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< Comparison of three techniques for ATOFMS data analysis: PMF, K-means and Art-2a.
< PMF is applied, for the first time, to individual particle mass spectra.
< Efficient mass spectra deconvolution by single particle PMF analysis.
< Extraction of different organic families and two EC contributions.
< Results have been compared with independent measurements.
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a b s t r a c t

The Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) is one of few instruments able to measure the
size and mass spectra of individual airborne particles with high temporal resolution. Data analysis is
challenging and in the present study, we apply three different techniques (PMF, ART-2a and K-means) to
a regional ATOFMS dataset collected at Harwell, UK. For the first time, Positive Matrix Factorization (PMF)
was directly applied to single particle mass spectra as opposed to clusters already generated by the other
methods. The analysis was performed on a total of 56,898 single particle mass spectra allowing the
extraction of 10 factors, their temporal trends and size distributions, named CNOeCOOH (cyanide,
oxidized organic nitrogen and carboxylic acids), SUL (sulphate), NH4-OOA (ammonium and oxidized
organic aerosol), NaCl, ECþ (elemental carbon positive fragments), OC-Arom (aromatic organic carbon),
EC� (elemental carbon negative fragments), K (potassium), NIT (nitrate) and OCeCHNO (organic
nitrogen). The 10 factor solution from single particle PMF analysis explained 45% of variance of the total
dataset, but the factors are well defined from a chemical point of view. Different EC and OC components
were separated: fresh EC (factor EC�) from aged EC (factor ECþ) and different organic families (factors
NH4-OOA, OC-Arom, OCeCHNO and CNOeCOOH). A comparison was conducted between PMF, K-means
cluster analysis and the ART-2a artificial neural network. K-means and ART-2a give broadly overlapping
results (with 9 clusters, each describing the full composition of a particle type), while PMF, by effecting
spectral deconvolution, was able to extract and separate the different chemical species contributing to
particles, but loses some information on internal mixing. Relationships were also examined between the
estimated volumes of ATOFMS PMF factors and species concentrations measured independently by
GRAEGOR and AMS instruments, showing generally moderate to strong correlations.

� 2012 Elsevier Ltd. All rights reserved.
: þ39 049 8275271.

All rights reserved.
1. Introduction

In the last decade numerous epidemiological studies have
revealed a significant correlation between environmental particu-
late matter concentrations and adverse health effects. However,
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since most studies have used PM10 or PM2.5 mass concentrations to
investigate correlations with human health outcomes it is likely
that the health impacts of PM have been in most cases under-
estimated (Harrison et al., 2010). Atmospheric aerosol is especially
problematic to characterize because of its complex and variable
composition, wide size range and a broad spectrum of both natural
and anthropogenic sources. In this connection, on-line measure-
ments deploying Mass Spectrometric techniques are very prom-
ising in order to characterize both aerosol size and chemical
composition for a wide range of substances (Pratt and Prather,
2011). Aerosol Time-of-Flight Mass Spectrometry (ATOFMS) is
particularly attractive as it allows size and chemical character-
isation by measuring the aerodynamic diameter and positive and
negative ion mass spectra of individual particles in real time within
the diameter range of 0.1e3 mm (Rebotier and Prather, 2007; Gard
et al., 1997; Dall’Osto et al., 2004; Drewnick et al., 2008). The
ATOFMS can measure in a single campaign hundreds of thousands
of single particle mass spectra which present a considerable data
analysis challenge.

Successful analysis of ATOFMS data requires fast and reliable
processing and interpretation of the huge amount of data gener-
ated. In order to reduce the time of analysis and the pre-
deterministic nature of the manual classification, statistical
methods can be used. The general aim of classification is to find
a structure, i.e. groups of similar or related objects in the available
dataset (Hinds, 1999). The main difference between a clustering
method and manual classification is that the clustering method has
the ability to perform analysis over the whole spectrum, rather
than as individual peaks. By applying a statistical algorithm to the
ATOFMS dataset, the user bias of determining which chemical
information is more important in the spectra is minimised.
Therefore single particle data are usually treated with a clustering
algorithm, such as K-means or ART-2a, in order to group particles of
similar size range and chemical composition (Rebotier and Prather,
2007; Gross et al., 2010; Healy et al., 2009; Pekney et al., 2006).

In environmental studies, factor analysis techniques (PCA, PCFA,
PMF) are widely used to perform source apportionment from data
taken at receptor sites. PMF analysis has been successfully applied
to 24 h averaged data from analysis of particles collected on filters
(Stortini et al., 2009; Jia et al., 2010; Do�gan et al., 2008; Bari et al.,
2009; Alleman et al., 2010) whose principal limitation is the
possibility of losing the point source contributions as the charac-
teristic time of plumes from local sources is short. Thus the results
obtained are usually limited to the extraction of the 3 or 4 main
sources like crustal, marine, combustion sources and secondary
particulate matter, while other sources can be extracted only with
a wide range of chemical analyses, size segregation and more
frequent measurements (Pekney et al., 2006; Wexler and Johnston,
2008). On the other hand, PMF applied to high-resolution data
(only obtainable for long periods with an on-line technique) can be
a useful tool for this purpose. For example PMF analysis was
successfully applied to 1 h semi-continuous characterization data
of both particulate and gas phase composition leading to the
extraction of 6 main sources, while by combining ATOFMS and AMS
(aerosol mass spectrometry) data to the original dataset the PMF
was able to identify 16 factors during a field campaign in Riverside,
CA (Eatough et al., 2008).

PMF has previously been applied to ATOFMS data after clus-
tering by another technique (e.g. McGuire et al., 2011), but not to
data before clustering. In the present study, for the first time, PMF
analysis is directly applied to single particlemass spectra in order to
deconvolve the different chemical species which contribute to
ambient particulate matter in a rural background location in Har-
well (UK). A comparison among three different data treatment
techniques (PMF, K-means, ART-2a) is also conducted. Hourly
temporal trends of the factors extracted from single particle anal-
ysis are compared to each other in order to highlight possible
correlations and to study the mixing state of ambient particles.
Moreover, temporal trends of factors and clusters are compared
with independent ion (and non refractory organic carbon)
measurements to evaluate the performance of the data analysis.

2. Methodology

2.1. Measurement site and instrumentation

The sampling campaign was conducted in Harwell (51�3403200N,
1�1804900W), a rural background site in Oxfordshire (UK) from the
4th October to the 17th October 2008 deploying two on-line mass
spectrometric instruments, an Aerosol Time-of-Flight Mass Spec-
trometer (ATOFMS TSI Model 3800-100) and an Aerosol Mass
Spectrometer (Aerodyne high-resolution-ToF-AMS) (Drewnick
et al., 2005; DeCarlo et al., 2006; Canagaratna et al., 2007;
Jimenez et al., 2003), and a GRAEGOR (Thomas et al., 2009), which
performs semi-continuous measurements of water-soluble trace
gas species (NH3, HNO3, HONO, HCl and SO2) collected by two wet-
annular rotating denuders and their related particulate compounds
(NH4

þ, NO3
�, Cl�, SO4

2�) collected in series by two steam-jet aerosol
collectors (SJAC). Sample solutions are analysed on-line by ion
chromatography for anions and flow injection analysis for
ammonia and ammonium (Thomas et al., 2009). During the
campaign, the two inlets of GRAEGOR were placed at the same
height (roughly 2 m above ground) collecting TSP and PM2.5
simultaneously.

Hourly data for gaseous pollutant concentrations measured as
part of the UK national air quality network and local weather were
obtained from the UK national air quality archive (www.airquality.
co.uk). Five day air mass back-trajectories arriving at Harwell at
three different altitudes (100, 500 and 1000 m) were obtained
using HYSPLIT (Hybrid Single Particle Lagrangian Integrated
Trajectory Model) (Draxler and Rolph, 2003). Details of Harwell
aerosol characterization and air mass trajectories have been
provided in supplementary material.

2.2. ATOFMS technique

The ATOFMS (TSI 3800-100) collects, in real-time, bipolar mass
spectra of individual aerosol particles. The instrument is consti-
tuted by an aerosol inlet, a sizing region and a mass spectrometer
detector. In the aerosol inlet, particles are introduced into a vacuum
system region through a converging nozzle, then focused through
aerodynamic lenses into a narrow particle beam, which travels
through the sizing region. The aerodynamic diameter of individual
particles is determined from the time of flight between two
continuous-wave laser beams (l ¼ 532 nm). After that, particles
enter into the mass spectrometer region where a pulsed high
power desorption/ionization laser (l ¼ 266 nm) is triggered on the
basis of the transit time of the particle measured in the sizing
region. Mass analysis is then provided by a bipolar time of flight
reflectron mass spectrometer (Gard et al., 1997; Dall’Osto et al.,
2004; Drewnick et al., 2008).

During the campaign, the ATOFMS sampled aerosol through a 3/
4 inch diameter copper pipe mounted vertically and in-line with
the Aerodynamic Focussing Lens (AFL). The inlet of the copper pipe
(roughly 4 m above the ground) was protected using a simple
hockey stick rain cap. The ATOFMS itself was fitted with a TSI 3800-
100 AFL which admitted the aerosol at nominal volumetric flow
rate of 0.1 L min�1 operating at a pressure of 2 torr. The device has
a quoted size range of 100e3000 nm (Su et al., 2004) although in
practice during the sampling campaign our system was capable of
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hitting 56,898 particles with a measured aerodynamic diameter up
to 3019 nm.

Before data analysis, single particles mass spectrawere exported
using the TSI MS-Analyze software. The peak-list were constructed
using the following parameters: minimum peak height of 20 units
above the baseline, minimum area of 20 units and representing at
least the 0.005% of the total area in the particle mass spectrum. The
data obtained were analysed using positive matrix factorization
(PMF), K-means cluster analysis and artificial neural network (ART-
2a) analysis.

2.3. Positive matrix factorization (PMF) analysis

The PMF analysis was performed using the program PMF2
(Paatero and Tapper, 1994; Paatero, 1998). Briefly, the positive
matrix factorization model (whose principles are detailed else-
where (Paatero and Tapper, 1994; Paatero, 1998)) solves the
following equation X ¼ GF þ E where X is the original n � m data
matrix, G is the n � p scores matrix (factors weight) and F is the
p � m loadings matrix (factors profile), E represents the n � m
residuals matrix. In the present case n is the number of particles,m
is the number of m/z signals of the spectra and p is the number of
factors. The exact number of factors to use was determined by
monitoring the parameters suggested by Lee et al. (1999) and the
chemical interpretation of the factors profile.

Datamatrices. Before the PMF analysis the dataset was reduced to
106 major m/z values (�146, �144, �124, �121, �119, �104, �101,
�99, �98, �97, �96, �95, �89, �88, �85, �84, �81, �80, �79, �76,
�73, �72, �71, �64, �63, �62, �61, �60, �59, �49, �48, �46, �45,
�44, �43, �42, �37, �36, �35, �27, �26, �25, �24, �17, �16, �15,
�14,�13,�12, 7, 12,15,18, 23, 24, 27, 36, 37, 39, 41, 43, 46, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 69, 70, 71, 72, 73, 74,
75, 77, 81, 83, 84, 85, 86, 87, 88, 91, 94, 96, 108, 115,118,120, 128, 132,
138, 139, 207) and 55,357 particles by eliminating the bad variables
(the ones that have more than 55,000 zero point values on a total
number of particles of 56,898) and the particles with a diameter
below the calibration range. Absolute area of peaks was considered
for the analysis, which was directly applied to single particle mass
spectra.

2.3.1. Data uncertainties
Positive Matrix Factorization relies on the accuracy of error

estimates to produce reliable non-negative results and uses the
estimates of the error in the data to provide both variable and
sample weighting. This is particularly important when less robust
datasets have to be used because of the presence of many missing
or below detection limit values, as in the case of mass spectra, that
could have the ability to define real sources or even be source
markers (Owega et al., 2004; Paatero and Tapper, 1994; Paatero,
1998; Zhang et al., 2008). The original noise of the data (xb ¼ 4,
sb ¼ 4), evaluated in zones of particle mass spectra without peaks,
was added to the input matrix by simulating it with random
numbers between 0 and 8, to avoid multiple zero entries. In fact,
circa 70% of data in the input matrix are null values. The detection
limit was evaluated as the blank value plus three times its standard
deviation by integrating the mass spectra signals in several regions
without peaks. The uncertainty of the data was evaluated in
a laboratory experiment in which equimolar solutions of various
salts were nebulised and analysed with the ATOFMS. The data
reproducibility was about 50% and 80% on the average signals for
positive and negative ions respectively. Moreover, the particle
diameter does not influence the signal intensity. These high
uncertainties reflect the principal limits of the ATOFMS analyzer
which reside in the size-dependent transmission losses (Allen et al.,
2000; Wenzel et al., 2003), laser intensity shot-to-shot variations
(Bhave et al., 2002), ionization matrix effects (Reilly et al., 2000),
different sensitivities among chemical species that make a semi-
quantitative analysis possible to achieve only beside independent
sampling measurements (Bhave et al., 2002; Gross et al., 2000;
McGuire et al., 2011).

The data uncertainties used for the PMF analysis were then
calculated as follow sij¼ tþ v $ xij, where t¼ 4DL¼ 64 and v¼ 0.4 in
order to give the sameweight to both lowand high intensity signals
and to avoid the effect of background noise upon the analysis. The
data uncertainty of 40% was chosen because there were no further
improvements by using a higher uncertainty or different uncer-
tainties for positive and negative ions in terms of quality of the fit
and explained variations. Although Q/Qexp ¼ 0.43 could indicate
a slight overestimation of real data uncertainty, the optimized value
seems to be a good compromise considering laboratory experi-
mental data.

2.3.2. PMF solution
The robustness of factor solutions was inspected by comparing

the temporal trends of factors through the different PMF solutions.
The global minimum of the factor solutionwas achieved by starting
from 50 seeds (pseudorandom starting points). The rotational
ambiguity was also tested by modifying the Fpeak parameter from
�2.5 to 2.5. The effect of this variation was not significant with
values in the range �0.5e0.5 while PMF analysis did not converge
with larger Fpeak values. Thus the PMF solution obtained could be
considered unique and Fpeak ¼ 0 was used for the final analysis.
After the PMF analysis, factor loadings (F) and scores (G) obtained
were respectively normalized and weighted as follows: each
factor loading vector was normalized by dividing it by a scalar
value bh ¼ Pm

j¼1 fhj and the corresponding score vector was
weighted by multiplying it by the same scalar bh.

2.4. Cluster analysis

2.4.1. K-means
ATOFMS particle mass spectra were directly imported into

ENCHILADA, an open source single particle mass spectra software
package (Gross et al., 2010), and 56,898 single particle mass spectra
were clustered using the K-means/Euclidean square algorithm
(MacQueen, 1967). K-means, which is a non hierarchical clustering
technique, starts with the random subdivision of objects (in this
case single particles) into a number of clusters previously defined
by the operator. The algorithm computes the total heterogeneity of
the system ET ¼ PC

c¼1
PIc

i¼1
PVc

v¼1ðxivc � xvcÞ2, which is related to
the Euclidean distance of every object to the centroid of the cluster
to which the object belongs to, and moves objects from a cluster to
another until it finds the minimum of system heterogeneity
(MacQueen, 1967; Gross et al., 2010). In the current study, data
analysis was repeated several times with increasing numbers of
clusters. The exact number of clusters to use was chosen by
monitoring ET and the chemical interpretation of the cluster
centroid mass spectra.

2.4.2. ART-2a
The ATOFMS dataset was imported into YAADA (Yet Another

ATOFMS Data Analyzer) and single particle mass spectra were
grouped with Adaptive Resonance Theory neural network, ART-2a
(Song et al., 1999). The parameters used for ART-2a in this experi-
ment were: learning rate 0.05, vigilance factor 0.85 and iterations
20. These are standard setting used in the ART-2a procedure on
ATOFMS data and further details of the parameters can be found
elsewhere (Song et al., 1999; Dall’Osto and Harrison, 2006; Rebotier
and Prather, 2007). An ART-2a area matrix (AM) of a particle cluster
represents the average intensity for eachm/z for all particles within
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a group. An ART-2a AM therefore reflects the typical mass spectrum
of the particles within a group.

2.5. Positive matrix factorization of AMS data

Standard unit mass resolution PMF analysis was carried out on
the organic matrix of the AMS dataset (Ulbrich et al., 2009). Two
general factors were found: LV-OOA (low-volatile oxidized organic
aerosol) and a SV-OOA (semi-volatile oxidized organic aerosol).
Whilst the mass spectrum of LV-OOA factor was found to be
equivalent to previous standard factor (Ulbrich et al., 2009), the
factor SV-OOA contains the standard aliphatic series together with
a high m/z 44 and m/z 60 signals, indicating a contribution from
biomass burning (Lanz et al., 2007).

3. Results and discussion

3.1. PMF analysis on individual particle mass spectra

Single particle mass spectra were subjected to Positive Matrix
Factorization analysis with solutions varying from 3 to 15 factors.
According to both mathematical parameters and chemical inter-
pretation of factor profiles, the 10 factor solution was selected. The
factors extracted are:

� F1 “CNOeCOOH”, explaining 2% of variance, presents peaks of
(CN�) (m/z �26) and oxidized species (CNO�) (m/z �42),
(CHOO�) (m/z �45) and (CH3COO�) (m/z �59), i.e. carboxylic
acids and organic nitrogen species (Angelino et al., 2001;
Dall’Osto and Harrison, 2006; Moffet et al., 2008);

� F2 “SUL” explaining 2% of variance, is characterized by themain
peak of sulphate (m/z �97);

� F3 “NH4-OOA” with an explained variation of 4%, is charac-
terized by peaks of (NH4

þ) (m/z 18) and secondary organic
species (C2H3

þ) (m/z 27) and (C2H3Oþ) (m/z 43);
� F4 “NaCl” explaining 6% of variance, is characterized by peaks
of (Naþ) (m/z 23), (Na2þ) (m/z 46), (Na2Oþ) (m/z 62), (Na2OHþ)
(m/z 63) and (Na2Clþ) (m/z 81/83);

� F5 “ECþ” explaining 7% of data variation, contains the
elemental carbon positive ions (Cþ, C2

þ, C3
þ at m/z ¼ 12, 24, 36);

� F6 “OC-Arom” explaining 5% of variance, contains signals
related to organic carbon and the benzene fragment (m/z 27, 41,
43, 51, 53, 55, 57, 63, 69, 77, 87, 91, 115) (McLafferty, 1983);

� F7 “EC�” explaining 3%, is characterized by elemental carbon
signals in the negative mass spectrum (C�, C2

�, C3� atm/z¼�12,
�24, �36);

� F8 “K” explaining 7%, contains the potassium signals (m/z 39/
41);

� F9 “NIT” explaining 4%, is characterized by the nitrate peaks
(m/z �46/�62);

� F10 “OCeCHNO” with an explained variation of 5%, is charac-
terized by organic carbon and organic carbon related to
nitrogen signals (m/z �26, 27, 37, 49e52, 60e63, 84e87).

The 10 factors obtained can explain only 45% of the total data
variance but they are characterized by clear and well defined
chemical patterns (Fig. 1). Despite the low explained variance, the
main signals constituting the factors are well represented and they
account for up to 89% of the variance of potassium for example.
Sulphate is explained at 84%, while themajority of the bad variables
(m/z values with low signal/noise ratio, i.e. m/z ¼ �146, �144,
�124, �121, �119, �104, �101) are not explained at all.

From inspection of residuals (Fig. S1) it appears that the PMF
analysis failed to extract a few components: this includes chloride
signals (m/z ¼ �35, �37), which are not present in the NaCl factor,
water signals and some other signals probably related to m/z
miscalibration problems (Dall’Osto and Harrison, 2006); however,
these signals do not influence the interpretation of factors. It
should be noted that despite the limited explained variance, which
could be a problem in relation to quantification, the factors’
chemical profiles obtained are clear and well-defined and thus of
qualitative value with the only exceptions of chloride and water
signals.

The results obtained demonstrate that Positive Matrix Factor-
ization analysis applied to individual particle mass spectra allows
the deconvolution of the mass spectra into the contributing specific
chemical species (factors K, NIT, SUL, NaCl) or their related classes
(factors ECþ, EC�, OC-Arom, OCeCHNO, CNOeCOOH, NH4-OOA) as
well as the extraction of their temporal trends and size distribu-
tions (Fig. S2). Positive and negative m/z signals are split into
different factors (ECþ and EC�, K, NIT, SUL for example) due to
different temporal trends either representing changing source
contributions or varying relative ionization efficiencies (Bhave
et al., 2002; Dall’Osto et al., 2006; Gross et al., 2000). Unlike K-
means or ART-2a, PMF does not cluster whole spectra, but disag-
gregates them into chemical constituents, or groups of constitu-
ents. The factors are used to reconstitute actual particle mass
spectra as shown in Fig. S3. From Fig. S3, it may be seen that more
than one factor is necessary to reconstruct each particle mass
spectrum, demonstrating the mass spectral deconvolution made by
PMF analysis on single particles. For example, in Fig. S3a, the
particle mass spectrum is reconstructed by 10% CNOeCOOH, 3%
SUL, 6% NH4-OOA, 26% OC-Arom, 10% EC�, 8% K, 8% NIT, and 29%
remains unexplained.

Factor time-series were calculated as hourly sum of factor
scores (not shown) and in equivalent numbers of particle (Fig. 2a).
Factor time series in equivalent number of particles are calculated
as sum over each hour of particle fractions attributable to each
factor by first calculating the fraction of particle i attributable to
factor h as

fFih ¼
Pm

j¼1 gihfhjPm
j¼1

�
gihfhj þ eij

� (1)

and then summing over each hour of particle fractions attributable
to factor h:

NfFh;hour ¼
X
hour

fFih (2)

The number size distributions were calculated by summing
the factor scores of particles within the same size bin (size bin
width of 0.01 mm). The factor size distributions are very similar
to each other and all are dominated by the accumulation mode.
The only exceptions are F4-NaCl, which presents a coarse
distribution because of its origin from sea spray, and F9-NIT
which presents both an accumulation and a coarse mode
(Fig. S2). Moreover, EC� and OCeCHNO factors clearly show
a distribution that is shifted towards smaller particles with a tail
in the direction of the Aitken mode particles. Despite not being
corrected for size-dependent inlet efficiencies, these distribu-
tions show predictable differences.

The analysis of the correlations between temporal trends of the
factors, obtained by summing the score values of each factor
within an hour, may give deeper insight into particle components
and their sources. Correlations between factors were studied
through the correlation coefficients (Fig. 3 and Table S1) in the
Pearson correlation test. Almost every correlation is statistically
significant (p-value <0.05) but to different degrees. The NaCl
seems to be an independent factor because it has no strong



Fig. 1. Mass Spectra of the 10 PMF factors.



Fig. 2. Temporal trends of (a) PMF factors expressed in equivalent number of particles,
(b) K-means clusters and (c) ART-2a clusters in number of particles.
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correlations with the other factors, according to the Cohen clas-
sification (Cohen, 1988) and it is not correlated to sulphate, EC�,
potassium, nitrate and OCeCHNO (p-value >0.05). Sulphate is
strongly correlatedwith potassium (r¼ 0.64), nitrate (r¼ 0.76) and
the organic carbon factors, OC-Arom (0.82) in particular. Potassium
and nitrate are strongly correlated with almost every factor and are
the dominant species, present in the majority of the particles
collected. This reflects, at least in part, the very high sensitivity of
the ATOFMS to these species (Gross et al., 2000).

Hourly temporal trends of EC� and ECþ present only a correla-
tion of medium strength (r ¼ 0.41). EC� is strongly correlated with
OCeCHNO (r ¼ 0.64) while ECþ is correlated more with secondary
species (r coefficients for NH4-OOA, 0.87 and NIT, 0.61). This result
suggests that the splitting of elemental carbon signals into two
factors may not only reflect different ionization and detection effi-
ciencies between positive and negative ions. It seems that the
ionization pattern is influenced by the matrix composition (Reilly
et al., 2000) distinguishing two different elemental carbon compo-
nents: one probably freshly emitted (EC�) and one more aged
(ECþ), modified by oxidation reactions, and internally mixed with
secondary species. In fact, as proposed by Reinard and Johnston
(2008) secondary species like nitrate and sulphate could limit the
electron availability, leading to a suppression of elemental carbon
fragments negatively charged, while potassium and sodium, on the
contrary, could lead to an enhancement of them. Moreover, the
temporal trend of the EC� is characterized by a peak event on 16/10/
2008 probably due to a combustion event near the sampling site.

3.2. Cluster analyses

3.2.1. K-means
The K-means analysis separated 13 clusters. Clusters obtained

frommiscalibrated mass spectra were eliminated and clusters with
similar profiles and temporal trends were recombined to generate
a total of 9 clusters (mass spectra are reported in Fig. S4a and their
temporal trends, expressed as the number of particles are reported
in Fig. 2b). The clusters are:

� K (14,140 particles, 25%), which presents high potassium
signals and some signals of low intensity due to Naþ, cyanide,
nitrate and sulphate;

� KeEC (3252 particles, 6%), which presents negative ions signals
related to elemental carbon, and to a lesser extent nitrate and
sulphate signals, while in the positive mass spectrum it pres-
ents signals of a low intensity, related to oxidized organic
carbon, potassium and sodium;

� NaCl (10,872, 19%), which mainly presents signals of sodium,
chloride, potassium and nitrate;

� EC (9436 particles, 17%), which presents both positive and
negative signals related to elemental carbon and signals of
nitrate and sulphate;

� KeSULeOCeNIT (1832 particles, 3%) presents CN�, NO�, NO2
�,

SO3
�, HSO3

�, HSO4
� signals in the negative mass spectrum and

potassium and OC aromatic signals in the positive mass
spectrum;

� OC (4625 particles, 8%) presents both aromatic, amine and
oxygenated carbon signals and traces of ammonium, nitrate,
sulphate and cyanide;

� KeNIT (6829 particles, 12%) is mainly characterized by potas-
sium and nitrate signals along with the presence of cyanide,
sulphate, ammonium and oxidized organic aerosol fragments
(m/z ¼ þ27/þ43);

� OOA (2006 particles, 4%), composed of signals corresponding to
C2H3

þ, C2H3Oþ and carboxylic acids along with ammonium,
potassium, nitrate and sulphate;



Fig. 3. Dendogram obtained from the hierarchical cluster analysis of the temporal trends of PMF factors (single linkage method, r-Pearson correlation coefficient distance measure).
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� FeeV (840 particles, 1%), characterized by signals atm/z¼þ51/
þ56/þ67 that could be assigned respectively to Vþ, Feþ and
VOþ and by signals at m/z ¼ þ58/þ60 that could be attributed
to nickel and, to a lesser extent, by sodium, potassium,
elemental carbon and nitrate.
3.2.2. ART-2a
The ART-2a algorithm generated 389 clusters used to describe

the dataset (total particles 56,898). The 50 most populated clusters
represent more than 63% of the mass spectra from the study and
thus were used for the results presented in this paper. The
remaining clusters were mostly made up of a majority of mis-
calibrated mass spectra. By manually merging similar clusters
according to their chemical and temporal profiles with the standard
procedure elsewhere described (Dall’Osto and Harrison, 2006), the
total number of clusters describing the whole database was
reduced to 9, representing about 63% of the total number of
particles sampled (Fig. S4b). The rest of the particles presented low
signal to noise ratios and therefore were not classified. The 9
clusters are:

� KeNIT (9613 particles, 17%) composed by potassium, nitrate,
cyanide and sulphate;

� NaCl (7852 particles, 14%) characterized by a mass spectrum
identical to K-means NaCl;

� OC (3172 particles, 6%) composed mainly by oxidized organic
aerosol and aromatic compounds, and potassium, cyanide,
nitrate and sulphate signals;

� KeSUL (2355 particles, 4%) with high potassium and sulphate
signals, along with ammonium, nitrate and aromatic organic
compounds;

� EC (5416 particles, 10%) which present a mass spectrum iden-
tical to the K-means EC;

� K (1656 particles, 3%) with a high potassium signal and Naþ, C3þ,
nitrate and sulphate signals;

� ECeFeeV (1337 particles, 2%) composed by high signals of
elemental carbon, and Vþ, Feþ and VOþ in the positive mass
spectrum while it does not present significant signals in the
negative mass spectrum;
� SOA (1066 particles, 2%) composed by ammonium, C2H3
þ,

C2H3Oþ, potassium, low elemental and organic carbon signals,
nitrate and sulphate;

� KeEC (3390 particles, 6%) elemental carbon signals, potassium,
sodium, cyanide, nitrate and sulphate.

Themass spectra of the 9 clusters are shown in Fig. S4b and their
time-series, expressed as number of particles are reported in Fig. 2c.
Results obtained from ART-2a analysis are very similar to the K-
means results. The two NaCl and EC clusters present the same mass
spectrum. The two K-EC clusters are similar but the ART-2a cluster
is characterized by higher cyanide, nitrate and sulphate signals. The
OC ART-2a cluster presents higher aromatic signals than OC K-
means cluster. The KeNIT K-means cluster presents aromatic
organic carbon signals which are indeed not present in the KeNIT
ART-2a cluster. The OOA K-means cluster has a mass spectrum
similar to the SOA ART-2a cluster, with a high contribution of NH4

þ,
C2H3

þ and C2H3Oþ, but the former presents carboxylic acids signals
while the latter presents more aromatic organic compounds
signals. The main differences reside in the abundance of the K
cluster, which is probably overestimated by K-means (25% of
particles in the K-means clustering and 3% of particles in the ART-2a
clustering), the ECeFeeV ART-2a cluster which exhibits strong
elemental carbon signals that are not present in the FeeV K-means
cluster, and KeSUL ART-2a cluster which has a different positive
mass spectrum, dominated by the potassium signal, while the
KeSULeOCeNIT K-means cluster has OC aromatic signals in the
positive mass spectrum.

The differences between the two techniques could reside in the
different approach to clustering the data. In K-means cluster anal-
ysis, all particles are assigned to the clusters by dividing them into
groups of similarity. The number of clusters is chosen by the oper-
ator who proceeds with a trial-and-error approach by incrementing
the number of clusters until the division into more clusters is
chemically meaningless (13 clusters in this case). On the contrary,
ART-2a (running with standard parameters) usually produces
a huge number of clusters (389 in this case). After that, clusters
made by only few particles are eliminated and only the main
contributing clusters are considered, and clusters of similar
composition and size distribution are merged manually. Thus, ART-
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2a may give more clear and well defined clusters than K-means
which considersmore particles than the former in the final solution.

3.3. Comparison between results of PMF analysis on single particles,
K-means cluster analysis and ART-2a artificial neural network
analysis

PMF and cluster analysis can be viewed as complementary
techniques. While K-means and Art-2 give a rapid classification of
whole particles by dividing them into classes of similarity the PMF
analysis on single particle mass spectra permits the extraction of
the chemical species constituting the particles. Much of the infor-
mation on internal mixing is lost.

The results of the correlation analysis (Pearson correlation test)
among cluster and factor temporal trends (in equivalent number of
particles) which have a similar chemical profile show a good
agreement (Table 1). For instance, taking into account K-means
results, PMF F8-K is correlated to the K cluster with r2 ¼ 0.99 and p-
value ¼ <0.001 (Pearson correlation test); F4-NaCl is correlated to
the NaCl cluster (r2 ¼ 0.91, p-value ¼ <0.001) and F3 NH4-OOA is
correlated to the OOA cluster (r2 ¼ 0.83, p-value ¼ <0.001). The
cross correlations between factors and cluster temporal trends
confirm the conclusions obtained from the cross correlations
between PMF factors (Fig. 3 and Table S1). The NaCl cluster presents
a strong correlation only with the NaCl factor. In fact, NaCl is an
independent particle type which is directly associated with the sea
spray source. The ECþ factor is strongly correlated with clusters
characterized by secondary aerosol (OOA r2 ¼ 0.53, K r2 ¼ 0.59,
KeNIT r2 ¼ 0.36) while EC� is not strongly correlated with any
cluster, confirming the two different elemental carbon contribu-
tions to aged (ECþ) and fresh (EC�) particles. The cluster Fe�V is
strongly correlated with the ECþ factor (r2 ¼ 0.49) probably
because of a common origin from oil based fuel combustion (Korn
et al., 2007) or transported from coal-fired power plants in Central
Europe. In fact, ECþ abundance increased during long-range
transport of air masses from Central Europe (see SI). Moreover,
the KeEC cluster which is moderately correlated to organic factors
as well as EC�, could represent a biomass burning signature (Bi
et al., 2011; Healy et al., 2012). CNOeCOOH, SUL and NH4-OOA
PMF factors, as expected, are present in multiple clusters as they
are highly oxidized aerosol components produced during ageing
processes.

3.4. Comparison of PMF analysis results with independent
measurements

Alongside the ATOFMS, inorganic water soluble components in
the TSP and PM2.5 size fractions were measured by GRAEGOR, and
Table 1
Coefficient of determination (r2) values of the linear regressions between hourly temporal
2a clusters.a

PMF factors r2 (PMF factors vs K-means clusters)

K KeEC NaCl EC KeSULeOCeNIT OC KeNIT FeeV

CNOeCOOH 0.43 0.34 0.00 0.09 0.28 0.09 0.25 0.02
SUL 0.53 0.20 0.00 0.28 0.51 0.12 0.45 0.10
NH4-OOA 0.76 0.01 0.11 0.68 0.01 0.17 0.64 0.27
NaCl 0.06 0.06 0.91 0.12 0.06 0.00 0.03 0.06
ECþ 0.59 0.00 0.14 0.99 0.00 0.02 0.36 0.49
OC-Arom 0.54 0.31 0.00 0.25 0.36 0.29 0.59 0.08
EC� 0.53 0.35 0.02 0.42 0.06 0.17 0.42 0.16
K 0.99 0.03 0.04 0.56 0.03 0.04 0.47 0.17
NIT 0.60 0.12 0.00 0.37 0.12 0.19 0.92 0.12
OCeCHNO 0.14 0.40 0.00 0.08 0.11 0.83 0.49 0.03

a Strong correlated results (r2 > 0.5) are presented in bold.
in non-refractory PM1 (NR-PM1) by the AMS, defined as those
components within PM1 that volatilise rapidly at the vaporiser
temperature of 600 �C. In order to validate the PMF factor temporal
trends, a correlation analysis (r-Pearson test) was made between
them and these independent measurements. In Fig. 4 the sulphate,
nitrate, chloride, ammonium and organic concentrations are re-
ported compared to the corresponding PMF ATOFMS factors.

For this purpose, factor temporal trends were calculated under
the simplifying assumptions that all particles are homogenous,
spherical and a constant mass of material is ionized from each
particle, irrespective of their size (Dall’Osto et al., 2006). Particle
volume was multiplied by the percentage contribution of each
factor to it. The hourly time-series (in volume) of the factors were
then calculated by summing the partial volume of each particle
attributable to each factor (Fig. 4). For comparison with AMS PM1
concentrations, PMF factor partial volumes were integrated for
particles of <1 mm diameter. It is important to note that ATOFMS
time-series were not corrected for size-dependent inlet efficiencies
(Dall’Osto et al., 2006).

The SUL factor (expressed in volume of particles) is significantly
correlated with sulphate concentrations in PM2.5 (r2 ¼ 0.34, p-
value ¼ <0.001) and in AMS PM1 (r2 ¼ 0.41, p-value ¼ <0.001). In
the case of nitrate, the NIT PMF factor temporal trend is weakly
correlated with nitrate concentration in PM2.5 (r2 ¼ 0.07, p-
value ¼ <0.001), but is strongly correlated with nitrate in NR-PM1

(r2 ¼ 0.54, p-value ¼ <0.001). The difference in the correlations
may reflect different instrumental inlet characteristics leading to
different large particle contributions to the temporal patterns. In
fact, while NR-PM1 is fairly specific to NH4NO3, PM2.5 can contain
also significant amount of NaNO3, produced by sea salt processing
through HNO3. NIT PMF factor presents both an accumulation and
a coarse mode, and the latter could be measured with higher effi-
ciency than the former, and would also contain contributions that
are not included in the NR-PM1. The high correlations seen for the
NR-PM1 fraction are however reassuring.

The NaCl factor is weakly but significantly correlated to the
chloride measurements in PM2.5 (r2 ¼ 0.11, p-value ¼ <0.001). On
the contrary AMS chloride is not significantly correlated with the
GRAEGOR chloride measurements (p-value ¼ 0.32 for TSP and 0.46
for PM2.5), which shows much larger concentrations, because the
AMS only detects the non-refractory fractionwhich is thought to be
dominated by NH4Cl. The NH4-OOA factor, which contains both
OOA and ammonium signals, is correlated with the ammonium
concentration in PM2.5 (r2 ¼ 0.61, p-value ¼<0.001) and in NR-PM1
(r2 ¼ 0.59, p-value ¼ <0.001) and to the organic component
measured by the AMS (r2 ¼ 0.60, p-value ¼ <0.001). The non-
refractory organic concentration measured by AMS is strongly
correlated with ammonium concentration and presents the highest
trends of PMF factors (equivalent number of particles) and K-means clusters or ART-

r2 (PMF factors vs ART-2a clusters)

OOA KeNIT NaCl OC KeSUL EC K ECeFeeV SOA KeEC

0.12 0.29 0.00 0.19 0.27 0.10 0.09 0.01 0.04 0.16
0.37 0.47 0.00 0.33 0.42 0.31 0.30 0.08 0.22 0.07
0.83 0.78 0.12 0.19 0.46 0.76 0.73 0.23 0.48 0.03
0.08 0.07 0.82 0.00 0.05 0.12 0.12 0.05 0.07 0.01
0.53 0.53 0.16 0.04 0.38 0.87 0.60 0.66 0.24 0.01
0.42 0.53 0.00 0.45 0.34 0.30 0.29 0.05 0.26 0.11
0.39 0.43 0.02 0.17 0.26 0.42 0.32 0.18 0.23 0.08
0.61 0.78 0.05 0.11 0.64 0.58 0.60 0.21 0.25 0.07
0.64 0.77 0.00 0.50 0.21 0.50 0.54 0.08 0.42 0.06
0.30 0.24 0.00 0.51 0.03 0.14 0.12 0.01 0.36 0.11



Fig. 4. Hourly time-series of (a) chloride concentrations and NaCl factor, (b) nitrate concentrations and NIT factor, (c) sulphate concentrations and SUL factor, (d) ammonium,
organic concentrations and NH4-OOA factor.
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correlation with the NH4-OOA PMF factor rather than with other
organic factors. ATOFMS factors were also compared to TSP ion
measurements, but because of different inlet characteristics, the
correlations are in general weak or not significant and the results
are not reported.

The analysis shows clearly that PMF factors are highly signifi-
cantly correlated with the corresponding chemical species mass
concentrations, with a better agreement with NR-PM1 (if ATOFMS
PMF factors are integrated for particles <1 mm). On the contrary,
clustering analytical techniques such as K-means and ART-2a
cannot disaggregate the contribution of the different chemical
species present in the particles. For this reason, a direct comparison
between the time-series of a cluster and the mass concentration of
one of its components is not appropriate. In fact, such correlation
would be highly dependent on particle mixing-state. Thus, the
disaggregation of species made by the PMF analysis (on single
particles) proves very useful for quantification purposes of the
principal substances or classes of substances constituting the
particles. The determination coefficient, slope and intercept of the
linear regressions between ATOFMS factors and the species
concentrations measured by AMS in NR-PM1 are reported in
Supplementary Material. (Table S2). Moreover, the correlation
between PMF factors and the corresponding species concentrations
may be even stronger if ATOFMS data are corrected for size-
dependent transmission losses (Jeong et al., 2011).

3.5. Comparison between ATOFMS-PMF factors and AMS-PMF
factors for secondary organic aerosol

In order to further validate the PMF analysis on single particle
ATOFMS spectra, the factors obtained were compared with stan-
dard factors (Ulbrich et al., 2009) extracted by PMF analysis on the
organicmatrix of the AMSmeasurements (Table S3, Supplementary
Materials). The comparison was conducted considering ATOFMS-
PMF factor time-series in volume (integrated over particles
of <1 mm diameter) because AMS-PMF factors are expressed in
mass concentration (mg m�3). The results show that ATOFMS-PMF
factors associated with aged aerosol (NH4-OOA and ECþ) are
better correlated with the most aged LV-OOA AMS-PMF factor
(r2 ¼ 0.66 and 0.67 for NH4-OOA and ECþ respectively) rather than
with SV-OOA (r2 ¼ 0.55 and 0.43 for NH4-OOA and ECþ respec-
tively). On the contrary, fresh or less aged components (ATOFMS-
PMF factors OC-Arom and OCeCHNO) are better correlated with
the less aged SV-OOA AMS-PMF factor (r2 ¼ 0.54 and 0.37 for OC-
Arom and OCeCHNO respectively) rather than with LV-OOA
(r2 ¼ 0.36 and 0.07 for OC-Arom and OCeCHNO respectively).

Unexpectedly, EC� presented a correlation of medium intensity
with both AMS-PMF factors (r2 ¼ 0.45 for LV-OOA and r2 ¼ 0.43 for
SV-OOA). However, the correlations are stronger, especially with
respect to the less aged SV-OOA if the EC� time-series is expressed
as the equivalent number of particles (r2¼ 0.62). This may be due to
the fact that using time-series calculated in volumewemay further
underestimate the contribution of small particles because of size-
dependent transmission losses (Gross et al., 2000; Dall’Osto et al.,
2006).

3.6. Harwell aerosol characterization

From the study of the back-trajectories of air masses arriving in
Harwell during the sampling campaign (detailed in S.M.), it was
clear that the NaCl factor was dominant during the sampling of
marine-polar air masses, while during periods of sampling conti-
nental air masses (from Central Europe) elemental carbon, potas-
sium, nitrate and sulphate concentrations increased. This is as
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expected as Harwell is a rural background site and it should not be
influenced substantially by local primary sources. More interesting
were two marine-continental periods. The first was characterized
by air masses coming from the ocean, crossing Scotland and
England before arriving at the Harwell site. It was characterized by
high concentrations of NOx and other primary gaseous pollutants,
and a high abundance of the OCeCHNO and EC� factors. The
secondwas characterized by air masses coming from thewest coast
of France, low concentrations of primary gaseous pollutants and
a high amount of CNOeCOOH and ECþ PMF factors (Table S4). Thus,
the first period was characterized by freshly emitted aerosol while
the second period is characterized by aged and chemically oxidized
particles.

4. Conclusions

PMF analysis has been applied to single particle ATOFMS mass
spectra and allows the extraction and separation of significant
contributing chemical components. In general, PMF factor profiles
identify well defined chemical species or classes of substances from
inorganic (NaCl, K, NIT, SUL) to organic families (ECþ, EC�, OC-
Arom, OCeCHNO, CNOeCOOH, NH4-OOA). There is a partial loss
of information on internal mixing of particles.

From the cross correlation analysis among temporal trends of
PMF factors it was possible to identify two elemental carbon
components: the EC� factor, correlated to OCeCHNO, probably
related to anthropogenic primary emissions and the ECþ factor
present in aged particles internally mixed with secondary species.
Furthermore, this is the first time in which different families of
organic carbon have been extracted from ATOFMS data, including
aromatic, oxidized organic compound and two different organic
nitrogen components: primary (OCeCHNO) and oxidized
(CNOeCOOH). Oxidized carbon in the form of oxidized organic
nitrogen and carboxylic acids is found only in aged aerosol while
nitrate and sulphate are found in different proportions: the
former in less aged aerosol such as in urban plumes while
sulphate arose predominantly from long-range transport from
continental sources.

From the comparison of different data treatment techniques it
emerges that K-means cluster analysis and ART-2a artificial
neural network analysis give similar results, with particles
grouped in clusters of similar composition, reflective of aerosol
sources, chemical processes and a combination of both, while
PMF analysis of single particle mass spectra allows the decon-
volution of the mass spectra and the extraction of some
constituent components. Moreover, when expressed in volume,
the temporal trends of PMF factors are highly significantly
correlated to the corresponding chemical species concentration
measured by independent instruments, even in the case of
highly internally mixed particles, while the correlation between
cluster temporal trends and corresponding chemical species
concentration is highly dependent upon particle mixing state.
Thus PMF analysis may prove useful for the quantification of the
main components of PM data collected with the ATOFMS
instrument. However, better repeatability of the ionization
process and higher efficiency of particle detection would
improve its quantification capability.
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