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ABSTRACT: An extensive series of numerical simulations on two-dimensional flow
and miscible transport are carried out. The purpose of performing these simulations
is to study the influence of fine-scale heterogeneity patterns (i.e. horizontal
laminations, cross-bedding at 45� and 135�) with short range and long range
correlation structure on large-scale behaviour of miscible transport in porous media.
Synthetic heterogeneous structures have been generated using newly developed
stochastic techniques (e.g. the coupled Markov chain method) to model the
subsurface formations in various configurations, using realistic characteristics, and
the tree-indexed Markov chain method to merge these heterogeneities at various
scales. The results of the simulation are compared with simulations on a reference
model of heterogeneity where there is no fine-scale heterogeneity. The simulations
show that the variation in the fine-scale heterogeneity inside the large-scale
lithological units has considerable impact on concentration distribution and the
spreading of miscible plumes. The combination of the two stochastic techniques (the
coupled Markov chain model and the tree-indexed Markov chain) is a useful tool to
study multi-scale transport behaviour in heterogeneous media. The fine-scale
heterogeneity enhances the mixing process, but the definition of an asymptotic
giga-scopic dispersion at field scale is still questionable.
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INTRODUCTION

Subsurface formations are highly heterogeneous and their
heterogeneity manifests itself at a multitude of scales. The
simulation of fluid flow in two- and three-dimensional models
of specific heterogeneity patterns has become an important tool
in both the field of petroleum engineering for prediction of
recovery efficiency (Haldorsen & Damsleth 1990) and the field
of hydrogeology for the prediction of contaminant fate. Elfeki
et al. (1996) have performed numerical experiments on single-
and multiple-scale heterogeneous formations. In their exper-
iments, they dealt with two scales of variability, the so-called
macro- and mega-scales. The macro-scale variability addressed
in their paper corresponds to the fine-scale heterogeneity
presented here in this paper. The fine-scale heterogeneity they
considered is a continuous stationary correlated Gaussian
random field, with exponential auto-correlation function and
normal probability density function of the logarithm of the
hydraulic conductivity. However, the present paper focuses
more on fine-scale heterogeneity patterns that are discrete in
nature and have different bedding inclinations and where the

hydraulic conductivity distribution is bimodal. This type of
heterogeneity has been observed in field outcrops (e.g. Oude
Maas deposit, The Netherlands: Van Beek & Koster 1972).
Figure 1 shows this type of large-scale stratification in the
Huesca outcrop, Spain.

The current work deviates from the classical approach of
handling variability of hydraulic conductivity as a stationary
random function (e.g. Dagan 1986). Instead, a new technique is
used, the tree-indexed Markov chain, to characterize heteroge-
neity patterns at various scales. The tree-indexed Markov chain
has been developed by Dekking et al. (1999a) for general
purpose image analysis. It has been adapted for subsurface
characterization. This new technique is investigated as a tool to
merge information from various scales to study the behaviour
of fine-scale heterogeneity patterns on large-scale prediction of
miscible transport in porous media.

GENERATION OF LARGE-SCALE AND
FINE-SCALE HETEROGENEOUS STRUCTURES

The coupled Markov chain model, developed by Elfeki (1996)
and extended by Elfeki & Dekking (2001) to conditioning on
multiple wells, is used to generate synthetic data which mimic,
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in some sense, the heterogeneity pattern of the Oude Maas
deposit (Van Beek & Koster 1972) for flow and transport
experiments. A brief description of the coupled Markov chain
model is given below. The model is a stochastic technique that
couples two chains. The first one is used to describe the
sequence in lithology in the vertical direction, and the second
chain describes the sequence of variation in the lithological
structure in the horizontal direction. The two chains are coupled
in the sense that a state of a cell in the domain is dependent on
the state of two cells, the one on top and the other on the left of
the current cell. This dependence is described in terms of
transition probabilities from the two chains. The coupled
Markov chain technique is efficient in terms of computer time
and storage in comparison with other techniques available in the
literature (see Elfeki et al. (1995) for details).

Figures 2 and 3 (left and middle columns) show images
generated by the coupled Markov chain model. For simplicity
one pixel is equated with one metre square, which is not
necessarily realistic from the geological point of view. However,
the method easily adapts to any scale. Sample input parameters
(transition probabilities) for generating the large-scale structure
(left top corner image in Figure 2) are presented in Table 1.
This large-scale structure is considered as a reference model for
the subsurface formation in the study. The large-scale hetero-
geneity pattern is a layered reservoir with slight inclination. This
shape is frequently encountered in field observations. The
geological system is assumed to consist of two different
lithologies that appear in black and white. The elements of the
transition probability matrix for the horizontal direction, pH

ij

(which means the probability of a given lithology, i, is following

Fig. 1. Huesca outcrop, Spain, showing the large-scale stratification (courtesy of Cees Geel).

Fig. 2. Merging large-scale structure (left column) with fine-scale
structure with short-range correlation (middle column) to simulate
two-scale structure (right column). Image resolution is 256 � 256.
The dimensions are in metres.

Fig. 3. Merging large-scale structure (left column) with fine-scale
structure with short-range correlation (middle column) to simulate
two-scale structure (right column). Image resolution is 256 � 256.
The dimensions are in metres.
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another lithology, j ), are given in Table 1 (e.g. pH
BB = 0.98 and

pH
BW = 0.02 and so on). A similar transition probability matrix

is used in the vertical direction with pV
ij (e.g. in Table 1

pV
BB = 0.80 and pV

BW = 0.20 and so on).
The method can model any fine-scale structure within the

large structure (Dekking et al. 2001). Here, we confine ourselves
to a single fine structure in the large-scale structure. The
fine-scale heterogeneity patterns considered in the simulation
are:

1. fine-scale horizontal lamination with short range (Fig. 2 top
row, middle image) and long range (Fig. 3 top row, middle
image) correlation in the horizontal direction;

2. inclined bedding at 45� with short range (Fig. 2 middle row,
middle image) and long range (Fig. 3 middle row, middle
image) correlation in the bedding direction;

3. inclined bedding at 135� with short range (Fig. 2 bottom
row, middle image) and long range (Fig. 3 bottom row,
middle image) correlation in the bedding direction.

Variogram analysis of fine-scale patterns shows that the
correlation lengths in the case of the short-range correlation
structure are 3.4 m and 0.71 m in the direction of the bedding
and perpendicular to it, respectively. In the case of the
long-range correlation structure the correlation length in the
bedding direction does not exist (the variogram is not bounded)
and the correlation length is about 0.71 m perpendicular to the
bedding.

MERGING LARGE-SCALE AND FINE-SCALE
HETEROGENEITIES

A tree-indexed Markov chain developed by Dekking et al.
(1999a) is used to merge fine-scale heterogeneity with large-
scale heterogeneity. This methodology was originally developed
for general-purpose image analysis (see Dekking et al. 1999b),
and adapted for characterization of subsurface heterogeneity
by Dekking et al. (2001). The methodology is based on a
coarse- to fine-scale representation of the heterogeneous

structures indexed by nodes on lattices that are summarized
on trees. Different depths in the tree correspond to different
spatial scales in representing the heterogeneous structures.
On these trees a Markov chain is used to describe scale-to-
scale transitions and to account for the uncertainty in the
stochastically generated images. This is discussed in more detail
below.

A two-dimensional image can be represented by K scales
(levels). At a particular level, LM, such that 0 � M � K, the
corresponding number of nodes (pixels) at this scale is 2M �
2M. There is a factor 4 between the number of grid cells at each
scale and the previous coarser one. This yields the quad tree
structure over all scales of an image. The procedure is simply
based on the successive subdivision of an image into four
equal-sized quadrants. The simplest case is that of binary
images, which contain only black and white colours. If a binary
image contains both blacks and whites, it is declared grey (a
new colour), and divided into four sub-quadrants, and so on,
until quadrants are obtained that consist entirely of blacks or
entirely of whites. Figure 4 shows a resolution of an image by
this procedure (for details see Samet (1990)).

Images can be randomized by randomizing the process of
replacing quadrants by sub-quadrants: if a quadrant is grey the
four sub-quadrants obtain their colours randomly according
to a distribution that depends on the level, on the position of
the quadrant and on the colours of the neighbours of the
quadrant. One can consider these distributions as the transi-
tion probabilities of an inhomogeneous Markov chain on the
quad tree. In applications, one estimates the transition prob-
abilities from a set of images (see Dekking et al. 1999a for
details).

It has been shown by Dekking et al. (2001) that quad trees are
not suited for geological applications because of vertical dis-
continuities. This phenomenon is practically avoided by the use
of dyadic trees. In the dyadic tree, there is a factor of 2 between
any scale and the previous coarser one. In this representation
any node in the tree has two descendent nodes at the next finer
scale and one parent node at the preceding coarser scale. The
tree is used to perform separately scaling in the vertical
direction (V-scaling) and to perform scaling in the horizontal
direction (H-scaling). First, the image is decomposed into its
corresponding scales in the vertical direction by a dyadic tree
with KV levels until the pixel level in the vertical direction is
reached (we call this the pixel line). Second, the features that do
not appear in the vertical direction will appear when the scaling
in the horizontal direction is performed. The strips that appear
in a grey colour are scaled horizontally in KH steps in the
horizontal direction until the pixel level is reached.

Table 1. Input parameters to generate the large-scale structure in Figures 2 and 3 (left
column)

Horizontal transition probability
matrix

Vertical transition probability matrix

State B W State B W

B 0.98 0.02 B 0.80 0.20
W 0.02 0.98 W 0.20 0.80

Fig. 4. Scale resolution of an image with 32 by 32 pixels (K = 5,N = 32, left top of the figure is the image, bottom row is scales
M = 0,1,2,3,4and5 respectively from left to right).
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SINGLE PHASE FLOW AND MISCIBLE
TRANSPORT EXPERIMENTS

The procedure to simulate single phase flow and miscible
transport experiments involves a number of steps.

1. The large-scale and fine-scale heterogeneities are generated
using the coupled Markov chain technique.

2. The tree-indexed Markov chain is used to merge the two
different types of heterogeneity and produce a two-scale
structure (Fig. 5).

3. Hydraulic conductivity values are assigned to each geological
material. In the present study, values of 100 m day�1 and
1 m day�1 are used for high and low conductivity zones
respectively.

4. The single-phase flow equation is solved numerically by the
finite difference scheme with constant hydraulic head at the
left and right boundaries (left Hl = 1 m and right Hr = 0 m),
while the top and bottom boundaries are considered as no
flow boundaries.

5. The specific discharge and the real water velocity are related
to the effective porosity. We put the porosity n equal to 1
because the porosity only serves as a rescaling for time.

6. The miscible transport equation is solved numerically using
the random walk technique (Uffink 1990). A set of particles
is released from a strip source in the upstream part of the
domain. Initially no solutes are present. 100 g solutes are
injected in a strip with dimensions 1 m in the flow direction
and 250 m perpendicular to it. The centre of the source is
located at (10 m, �128 m) from the top left corner of the
flow domain. Each particle moves with an advective com-
ponent along the streamline and a dispersive component
according to the pore-scale dispersion process with longitu-
dinal dispersivity of 0.1 m in the flow direction and a lateral
dispersivity of 0.01 m perpendicular to the flow direction.

7. The plume statistics such as the centroid of the particle
cloud, spreading of the plume around its centroid, macro-
dispersion coefficient, plume angle of rotation and break-
through curve at 190 m from the solute source are calculated
each time step.

DISCUSSION OF RESULTS

The plume statistics are presented in Figures 6–8. Figure 6 (top)
shows the centroid displacement (first-order moment of the
particle cloud) in time. From the x-component, one would
recognize that the plume moves at a slower rate in the case of
two-scale heterogeneity in comparison with the reference
model (large-scale structure without fine-scale heterogeneous
structure). This is because of the tortuous paths generated by
the fine-scale heterogeneity. The degree of slowness increases
in the following order: long horizontal lamination, short hori-
zontal lamination, bedding at 45� with long correlation and with
short correlation and bedding at 135� with short and long
correlations respectively. The y-component of the centroid
moves the most to the bottom in the case of bedding at 45�
with long correlation.

Plume spreading (second-order moment of the particle
cloud) is displayed in Figure 6 (bottom). The longitudinal
second moment grows faster than it does linearly in time
showing super-diffusive regime in the reference model. Includ-
ing fine-scale heterogeneity resulted in less super-diffusivity.
The degree of super-diffusivity decreases in the following order:
long horizontal laminations, bedding at 45� with long correla-
tion, bedding at 135� with long correlation, short horizontal
laminations, bedding at 45� with short correlation and bedding
at 135� with short correlation, respectively. This can be
explained by the fact that the more a structure deviates from a
homogeneous layered structure the less super-diffusivity will
occur. The lateral second moment of the plume decreases the
most in the case of bedding at 45� with long correlation. The
bedding direction in the top layer is contributing in squeezing
the plume laterally.

The angle of rotation of the plume is displayed in
Figure 7 (top). The angle of rotation is calculated by
� = 2 tan � 1{2�2

xy/(�2
xx � �2

yy)}, where, �2
xx is the longi-

tudinal variance of the particle displacements around their
centroid, �2

yy is the transverse variance of the particle displace-
ments around their centroid, and �2

xy is the cross-covariance of
the particle displacements (Tompson & Gelhar 1990). The

Fig. 5. Flow and transport simulations
in three types of heterogeneity: left
column, homogeneous layers (reference
model: large-scale structure); middle
column (two-scale model: fine-scale
structure with inclined bedding at 45�
with short range correlation imbedded
in the large-scale structure); right
column (two-scale model: fine-scale
structure with inclined bedding at 45�
with long range correlation embedded
in the large-scale structure).
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plume angle of rotation shows the change of orientation of
plume in time with respect to the x-axis. In the reference model
the plume angle of rotation decreases. After about 380 days
the longitudinal spreading reaches the lateral spreading (i.e.
�2

xx = �2
yy). In the case of the fine-scale structure at 45� with

long range correlation this occurs after about 580 days, a delay
of about 200 days. This delay is, of course, due to the fine-scale
heterogeneity. The same behaviour at different delay times for
the different heterogeneous patterns is expected to occur.

Figure 7 (bottom) displays the growth of the macro-
dispersion coefficient in time. The macro-dispersion coefficient
is defined as half the derivative of the variance of the particle
cloud. Moment calculations can only be performed until the
first particle leaves the domain of interest. In our calculations
this takes place after about 600 days. For the computation of
the breakthrough curve times after 600 days are still relevant.
An asymptotic giga-dispersion coefficient does not exist.
Fine-scale heterogeneity leads to a smaller longitudinal macro-
dispersion coefficient in comparison with the reference model.
At a time of 600 days a longitudinal macro-dispersion of
3.5 m2 day�1 is reached at the reference model. However, in
the two-scale models an average value of 1.5 m2 day�1 is
obtained. This means that the fine-scale heterogeneity leads to
a reduction of the dispersion coefficient to about a half within
the time limit of the particle cloud that stays within the flow
domain. The discrepancies of the longitudinal dispersion coef-
ficient for the different patterns are within a range of
1.5 m2 day�1 to 1.2 m2 day�1 at 600 days. The lateral macro-
dispersion coefficient is practically zero which has been con-
firmed by earlier Monte-Carlo analysis performed by Elfeki
(1996).

Breakthrough curves, at 200 m from the left side of the
domain, are plotted in Figure 8. After 2000 days since release,
about 40% of the injected mass is recovered in the reference
model. In the case of the fine-scale structure at 135� degrees
with both long and short-range correlations the percentage
recovered is slightly less than 40%. This is due to the bedding
angle that is against the global flow direction. However more
than 40% is recovered in case of horizontal laminations and
bedding at 45�. The long-range horizontal lamination displays
the maximum percentage recovered, that is, about 60% after

2000 days. This results from the preferential connected paths of
the long-range horizontal laminated bedding. One should also
notice that the curves in Figure 8 display different shapes for
each type of fine-scale heterogeneity, however, these shapes
show the same behaviour for the same type of heterogeneity
with different correlation.

CONCLUSIONS

1. The first goal of this work was to investigate the usefulness
of using a new technique that is called ‘tree-indexed Markov
chains’ to address fine and large scales of information. It has
been shown that the method is capable, in a systematic way,
of incorporating various fine-scale patterns in large-scale
structures. Further work is needed to handle more than two
scales and more than two geological materials. Extension to
3D structures is not hard, except when conditioning to
multiple well data is required.

2. The second goal was to understand the influence of fine-
scale heterogeneity patterns on the large-scale mixing of
pollutants in porous formations. The present 2D simulation
study has shown that the variation in fine-scale hetero-
geneity pattern has impacts on large-scale transport behav-
iour. Relative to the reference model (large-scale structure
without fine-scale heterogeneity), it has been shown that
fine-scale heterogeneity causes slower and more dispersive
plumes (reduction of the super-diffusivity in the tilted
layered system considered here as a reference model, how-
ever, an asymptotic giga-dispersion does not exist) and a
reduction of the longitudinal macro-dispersion coefficient to
about a half within the time limit of the experiments (600
days). However, there is no significant impact on the
statistics of the plume as far as various patterns of fine-scale
heterogeneity are concerned. With respect to recovery,
fine-scale heterogeneity enhances recovery compared to the
reference model.

3. Similar studies on the effect of other types of internal
fine-scale structures with different degrees of contrasts are
recommended to give information on a broad range of
various heterogeneous patterns that exist in nature.

This study was financially supported by the DIOC project
‘Shallow Subsurface’ of Delft University of Technology, Delft,
The Netherlands.
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