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A Markov Chain Model for Subsurface
Characterization: Theory and Applications1

Amro Elfeki 2 and Michel Dekking3

This paper proposes an extension of a single coupled Markov chain model to characterize hetero-
geneity of geological formations, and to make conditioning on any number of well data possible. The
methodology is based on the concept of conditioning a Markov chain on the future states. Because the
conditioning is performed in an explicit way, the methodology is efficient in terms of computer time
and storage. Applications to synthetic and field data show good results.
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INTRODUCTION

At present, a variety of techniques are available to characterize reservoir hetero-
geneity. Some selected ones can be found in the literature of hydrogeology (see
Neuman, 1980) and reservoir engineering (see Haldorsen, and Damsleth, 1990,
and Deutsch and Journel, 1992). Most of these techniques rely on the use of vario-
gram or autocovariance function to describe the spatial structure of reservoir het-
erogeneity. An alternative to describe the spatial structure is by the use of Markov
chains. Markov chains are applied in geology to model discrete variables such
as lithologies or facies. The Markov chain model does not use variograms or au-
tocovariance functions to quantify the spatial structures as most of the available
models do. Instead, it uses conditional probabilities. Conditional probabilities have
the advantage that they are interpreted geologically much easier than variogram or
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autocovariance functions. This is the reason for their popularity in the geological
community.

This paper proposes an extension of the coupled Markov chain model, de-
veloped by Elfeki (1996) to characterize heterogeneity of natural formations, to
conditioning on any number of well data. The coupled Markov chain model is
also an extension of the one-dimensional Markov chain model used by Krumbein
(1967) to synthesize a stratigraphic sequence. The methodology is based on a
Markov chain that is conditioned on the future states. The conditioning is per-
formed in an explicit way that makes it efficient in terms of computer time and
storage. In the next sections, the basic concepts of the classical one-dimensional
Markov chain and the coupled Markov chains theories are presented followed by
the concept of conditioning of a Markov chain on the future states. Some applica-
tions on a hypothetical case study and on real outcrop data are presented. For other
work on Markov chains to model geological formations see Lin and Harbaugh
(1984) and Moss (1990). Recent directions regarding Markov chains applications
in geology can be found in Carle (1996) and Carle and Fogg (1996).

ONE-DIMENSIONAL MARKOV CHAINS

A Markov chain is a probabilistic model that exhibits a special type of depen-
dence: given the present the future does not dependent on the past. In formulas, let
Z0, Z1, Z2, . . . , Zm be a sequence of random variables taking values in the state
space{S1, S2, . . . , Sn}. The sequence is a Markov chain or Markov process if

Pr(Zi = Sk | Zi−1 = Sl , Zi−2 = Sn, Zi−3 = Sr , . . . , Z0 = Sp)

= Pr(Zi = Sk | Zi−1 = Sl ) =: plk (1)

where the symbol “|” is the symbol for conditional probability.

Transition Matrix and Stationary Probabilities

In one-dimensional problems a Markov chain is described by a single transi-
tion probability matrix. Transition probabilities correspond to relative frequencies
of transitions from a certain state to another state. These transition probabilities
can be arranged in a square matrix form,

p =


p11 p12 · · p1n

p21 · · · ·
· · plk · ·
· · · · ·

pn1 · · · pnn


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whereplk denotes the probability of transition from stateSl to stateSk, andn is
the number of states in the system. Thus the probability of a transition fromS1

to S1, S2, . . . , Sn is given by p1l , l = 1, 2, . . . ,n in the first row and so on. The
matrixphas to fulfil specific properties: (1) its elements are non-negative,plk ≥ 0;
(2) the elements of each row sum up to one or

n∑
k=1

plk = 1 (2)

The transition probabilities considered in the previous section are called single
step transitions. One considers alsoN-step transitions, which means that transi-
tions from a state to another take place inN steps. TheN-step transition probabil-
ities can be obtained by multiplying the single-step transition probability matrix
by itself N times. Under some mild conditions on the transition matrix (aperi-
odicity and irreducibility), the successive multiplication leads to identical rows
(w1, w2, . . . , wn). So thewk(k = 1, 2, . . . ,n) are given by

lim
N→∞

p(N)
lk = wk (3)

and are called stationary probabilities. Thewk are no longer dependent on the initial
stateSl . The stationary probabilities may also be found by solving the equations

n∑
l=1

wl plk = wk, k = 1, . . . ,n (4)

subject to the conditionswk ≥ 0 and
∑

kwk = 1.

One-Dimensional Markov Chain Conditioned on Future States

Consider a one-dimensional series of events that are Markovian (Fig. 1). The
probability of celli to be in stateSk, given that the previous celli − 1 is in state
Sl and cellN is in stateSq can be expressed mathematically as

Pr(Zi = Sk | Zi−1 = Sl , ZN = Sq)

Figure 1. Numbering series of events for a one-dimensional Markov chain.
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This probability can be written in terms of joint probabilities as

Pr(Zi = Sk | Zi−1 = Sl , ZN = Sq) = Pr(Zi−1 = Sl , Zi = Sk, ZN = Sq)

Pr(Zi−1 = Sl , ZN = Sq)
(5)

One can factorize the numerator of Equation (5) leading to

Pr(Zi = Sk | Zi−1 = Sl , ZN = Sq)

= Pr(ZN = Sq | Zi−1 = Sl , Zi = Sk) Pr(Zi−1 = Sl , Zi = Sk)

Pr(Zi−1 = Sl , ZN = Sq)
(6)

By applying the Markovian property on the conditional probability in the numerator
of Equation (6), one obtains

Pr(Zi = Sk | Zi−1 = Sl , ZN = Sq)

= Pr(ZN = Sq | Zi = Sk) · Pr(Zi−1 = Sl , Zi = Sk)

Pr(Zi−1 = Sl , ZN = Sq)
(7)

The joint distributions in the numerator and the denominator can be expressed in
terms of conditional probabilities and marginal probabilities as

Pr(Zi = Sk | Zi−1 = Sl , ZN = Sq)

= Pr(ZN = Sq | Zi = Sk) · Pr(Zi = Sk | Zi−1 = Sl ) · Pr(Zi−1 = Sl )

Pr(ZN = Sq | Zi−1 = Sl ) · Pr(Zi−1 = Sl )
(8)

The conditional probabilities in Equation (8) can be expressed in terms of the
matrixp as

Pr(Zi = Sk | Zi−1 = Sl , ZN = Sq) = p(N−i )
kq plk

p(N−i+1)
lq

(9)

wherep(N−i )
kq is the (N − i )-step transition probability,p(N−i+1)

lk is the (N − i + 1)-
step transition probability. Equation (9) can be rearranged in the form

plk|q =
plk p(N−i )

kq

p(N−i+1)
lq

(10)

whereplk|q is our target, the probability of celli to be in stateSk, given that the
previous celli − 1 is in stateSl and the future cellN is in stateSq.
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In Equation (10) when cellN is far from celli the termsp(N−i+1)
lq andp(N−i )

kq
cancel because they are almost equal to the stationary probabilitywq. However,
when we get closer to cellN, its state starts to play a role and simulation results
are influenced by the state at that cell.

COUPLED MARKOV CHAIN THEORY

The coupled chain describes the joint behavior of a pair of independent sys-
tems, each evolving according to the laws of a classical Markov chain (Billingsley,
1995). Consider two Markov chains (Xi ),(Yj ) both defined on the state space
{S1, S2, . . . , Sn} and having the positive transition probability defined as

Pr(Xi+1 = Sk,Yj+1 = Sf | Xi = Sl ,Yj = Sm) = plm,k f (11)

The coupled transition probabilityplm,k f on the state space{S1, S2, . . . , Sn} ×
{S1, S2, . . . , Sn} is given by

plm,k f = plk · pm f (12)

These transition probabilities from a stochastic matrix.

Coupled Markov Chain on a Lattice

Two-coupled one-dimensional Markov chains (Xi ) and (Yj ) can be used to
construct a two dimensional spatial stochastic process on a lattice (Zi, j ). Consider a
two-dimensional domain of cells as shown in Figure 2. Each cell has a row number
j and a column numberi . Consider also a given number of geological materials,
sayn. Geological materials are coded as numbers. The word state, in this text,
describes a certain geological unit, lithology, or bedding type. The (Xi ) chain
describes the structure of the geological unit in the horizontal direction. We write

ph
lk = Pr(Xi+1 = Sk | Xi = Sl ) (13)

Similarly, the (Yi ) chain describes the structure in the vertical direction and we write

pvmk = Pr(Yj+1 = Sk | Yj = Sm) (14)

The stochastic process (Zi j ) is obtained by coupling the (Xi ) and (Yj ) chain,
but forcing these chains to move to equal states. Hence,

Pr(Zi, j = Sk | Zi−1, j = Sl , Zi, j−1 = Sm)

= C Pr(Xi = Sk | Xi−1 = Sl ) Pr(Yj = Sk | Yj−1 = Sm) (15)
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Figure 2. Numbering system in two-dimensional domain for the coupled Markov chain. Unconditional
Markov chain (top) and conditional Markov chain on the states of the future (bottom). Dark grey cells
are known boundary cells, light grey cells are known cells inside the domain (previously generated,
the past), white cells are unknown cells. The future state used to determine the state of cell (i , j ) is cell
(Nx, j ).

whereC is a normalizing constant that arises by not permitting transitions in the
(Xi ) and (Yj ) chain to different states. Hence,

C =
(

n∑
f=1

ph
l f · pvm f

)−1

(16)

Combining Equation (15) and Equation (16) the required probability is therefore

plm,k := Pr(Zi, j = Sk | Zi−1, j = Sl , Zi, j−1 = Sm)

= ph
lk · pvmk∑

f ph
l f · pvm f

k = 1, . . . ,n (17)
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Figure 3. Transition scheme in the two-state model.

As an example, suppose we have two chains that are operating on two different
states coded as 1 and 2. The possible states at cell (i, j ) given that the state of the
previous cell (i − 1, j ) was 1, and top cell (i, j − 1) was in state 1 as well, are
displayed in Figure 3 (top row). It is possible that one obtains the same state 1 or
2 from both chains as in the first two possibilities in Figure 3 (top row), or one
could get different states from the chains as in the last two possibilities in the top
row. Here, for example, one has

p12,1 = Pr(Zi, j = 1 | Zi−1, j = 1, Zi, j−1 = 2)= ph
11 · pv21

ph
11 · pv21+ ph

12 · pv22

(18)
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Conditioning the Coupled Markov Chain on Two Wells

Since it is already not evident how to define a notion for “future” in two di-
mensions, it is not straightforward to extend the conditioning of one-dimensional
Markov chains on future states to the coupled chain. We shall therefore mainly con-
sider a very simple and computationally cheap approximative way by performing
conditioning of the horizontal chain first, and coupling the conditioned horizontal
chain with the vertical chain afterward. The expression of the conditional proba-
bility in the coupled chain, according to this way, given the cell on the right hand
side boundary is given by

Pr(Zi, j = Sk | Zi−1, j = Sl , Zi, j−1 = Sm, ZNx, j = Sq) = C′Pr(Zi, j

= Sk | Zi−1, j = Sl , ZNx, j = Sq) · Pr(Zi, j = Sk | Zi, j−1 = Sm) (19)

HereC′ is a normalising constant as in Equation (16).
By inserting the expression derived in Equation (10) into Equation (19) and

proceeding as in the previous section, we obtain

Pr(Zi, j = Sk | Zi−1, j = Sl , Zi, j−1 = Sm, ZNx, j = Sq) = C′
ph

lk · ph(Nx−i )
kq

ph(Nx−i+1)
kq

· pvmk

(20)
ComputingC′ as in the previous section and canceling the numerators, we finally
find

plm,k|q := Pr(Zi, j = Sk | Zi−1, j = Sl , Zi, j−1 = Sm, ZNx, j = Sq)

= ph
lk · ph(Nx−i )

kq · pvmk∑
f ph

l f · ph(Nx−i )
f q · pvm f

k = 1, . . . ,n (21)

For exact conditioning it is useful to note that the coupled Markov chain (Zi j ) is an
example of unilateral Markov field (Pickard, 1980). Such Markov fields can also
be described by a (one-dimensional) Markov chain in a random environment (this
observation has also been made in Galbraith and Walley, 1976). For each state
Sm,m= 1, . . . ,n define a transition matrixpm by

pm
lk := plm,k = Pr(zi, j = Sk | Zi−1, j = Sl , Zi, j−1 = Sm) (22)

[cf. Equation (17)]. With this point of view it is possible to compute anN-step
transition probability for the process for a fixedj given the “past”—cell (i − 1, j )
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and the previous row—by

Pr
(
Zi+N, j = Sk | Zi, j = Sl , Zi+1, j−1 = Sm(1), . . . , Zi+N, j−1 = Sm(N)

)
= (pm(1)

lk pm(2)
lk · · · pm(N)

lk

)
lk

(23)

where pm(1), pm(2) · · · pm(N) is the ordinary matrix product ofpm(1), pm(2), · · · ,
pm(N). Equation (23) follows by induction from the caseN = 2, which is proved
with manupulations similar to those to derive Equations (5)–(7). Now we can just
as in the one-dimensional case condition on the “future,” defining the future of cell
(i, j ) to be cell (Nx, j ) (cf. Fig. 2). We obtain that

Pr
(
Zi, j = Sk | Zi−1, j = Sl , Zi, j−1 = Sm(1), . . . , ZNx, j−1

= Sm(Nx−i+1), ZNx, j = Sq
) = pm(1)

lk · (pm(2) · · · pm(Nx−i+1)
)

kq(
pm(1) · · · pm(Nx−i+1)

)
lq

(24)

It is clear that this exact conditioning will be computationally more expensive.

INFERENCE OF STATISTICAL PARAMETERS
FROM A GEOLOGICAL SYSTEM

This section is similar to the description given by Elfeki (1996) for estima-
tion of model parameters from field observations. For the sake of completeness,
parameter estimation is explained once again in the present context. A Markov
chain is described completely when the state space, transition probabilities, and
initial probabilities are given. The initial probabilities will be chosen equal to the
stationary probabilities. We will not need to estimate an initial distribution as we
will do simulations conditioned on well log and surface data. For a geological
system represented by a Markov chain, one has to perform the following steps.
First, the set of possible states of the system{S1, S2, . . . , Sn} must be defined.
Second, the probabilityplk of going from a stateSl to stateSk in one interval
must be estimated. Finally, the stationary probabilitieswk are determined either
by estimation from the data or by calculation from the transition probabilities. In
practical applications, transition and stationary probabilities of a geological sys-
tem can be estimated from well logs, bore holes, surface and subsurface mapping,
or from geological images synthesized by information derived from geologically
similar sites or analogous outcrops. The estimation procedure is given below.

Estimation of Transition Probabilities

The vertical transition probability matrix can be estimated from well logs.
The tally matrix of vertical transitions is obtained by superimposing a vertical
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line with equidistant points along the well with a chosen sampling interval. The
transition frequencies between the states are calculated by counting how many
times a given stateSl is followed by itself or the other statesSk in the system, and
then divided by the total number of transitions,

pvlk =
Tv

lk∑u
q=1 Tv

lq

(25)

where Tv
lk is the number of observed transitions fromSl to Sk in the vertical

direction.
Similarly, the horizontal transition probability matrix can be estimated from

geological maps. Maps that show formation extensions in the horizontal plane may
be obtained from geological surveys. On the map plan, a transect is defined where
the subsurface profile is required. On the transect, a similar procedure is performed
as in the case of vertical transitions. A horizontal line with equidistant points at a
proper sampling interval for the horizontal direction is superimposed over the map.
The transitions between different states are counted and the horizontal transition
probability matrix is computed using Equation (25) with superscripth instead ofv.

Estimation of the Sampling Intervals

Estimation of the proper sampling intervals is a trial and error procedure.
There is no specific rule. Perhaps the proper sampling interval in the vertical di-
rection would be less than or equal to the minimum thickness of the geologic unit
found in the well log in order to be reasonably reproduced in the simulation. Simi-
larly, the proper sampling interval in the horizontal direction would be less than or
equal to the minimum length of a geological unit found on a planar geological map.

THE ALGORITHM

A procedure for Monte Carlo sampling to implement this methodology is
presented. Refer to Figure 2 during the description of the algorithm. The procedure
for conditional simulation on two neighboring wells is as follows:

Step 1: The two-dimensional domain is discretized using proper sampling
intervals.

Step 2: Well data is inserted in their locations at the well on the left side of
the domain at (1, j ), j = 2, . . . , Ny, the well at the right side of the
domain at (Nx, j ), j = 2, . . . , Ny, and the top surface information
at location (i, 1), i = 1, . . . , Nx.

Step 3: Generate the rest of the cells inside the domain that is num-
bered (i, j ), i = 2, . . . , Nx − 1 andj = 2, . . . , Ny rowwise using the
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conditional distribution Pr(Zi, j = Sk | Zi−1, j = Sl , Zi, j−1 = Sm,

ZNx, j = Sq), given that the states at (i − 1, j ), (i, j − 1), and (Nx, j )
are known. The four-index conditional probabilityplm,k |q is calcu-
lated by Equation (21). From stateSl at the horizontal neighboring
cell (i − 1, j ), Sm at the vertical neighboring cell (i, j − 1) and the
stateSq at the cell on the right-hand side boundary (Nx, j ), one can
determine the succeeding stateSk at cell (i, j ). We simulate a state
for Sk according to the distribution given by (plm,r |q: r = 1, . . . ,n).

Step 4: The procedure stops after having visited all the cells in the domain
between the two given wells ati = 1 andi = Nx.

Step 5: The same procedure is followed for the next two wells and so on until
the domain is filled with the states.

HYPOTHETICAL EXAMPLE

In this section a hypothetical example is presented. In this example, the data
needed for the simulation is given in Table 1. A geological cross-section 200 km
long and 50 m in depth is considered. The geological system contains four dif-
ferent geological materials coded by 1–4. The transition probabilities in both the
horizontal and the vertical directions are displayed in Table 1. These probabilities
are used to generate the artificial geological structure. In Table 1 the sampling in-
tervals over which these transitions are applied are given. The artificial geological
structure generated by data in Table 1 is shown in Figure 4 (top left).

Figure 4 shows the well locations on the left-hand side. The corresponding
stochastically generated realizations using these wells are displayed on the right-
hand side. It is clear that by increasing the number of wells, the simulation results
improve and become closer to the original image (“real” formation). Figure 4 shows
only single realizations conditioned on several wells. In order to evaluate the uncer-
tainty and degree of variability between the realizations, a Monte Carlo approach

Table 1. Input Data for the Hypothetical Example

Length of the given section (km)= 200 Depth of the given section (m)= 50
Sampling interval inX-axis (km)= 1 Sampling interval inY-axis (m)= 1

No. of states= 4

Horizontal transition probability matrix Vertical transition probability matrix

State 1 2 3 4 State 1 2 3 4

1 0.980 0.005 0.005 0.010 1 0.900 0.030 0.030 0.040
2 0.010 0.970 0.010 0.010 2 0.040 0.900 0.030 0.030
3 0.020 0.010 0.960 0.010 3 0.030 0.030 0.900 0.040
4 0.010 0.010 0.010 0.970 4 0.040 0.030 0.040 0.900
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Figure 4. Hypothetical example (with four different lithologies) showing how the method works
when conditioning on more than two wells is performed. Top left is the “real” reservoir and all the
next rows show the well locations and lithologies observed at each well (on the left of the figure).
The corresponding stochastic simulations (single realizations) conditioned on these wells are shown
on the right hand side.

is followed in which one hundred realizations are generated and the ensemble av-
erage is calculated over the indicator function of each state. The indicator function
of stateSk is given byIk(x) = 1 if stateSk is located atx andIk(x) = 0 otherwise.

The ensemble average over 100 realizations of the indicator function can be
considered as a measure of the probability of occurrence of a specific lithology
located at specific point in space. When the ensemble average of the indicator
function equals one, it is 100% sure that the lithologySk is located atx, and when
the indicator function is zero it is 100% sure that the lithologySk is not located
at x. Figure 5 shows images of the ensemble average of the indicator functions
of the four lithologies conditioned on five wells. For the sake of comparison, a
single realization is displayed in Figure 5 with the ensemble indicator function of
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Figure 5. Ensemble averaging over 100 realizations of the hypothetical example shown in
Figure 4 (top left) is the “real” reservoir, top right is the well locations, the second row is a
single realization, the third rows to the bottom are the ensemble averages of the indicators of
each lithology. The grey scale ranges from 0 to 1.

each lithology. It is clear that there are no significant differences between the single
realization and the ensemble average of each lithology. This leads to the conclusion
that the realizations are not varying so much between one another and so the same
pattern is preserved over all the realizations. There are of course some slight
variations at the boundaries of the lithology that appeared clearly in the lithology 1
(black) where one can notice fuzzy boundaries that turn to white gradually.

OUTCROP CASE STUDIES

Distal Fluvial Fan Deposits in the Loranca Basin, Spain

The outcrop description can be found in Gozalo and Martinius (1993). A
brief description is given below. The outcrop (Fig. 6, top left) shows several sand-
stone genetic types: fluvial channel deposits, sheet deposits (crevasse-channel and
crevasse-splay deposits), and deltaic deposits. One recognizes in the channel de-
posits two main types: meander-loop deposits and channel-fill deposits. The sheet
deposits are sedimentary structures with relatively large extent (30∼ 150 m) and
thickness between 0.25∼ 2 m. The sheet deposits consists of ripple-laminated
medium-grained sand to silt. In the deltic deposits, one finds several stacked sand
beds separated by thin mudstone layers (1∼ 10 cm).

The presented methodology is used to generate realizations of two-
dimensional (2D) cross-sections of the outcrop. The statistical parameters given
in Table 2 are estimated from the schematic outcrop picture displayed in Figure 6
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Table 2. Input Data Used for the Geological Simulation of the Outcrop (Distal Fluvial Fan Deposits)
in the Loranca Basin, Spaina

Length of the given section (m)= 320 Depth of the given section (m)= 82
Sampling interval inX-axis (m)= 4 Sampling interval inY-axis (m)= 1

No. of states= 8

Horizontal transition probability matrix

State 1 2 3 4 5 6 7 8

1 0.952 0.003 0.003 0.000 0.000 0.003 0.000 0.039
2 0.005 0.923 0.003 0.000 0.000 0.005 0.003 0.061
3 0.000 0.000 0.933 0.010 0.000 0.000 0.000 0.057
4 0.000 0.000 0.000 0.988 0.000 0.000 0.000 0.012
5 0.000 0.000 0.000 0.000 0.995 0.000 0.000 0.005
6 0.018 0.018 0.000 0.000 0.000 0.929 0.000 0.036
7 0.007 0.003 0.000 0.000 0.000 0.000 0.990 0.000
8 0.008 0.004 0.002 0.001 0.001 0.001 0.001 0.982

Vertical transition probability matrix

State 1 2 3 4 5 6 7 8

1 0.783 0.000 0.006 0.000 0.000 0.006 0.000 0.205
2 0.024 0.625 0.022 0.000 0.000 0.018 0.000 0.329
3 0.082 0.000 0.392 0.000 0.000 0.021 0.000 0.505
4 0.000 0.000 0.031 0.510 0.000 0.000 0.000 0.459
5 0.000 0.000 0.038 0.155 0.582 0.000 0.000 0.225
6 0.313 0.143 0.000 0.000 0.000 0.500 0.000 0.045
7 0.017 0.017 0.000 0.000 0.000 0.000 0.698 0.268
8 0.019 0.028 0.020 0.020 0.020 0.011 0.003 0.880

aThe states in the table are identified in Figure 6.

(top right). Equation (24) is considered for the estimation of these parameters. The
simulation of the outcrop has been performed conditioned on three (Fig. 6, second
row to the left) and seven (Fig. 6, second row to the right) wells, respectively.
The simulation results presented in Figure 6 show good agreements in terms of
reproducing the geological features that are present in the outcrop, particularly in

Figure 6. (Continued) section used for simulation purposes. The second row shows artificial well
locations (the left image shows three wells and the right image shows seven wells). The third row shows
single stochastic realizations conditioned on three wells (left) and seven wells (right) respectivley. The
bottom row shows stochastic realizations generated by the old unconditional coupled Markov chain
model (Elfeki, 1996). The color scale represents the following: (1) meander-loop deposits, (2) channel-
fill deposit, (3) crevasse-channel-splay deposit, (4) lacustrine-deltaic deposit, (5) lacustrine limestone,
(6) carbonate palaeosol, (7) gypsum, and (8) mudstone.
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Figure 7. Ensemble averaging over 100 realizations on the 2D cross-sectional panel of distal deposits
fluvial fan, based on outcrop data shown in Figure 7. Top left is the schematic outcrop, top right is
the well locations, the second row is a single realization, from the third rows to the bottom are the
ensemble averages of the indicators of each lithology. The grey scale ranges from 0 to 1.

the case of seven well data (Fig. 6, the third row, the right image), where the well
spacing is 50 m. The simulation with three wells (Fig. 6, third row, left image)
shows relatively fair agreement for the geological features with long extensions
(see the black and the green colours in the simulations). The ensemble average

Figure 8. (Opposite) Stochastic simulation of the two-dimensional cross-sectional panel of the fluvial
succession of the medial area of the T´ortola fluvial system, Spain (Martinius, 1996). Top image is
the schematization of the real outcrop; the second and the third images are the five well data set and
the corresponding simulation (single realization) respectively; the fourth and the fifth images are the
eleven wells data set and the corresponding simulation (single realization) respectively. The legend:
(1) nonchannelized sheet sandstone bodies, (2) giant-bar sandstone bodies, (3) multistory conglomerate-
rich bodies, (4) composite point-bar sandstone bodies, (5) ribbon sandstone bodies, (6) stacked-bar
sandstone bodies, (7) paleosol horizon, and (8) mudstone.
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Table 3. Input Data for the Simulation of the Two-Dimensional Cross-Sectional Panel of the Fluvial
Succession of the Medial Area of the T´ortola Fluvial System, Spaina

Length of the given section (m)= 648 Depth of the given section (m)= 115
Sampling interval inX-axis (m)= 9 Sampling interval inY-axis (m)= 2.5

No. of states= 8

Horizontal transition probability matrix

State 1 2 3 4 5 6 7 8

1 0.893 0.009 0.005 0.000 0.000 0.000 0.000 0.093
2 0.000 0.796 0.011 0.000 0.000 0.000 0.000 0.194
3 0.000 0.000 0.989 0.000 0.000 0.000 0.000 0.011
4 0.006 0.000 0.013 0.885 0.000 0.000 0.000 0.096
5 0.074 0.000 0.000 0.074 0.593 0.037 0.000 0.222
6 0.000 0.013 0.000 0.000 0.000 0.946 0.000 0.040
7 0.040 0.000 0.000 0.000 0.000 0.000 0.940 0.020
8 0.007 0.006 0.002 0.007 0.005 0.005 0.001 0.968

Vertical transition probability matrix

State 1 2 3 4 5 6 7 8

1 0.591 0.000 0.000 0.000 0.014 0.000 0.042 0.353
2 0.011 0.753 0.097 0.000 0.000 0.000 0.000 0.140
3 0.032 0.000 0.623 0.000 0.000 0.238 0.000 0.107
4 0.000 0.025 0.000 0.662 0.013 0.000 0.000 0.299
5 0.111 0.000 0.000 0.074 0.519 0.000 0.000 0.296
6 0.000 0.000 0.026 0.032 0.006 0.084 0.000 0.851
7 0.120 0.000 0.000 0.100 0.000 0.000 0.360 0.420
8 0.029 0.008 0.039 0.017 0.003 0.031 0.010 0.863

aThe states in the table are identified in Figure 9.

of the indicator function of each lithology is displayed in Figure 7. The same
conclusions can be drawn as in the hypothetical case.

However, the geological features with short extensions are not very well
reproduced. One of the advantages of this methodology is that, in conditioning to
wells the geological features on a certain level (vertical coordinates) are kept at their
level in the simulation. The object-based models used by Chessa and Martinius
(1992) and Chessa (1995) do not have this advantage. Figure 6 (bottom row) shows
the simulation results performed using the unconditional (on future states) coupled
Markov chain model developed by Elfeki (1996). There are significant differences
between the simulations that are performed with the conditional (on future states)
and unconditional (on future states) coupled Markov chain models. Conditioning
on future states is quite an achievement to make this methodology more practical.
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Figure 9. Ensemble average over 100 realizations of the 2D cross-sectional panel of the fluvial succession
of the medial area of the T´ortola fluvial system, Spain, shown in Figure 8. Top left is the schematic outcrop,
top right shows the well locations; the second row is a single realization, from the third rows to the bottom
are the ensemble averages of the indicators of each lithology. The grey scale ranges from 0 to 1.

Tórtola Fluvial System, Spain

Figure 8 (top image) shows the schematic picture of the two-dimensional
cross-section panel of the fluvial succession of the medial area of the T´ortola
fluvial system. The outcrop section shows the spatial distribution of the eight
different genetic types that are distinguished and illustrated with different colors.
The cross-section has a lateral extent of about 800 m and a stratigraphic thick-
ness of about 115 m. The distance to the apex of the T´ortola fluvial system is
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approximately 22 km. A detailed description of the T´ortola fluvial system can be
found in Martinius (1996).

Stochastic simulation of the 2D cross-section of the outcrop was carried out.
The statistical parameters that are used for the simulation are displayed in Table 3.
These parameters are estimated from the schematic picture (Fig. 8, top image).
Equation (24) was used to estimate the statistical parameters over a grid spacing
of 9× 2.5 m. Figure 8 shows the results of the stochastic simulation. The third
and the fifth images are a single realization of the conditional simulation that is
performed on the seven and eleven wells given in the second and the fourth images,
respectively. The stochastic simulations in this example do not show significant
differences between seven and eleven wells. This is due to the isolated geological
features that are present in the outcrop. These features appear in one well and not
in the others and are very sparse in the outcrop.

The ensemble average of the indicator function is also calculated and dis-
played in Figure 9. The sparse objects in this outcrop are also reflected in the
ensemble average. It is also important to point out that the lithology coded 5
(black) does not appear in any of the wells and so it is reproduced neither in the
single realization nor in the ensemble average.

CONCLUSIONS

An extension of the coupled Markov chain methodology developed by the first
author has been performed. This methodology used information from a single well.
It was not able to perform conditional simulations on more than one well. The ex-
tension, proposed in this paper, makes it more practical. Conditional simulations on
any number of wells is now possible. The extension is based on the concept of con-
ditioning Markov chains on the future states. A computer code called “SALMA”
has been developed to implement the proposed methodology. The required input
data for the program include the dimensions of the geological section (length and
depth), the number of the geological materials present in the system, transition
probabilities, sampling intervals over which these transitions are estimated, and
well log data (the lithologies). The methodology has been tested on an artificially
generated geological structure and on realistic outcrops. The methodology has
proven fairly successful. The simulations presented in this paper use statistically
homogeneous transition probability matrices. However, the methodology is flexi-
ble and can handle transition matrices that vary between the wells, or the case where
the reservoir contains different large-scale layers and each layer has its own transi-
tion matrix. Generalization of the methodology will be considered in future work.
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