_4$ ($x = 0.2; 0.35; 0.65; 0.8; 1.0$) ferrites obtained by the citrate precursor method, Ceram. Int. 38 (2012) 741–746.

S. Lagergren, Zur theore der sogenannten adsorption gelster stoffe, Kungliga Svenska Vetenskapsakademien, Handlingar 24 (1898) 1–39.

