Association between exhaled breath condensate nitrate plus nitrite levels with ambient coarse particle exposure in subjects with airways disease

Author(s): Manney, S (Manney, Sarah)²; Meddings, CM (Meddings, C. M.)³; Harrison, RM (Harrison, R. M.)³; Mansur, AH (Mansur, A. H.)¹; Karakatsani, A (Karakatsani, A.)⁴; Analitis, A (Analitis, A.)⁵; Katsouyanni, K (Katsouyanni, Klea)⁵; Perifanou, D (Perifanou, D.)⁶; Kavouras, IG (Kavouras, I. G.)⁶; Kotronarou, N (Kotronarou, N.)⁶; de Hartog, JJ (de Hartog, J. J.)¹; Pekkanen, J (Pekkanen, J.)⁸; Hameri, K (Hameri, K.)¹⁰; ten Brink, H (ten Brink, Harry)¹¹; Hoek, G (Hoek, Gerard)¹; Ayres, JG (Ayres, Jon G.)¹

Source: OCCUPATIONAL AND ENVIRONMENTAL MEDICINE Volume: 69 Issue: 9 Pages: 663-669 Published: SEP 2012

Abstract: Objectives Studies of individual inflammatory responses to exposure to air pollution are few but are important in defining the most sensitive markers in better understanding pathophysiological pathways in the lung. The goal of this study was to assess whether exposure to airborne particles is associated with oxidative stress in an epidemiological setting.

Methods The authors assessed exposure to particulate matter air pollution in four European cities in relation to levels of nitrite plus nitrate (NOx) in exhaled breath condensate (EBC) measurements in 133 subjects with asthma or chronic obstructive pulmonary disease using an EBC capture method developed for field use. In each subject, three measurements were collected. Exposure measurements included particles smaller than 10 mm (PM(10)), smaller than 2.5 mm (PM(2.5)) and particle number counts at a central site, outdoors near the subject's home and indoors.

Results There were positive and significant relationships between EBC NOx and coarse particles at the central sampling sites (increase of 20.4% (95% CI 6.1% to 36.6%) per 10 μg/m(3) increase of coarse particles of the previous day) but not between EBC NOx and other particle measures. Associations tended to be stronger in subjects not taking steroid medication.

Conclusions An association was found between exposure to ambient coarse particles at central sites and EBC NOx, a marker of oxidative stress. The lack of association between PM measures more indicative of personal exposures (particularly indoor exposure) means interpretation should be cautious. However, EBC NOx may prove to be a marker of PM-induced oxidative stress in epidemiological studies.

Accession Number: CCC:000308191900009

Document Type: Article

Language: English

KeyWords Plus: PARTICULATE AIR-POLLUTION; 4 EUROPEAN CITIES; OXIDATIVE STRESS; LUNG-FUNCTION; CHILDREN; ASTHMA; NUMBER; OXIDE; MASS; INFLAMMATION

Reprint Address: Ayres, Jon G. (reprint author), Univ Birmingham, Inst Occupat & Environm Med, Birmingham B15 2TT, W Midlands, England

Addresses:
3. Univ Birmingham, Div Environm Hlth Risk Management, Birmingham B15 2TT, W Midlands, England
4. Univ Athens, ATTIKON Univ Hosp, Sch Med, Dept Pulm Med 2, Athens 11528, Greece
6. Inst Environm Res & Sustainable Dev, Natl Observ Athens, Athens, Greece
7. Univ Utrecht, Inst Risk Assessment Sci, Utrecht, Netherlands
8. Natl Inst Hlth & Welf, Dept Environm Hlth, Kuopio, Finland
9. Univ Eastern Finland, Inst Publ Hlth & Clin Nutr, Kuopio, Finland
10. Univ Helsinki, Dept Phys, Helsinki, Finland
11. ECN Clean Fossil Fuels, Energy Res Ctr Netherlands, Business Unit, Petten, Netherlands

E-mail Address: j.g.ayres@bham.ac.uk

Publisher: B M J PUBLISHING GROUP, BRITISH MED ASSOC HOUSE, TAVISTOCK SQUARE, LONDON WC1H 9JR, ENGLAND, http://www.bmjournals.com
Discipline: ENVIRONMENTAL MEDICINE & PUBLIC HEALTH
PHARMACOLOGY & TOXICOLOGY

Research Areas: Public, Environmental & Occupational Health; Pharmacology & Pharmacy; Toxicology

CC Editions/Collections: Clinical Medicine (CM); Life Sciences (LS)

ISI Document Delivery No: 997UJ

ISSN: 1351-0711