JKAU: Eng. Sci., vob. 10 no. 1, pp. 67-86 (1418 A.H. /1998 A.D.)

Design and Development of a Program Generator with
Natural Language Interface

M. HAMED and M.A. Az
Dept. of Computer Science, College of Science,
University of Bahrain, Isa Town, Bahrain

ABSTRACT. Program Generators are considered a basic tool for the efficient use
of computers. In this paper. a design of a program generator with a natural lan-
guage interface is presented. The main contribution of the paper is to provide
the user with a natural language interface for feeding program specifications.
Moreover, it gives a design for a meta language to which the program specifi-
cations are converted. It also gives the possibility of translating the meta pro-
gram to one of several target languages (target language is one of the common
programming languages).

1. Introduction

Until recently, users without programming skills have to make use of standard pack-
ages to do some specific task on computer. This way of doing jobs by nonprogrammers
is not the most appropriate way for several reasons. First, packages are usually
designed to serve several users (of different requirements), and consequently none of
the users will find that the package caters for all his needs. Second, the execution time
of a program in the package (as a general-purpose program) will be much more than
that of a tailor-made program that fufills the same task. Third packages are usually
inflexible in'the sense that the user can exercise little control over what they do. Fourth,
a nonprogrammer has to learn a lot about how to use the package (usually there is no
friendly interface). Program generators with friendly interfacel!l seem to be the most
appropriate way for nonprogrammers to do tasks on computer. These generators would
enable the user to generate programs that solve his own problems in a reasonable exe-
cution time. The ultimate goal of applying artificial intelligence techniques to software
engineering is automatic programming. In the limit, automatic programming would
allow the user to say what is wanted and have a program produced automatically.

67

68 M. Hamed and M.A. Ajiz

Automatic programming can be viewed as consisting of three successive stages :
Specification acquisition, Interpretation of specifications and Code generation. Usually,
a research project in the field of automatic programming(?! cannot be done for all stages
of all domains of knowledge at the same time. Consequently, the problem is cut down
either horizontally (working in one stage for broader domains) or vertically (working in
all stages for a narrow domain). The first stage is concerned mainly with improving the
user interface. The user interface in most currently available program generators is
composed of a dialogue modulel!] that requires the user to select answers from a menu
or respond in simple Yes/No fashion. Horowitz et al.3] give a proposal for an applica-
tion generator that includes a non-procedural language which is used for definition of
data and describing the actions required. This was considered an improvement over the
systems mentioned in the paper, like: NOMAD2, FOCUS, DBASE-IIL. Cheng et al.[4]
give a description of an experiment done on a prototype system ‘MODEL’ where a
nonprogrammer developed a commercial application subsystem using the available
facilities of a program generator with a Very High Level Language (VHLL) interface.
Still, recent application generators like DBASE-IV[3! provide the user with a non-pro-
cedural VHLL for writing the necessary commands for specific application.

The second stage is concerned mainly with interpreting the user specifications to tan-
gible algorithms to solve the problem.

In the third stage the generated algorithms are translated to a language acceptable by
the computer. Naturally, when the user supplies the system with commands (e.g., in a
non-procedural VHLL, stages two and three may be combined together in one stage
whose output is the generated program).

I, should be noted that the current trend in designing the user interface! 7] is to use
a natural language dialogue for feeding the specifications.

In this paper, a design of a program generator (PG) with a natural language interface
is given. The program specifications are fed to the system through a natural language
dialogue. The program specifications obtained from the dialogue are stored internally in
a symbolic language known as program specifications language. The program specifi-
cations are then translated into a metalanguage(®] which is used specifically for writing
the necessary algorithms. Finally, the metaprogram is translated into one of the avail-
able target languages (BASIC, PASCAL, FORTRAN or COBOL).

The proposed design includes many elegant features. Some of the features concern-
ing the natural language dialogue are: (1) Helping the user to correct mis-typed key
words, (2) Trapping and pointing out inconsistencies, (3) Enabling the user to ask for
help at any point in the specification phase, (4) Ability of backtracking in order to cor-
rect any previous response, (5) Ensuring complete independence between the various
components of the program generator, (6) Enabling the user to select one of several tar-
get languages.

In Section 2 of the paper, a general outline of the components and their functions is
given. In Sections 2.2 and 2.3 the program specifications and algorithm description lan-
guages are described.

Design and Development of a Program... 69

In Section 3 the general design principles are presented. This includes a description
of the natural language processor and other features.

In Section 4, a case study is given to illustrate the mechanism of the system starting
from.the first stage of feeding the specifications.

In Section 5, a brief description of the current developments status is given.

2. Overview of The System

In this section, the components of the program generator are described together with
both the program specification language and the algorithm description language.

2.1 Components of the Program Generator

The Program Generator consists of three main components: User Interface,
Algorithm Formulation, and Code Generation.

2.1.1 User Interface

~ The user interface is composed of the following units: Interface Controller, Dialogue
Module (Natural Language Processor, Menu-Driven Analyzer, Commands Analyzer),
Inconsistency Check and an Editor. The input of the user interface is the user require-
ments, and the output is a program specification file. The editor can be used to change
any information of a previously stored specification. The structure of the user interface
is given in Fig. 1. The Help Text gives information to the user about various topics such
as the syntax of commands, meaning of options of a menu, syntax and semantics of nat-
ural language sentences. Cases of inconsistency check are explained later in Section
3.2.1. Other subcomponents of the user interface are described below.

I. Interface Controller. The interface controller is the first part that is invoked. It
starts by interrogating for the existence of an old program specification to be edited. It
then asks the user to select one of the three available modes of conversation (Natural
Language Dialogue, Menu Driven Choices, and Typing Commands), and accordingly
the unit corresponding to the user respond is invoked. Return to the interface controller
from the dialogue module is done in three cases: End of specification, check for incon-
sistency, and occurrence of some types of errors.

I1. Natural Language Processor. The Natural Language Processor consists of the
following modules: Dialogue Manager, Natural Language Analyzer, Translator, and
Natural Language Generator. The unit operates according to the following mechanism:

a) A Sentence is entered by the user.

b) The Natural Language Analyzer checks the sentence both syntactically and se-
mantically (Semantics are used to guide the syntactic parser).

¢) The Translator translates the sentence to an internal form.

d) The sentence is checked to be consistent with the available information.

e) According to the inference rules, the Natural Language Generator produces an
output sentence.

It should be pointed out that the described mechanism is controlled by the dialogue
manger.

70 M. Hamed and M.A. Ajiz
User
Requirements Program
: Specifications
J F
Natural Language
Processor Editor
1. Dialogue Manager -
2. Natural Language
Analyzer Inconsistency
Check
3. Natural Language
Generator
4. Translator Help Text
Interface
Controller
Menu Driven C nds
Analyzer mm“"‘“‘"
. Dislogue Man
1. Dialogue Manger 1.0 ue ager
2. Translator
2. Translator

II1. Menu-Driven Analyzer. The Menu-Driven Analyzer consists of two modules:
Dialogue Manager and Translator. Menus (or Yes/No questions) are output to the user
in a prescribed sequence and the user response is checked to be one of the possible
answers and to be consistent with the available information. Then it is translated to an

internal form.

IV. Commands Analyzer. The Commands Analyzer consists also of Dialogue
Manager and Translator. As a command is input, it is analyzed syntactically and
checked for inconsistency. Errors in erroneous commands are pointed out while correct

commands are translated into an internal form.

FIG. 1. Structure of the user interface.

Design und Development of u Progran... 71

The output of the user interface component is a file of program specifications (in an
internal form) together with the original user’s dialogue. The program specifications
should include:

a) Description of data structures, files, records, storage units, intermediate areas, ...
etc.

b) Shapes of reports and screens.

¢) Processing statements.

2.1.2. Algorithm Formulation

The Structure of the Algorithm Formulation component is given in Fig. 2. It accepts
the program specifications as input and produces a program in metalanguage as output.
It consists of two units: Algorithms Description unit and a Translator. Algorithms des-
criptions are used to-expand some program specification instructions to several meta-
language instructions. Algorithms obtained from the Algorithms Description unit con-
tain some comments which are modified (if necessary) to suit the problem in hand.
Algorithms in this unit are usually supplied in the form of procedures that use dummy
names (variables, files, ... etc.). Dummy names are replaced by actual names at time of
preparation. Examples of such procedures are: A procedure to sort an array of n ele-
ments, a procedure to match two files (sequential access), ... etc. Under certain condi-
tions, any procedure may be invoked at any point in the main program or inside another
procedure. Arithmetic operations and conditions are interpreted directly from user
requirements. More algorithms can be fed to the unit whenever appropriate.

Program Vet
Specifications [Translator etaprogram

Algorithms
Descriptions

Fii;. 2. Structure of algorithm formulation.

2.1.3. Code Generation

The structure of the Code Generation component is given in Fig. 3. It accepts the
metaprogram as input and produces a target program and a user guide as output. The
translator operates on the basis of the syntactic rules of the target language and features
of the machine. Several target languages are made available to the user. The features of
the target language (BASIC, COBOL, FORTRAN, PASCAL) may differ from one
machine to the other according to the amount of deviation from the standard specifica-
tions of the language. The techniques applied in translation are similar to the source-to-
source transformation techniques found in Reference [9]. The user guide includes a nat-
ural language description of the algorithms, which is obtained from the algorithms
description unit, (that is why it is added in Fig. 3) and a copy of the metalanguage pro-
gram.

72 M. Hamed and M.A. Ajiz

MetaProgram iTarget Program
Translator

Algorithms Translation :

Descriptions Rules User Guide

FiG. 3. Structure of code generation.

2.2 The Program Specification Language

The program specification language is used to represent the program specifications
in an internal form. This is a kind of symbolic language that includes key words and
predefined symbols to which the result of the dialogue is interpreted. The syntax of this
language is given in Appendix A.l. The program specifications (as given in this lan-
guage) consists of the following parts:

i) Function Information

This part includes a combination of key words, where each key word has a specific
meaning. The set of key words includes: [PRINT, UPDATE, CREATE, MAINTAIN,
COMPUTE, GENERATE, PRODUCE, CALCULATE, SORT, MERGE, INPUT,
READ, SEARCH, DELETE, CHANGE, MODIFY, STORE, KEEP. OUTPUT,
WRITE, REWRITE, SAVE, DISPLAY, FIND, MATCH }. If we have n key words,
then there are 2”n different combinations.

ii) Files Information

This part includes information about files used in this program. Examples of such
information are: File name, operations to be done on the file, name of file description
segment, ... etc.

iii) Report Information
This part includes information about the format of the required report, for example
titles to.be printed, fields to be printed, totals, ... etc.

iv) Screen Information

This part includes information about the format of screen which is used in the pro-
gram. This may involve: Titles, fields, Mode (Input/Output), ... etc.

v) Calculations and Extra Variables

This part includes information about the calculations to be added at the specific
points of the program. The execution of a calculations block may depend on the satis-

Design and Development of a Program... 73

faction of some condition. The names and other attributes of extra variables are quoted
and kept for later use.

An example of a typical program specification is given in Section 4.2.

2.3) The Algorithm Description langudge

This language!® is designed mainly for writing algorithms. The features of the lan-
guage are similar to those of common high-level programming languages. The syntax
of the language is given in Appendix A.2. Its statements are selected such that there is
almostly one-to-one correspondence with the statements of the target languages.

An example of a typical algorithm is given in Section 4.3.

3. Design Principles

This section includes the principles upon which the design is based. These principles
are related to: Selection of natural language sentences, completing the specifications,
and functionality of the components.

3.1. Natural Languagé Sentences

In the early stages of Natural Language Processing (NLP) mechanisms, no concern
was made as to the meaning in a phrase. Key words or word sequences were used to
extract information from the phrase to be analyzed. In a subsequent stage, knowledge
about the domain were explicitly encoded. It is asserted that information in texts!!% can
be recovered through natural language analysis by building and reasoning on a model
of the situation described, when both linguistic and detailed world knowledge are pro-
vided to the system.

Natural language understanding('!] is characterized as a constraint-based process
which constructs both syntactic and semantic interpretations in parallel. Syntactic inter-
pretations can be represented in the form of a parse tree, while semantic interpretations
are represented in the form of network consistency graph!!!-13], which is a form of
semantic network (known also as knowledge graph). Transition networks!!#-!3] are used
as a tool for syntactic analysis. The sentence generator(!9] is divided into several mod-
ules (e.g., planning and realization), with control and information passing between the
modules during the generation process. To generate natural language sentences!!6],
many kinds of decisions should be made. Researchers are searching for a proper order
of these decisions.

When designing the specifications of a natural language, many factors should be
considered, among which(!”] are: Development time and maintainability.

A fairly general type of sentence is considered!'3-2% for conducting the dialogue
with the user. The structure of the sentence is given in Fig. 4, while the notations are
explained in Table 1. For the operation of the module, a set of domain values!!¥ is
selected for each component of the sentence. When a sentence is input, it is analyzed
syntactically and semantically, then the inference rules are used to: (1) Decide the out-
put sentence, and (2) Add information to the program specifications.

74 M. Hamed and M.A. Ajiz

<§> ::== <VP> <NP> | [ADV>] <NP> [<AUX>] <VP> [<ADV>]|
<COM> <S>

<NP> ::= [<DET>] [<ADJ>] <N> [<PP>] | [<N>] <S>

<VP> ;= <V> <NP> [<PP>]

<PP> ::= <PRP> <NP>

<Q> ;1= <AUX> <NP> [<AUX>] <VP> | <INT> <V> <NP>

FIG. 4. Structure of natural language sentence.

TaBLE |. Notations and their meanings.

Symbol Meaning
ADJ Adjective

ADV Adverb

AUX Auxiliary

COM Complementizer
DET Determiner

INT [nterrogator

N Noun

NP Noun Phrase

PP Prepositional Phrase
PRP Preposition

Q Question

S Sentence

\% Verb

VP Verb Phrase

3.2 Completing and Correcting the Specifications
To complete the specifications, some checks have to be made. These checks are dis-
cussed in Section 3.2.1. Also, correction of key words is discussed in Section 3.2.2.
3.2.1. Check for Inconsistency

Inconsistency may take several forms: (1) Wrong name of stored information on
disk, (2) Insufficient information to generate the program specifications, (3) Operations
inconsistency, such as a variable being used twice successively in the left hand side of
two assignment statements without being used in any right hand side of a statement.

3.2.2. Correcting Key Words

If an extraneous word is detected in the position of a key word in the sentence, its.
corresponding phonetic code is obtained and compared to possible codes of eligible key
words and the user is asked to confirm a choice of the correct word.

3.3 Functionality of the Components

In this section, an explanation of the proper functioning of the components is given.
Facilities required for the proper functioning are also explained.

Design and Development of a Program... 75

3.3.1. The Natural Language Analyzer

The natural language analyzer work is based on the following built-it components
and design principles:

1) A dictionary of nouns, verbs, adjectives, ... etc.

2) Relationships between a word in a category and other words in different cate-
gories.

3) Actions to be taken to comprehend a full sentence. The actions involve the pro-
cess of producing questions about terms related to key words; something which may
clarify the meaning of the sentence.

4) A set of attributes to each word. Information should be supplied about these
attributes.

5) The help text is used to explain to the user the correct way of responding to a
question, specially when the user fails to respond properly after several trials.

6) A facility to differentiate between plural and singular modes.

7) Points about which information is to be gathered, are arranged in the form of a
hierarchical structure. A control mechanism is responsible for the transfer from one
point to the next, in the same or different levels. It should be pointed out that Aug-
mented Transition Networks (ATN) are used to analyze a sentence. The well-known
recursive- descent technique is applied, where routines to analyze the sentence semanti-
cally are tied up with those used to analyze the sentence syntactically.

3.3.2. Algorithm Formulation Unit

The work of this unit depends on the information output from the dialogue module
as program specifications. According to the given combination of key words (describ-
ing the function of the program) and other information about files, the unit selects the
main body of the program to be one of the existing internal modules. Selection condi-
tions for records of files and for printing, are added at the appropriate points in the
module. Other internal modules are added to the main module at the correct points
which are determined by the unit itself. Also, external statements (modules) are added
to the main module at the points determined by the unit.

3.4. Limitations

The limitations on the overall design include :

1) Natural language sentences are limited to specific structure and specific domain,
2) The pool of algorithms in the algorithms description units is limited, and consequent-
ly some user problems may not be solved until necessary algorithms are added, 3) The
set of target languages is limited and future extensions may seem necessary, 4) The
metalanguage supports only common features found in most languages, extra features
(like pointers and variant records) are not supported.

Other limitations include the definition of a maximum to the following: 1) Number
of times for the user to give a syntactically correct sentence, 2) Number of times for the
user to give explanation to a given sentence, 3) Number of functions of a program, 4)
Number of files included in a program. Also, among other limitations are: 1) No many-
to-many relationship between files is allowed, 2) The depth of nesting in complex
structures of the algorithm description language is limited.

76 M. Hamed and M.A. Ajiz

4. A Case Study

In this section, a case study is considered. This might help in illustrating the way in
which the program generator works. The case includes: A portion of a dialogue, pro-
gram specifications, and the resulting metaprogram. Obviously, it would require a huge
space to present the complete case.

The main function of the considered program is to print the transactions of accounts.

4.1. The Dialogue
The dialogue involves the following steps:

1) Interrogate for an old specification to be edited.

2) If an old specification file exists, then use it to display previous responses and
ask the user for possible modifications; otherwise continue.

3) Ask the user to select one of the different modes of conversation and conse-
quently invoke the corresponding module. Assuming that the user selects the natural
language dialogue mode, then continue.

4) Generate a message to ask for a name to be assigned to the specifications file
that will be generated.

5) Ask for the main function of the program (PRINT/UPDATE/CREATE/MAIN-
TAIN/GENERATE/PRODUCE/CALCULATE/COMPUTE/SORT/MERGE!/ ... etc.).
This will help in defining the necessary algorithms.

6) Ask for data files to be included in the program (NAME, NEW/OLD,
DESCRIPTION, READ/WRITE, ACCESS mode, KEY ... etc.).

7) Ask for screen formats to be included in the program (NAMES of FIELDS,
TYPES of fields (I/0/1-O), Accompanying TITLES, POSITIONS of fields and titles
(row and column) ... etc.). _

8) Ask for the kind of report (DETAIL/TOTAL/SUMMARY) and its contents
(FIELDS, TITLES, BREAKS, TOTALS, POSITIONS of fields and titles ... etc.

9) Ask for additional conditions and corresponding actions.

10) Ask for additional operations (Computations, Matching, ... etc.).

Figure 5 gives the first portion of a typical dialogue for the above-mentioned prob-
lem. It should be noted that a generated statement starting by an asterisk does not fol-
low the prescribed syntax rules, and is considered as a comment. Also, when a definite
response (one of different alternatives) is required from the user, the input sentence
may not be analyzed according to the prescribed syntax. In Fig. 5, the user response is
given in bold face such that it can be easily recognized.

PG . * Hello, this conversation is intended for defining your
* problem. The first step is to decide whether there is
* any previous specifications to this problem (YES/NO)
User - NO
PG - * Select one of the available modes of conversation (type
* its number)
1. Natural Language Dialogue
2. Menu-Driven Choices
3. Typing Commands

User :
. Assign a name to the file that keeps the specifications of the problem
* (Maximum 8 characters)

- ACCTPR

. What is the main function of the program ?

: THE MAIN FUNCTION IS TO PRNT THE TRANSACTIONS OF

PG

User
PG
User

PG
User
PG

User
PG
User
PG

User
PG

User

User

Design and Development of a Program... 77

ACCOUNTS IN THE CURRENT MONTH.

I think you mean --* 'PRINT'. Confirm (YES/NO)

YES

Do you use files in the program? --* If yes, give their names enclosed
between quotation marks.

The NAMES ARE:'ACC.MST' AND 'ACC.TRN'".

Are they old files?

YES, THEY ARE OLD.

These names do not exist on disk. Type the correct names.
'ACC.MAST' AND 'ACC.TRAN'

Did you store the descriptions of files on disk ? --* If yes, give their
names

enclosed between quotation marks.

'ACC.DM' AND 'ACC.DR!
--* In most printing programs, the files are used for READ only. Is this

true in your case ?
YES, IT IS TRUE.

FiG. 5. A portion of a dialogue.

The layout of the required report, obtained by the dialogue is given in Fig. 6 below.

Transaction in the period X-----x t0 X-----X

ACC. NO. Xecemmae- X
MAIN BUDGET) GO X
ADDITIONAL BUDGET X-------- X
BALANCE), GO X

doc. date description amount
type

X X X X X X X X X

FIG. 6. Layout of the required report.

78 M. Hamed and M.A. Ajiz

4.2. The Resulting Program Specifications
In this subsection, the resulting program specifications (in symbolic language) are
given. Titles for each part of the program specifications are added to make it clear.
1) Function Information
Function is::=PRINT: MATCH;
2) Files Information

Files are ::= ACC.MAST: PRIMARY; ACC.DM: SEQUENTIAL: READ;
ACC. TRAN: AUXILIARY: ACC. DR: SEQUENTIAL: READ $
F2.4 > S2.1 and DATE < S2.2;

ONE-MANY: ACCNO, ACCNO;
3) Report Information

L1 ‘ACC.NO’$5,FI1.1$30:1: Cl
L2 “MAIN BUDGET’ $ 5, F1.2 $ 30: 1
L3 ‘ADDITIONAL BUDGET’ $5,F1.3$30: 1
L4 “BALANCE’ $5,F1.4$30: 1
L5 ‘Transactions in the period’ $10, S2. 1 $ 40, ‘to’ $45,52.2$55: 1
Le ‘doc. doc. date description amount’ $ 5: 1
L7 ‘no. type’ $5: 1
L8 F22$5,F23%12,F243%20,F25%$30,F2.6$60:
M : C2
T : F2.6: Cl, EOP, EOJ
4) Screen Information
S1 : 0 : B;
L1 :‘start date’ $ 5
L2 :‘end date’ $ 5
S2 L B;

L1 :S2.1$20
L2 :82.2520

4.3 The Formulated Algorithms

According to the information obtained from the specifications, an internal module is
selected as the body of the program. In our case, the information that guides the selec-
tion process can be described in the following terms: The function of the program is to
read, match, and print the records of two files. The files are accessed sequentially and -
matched on a specific field where the relationship between the records of the two files
is one-to-many. Some lines are to be printed when a record from either file changes. At
the beginning of the program, two variables are to be input from screen. Also, the selec-
tion of records from the second file is based upon some given condition.

Accordingly, the algorithm formulation component selects an internal routine named
‘MATCH-S’ to be the body of the algorithm, and adds to it:

a) A routine to accept variables from screen.

Design and Development of a Program.. 79

b) Necessary routines for printing the information from files, and for summing and
printing totals. The generated algorithm is given in Fig. 7.

* SW is a boolean variable to indicate the need for reading
* A record from AUXILIARY file
* EOF is a boolean variable to indicate end of file
* TOT-1 to TOT-3 are areas for totals
* EOP is a boolean variable to indicate end of page
Set SWto 0
Read ACC.MAST file record
Repeat While not EOF (ACC.MAST)

Call PRINT-I;
If SW =0 and not EOF (ACC.TRAN) Then
Read ACC.TRAN file record; Set SW to [;

Repeat While not EOF (ACC.TRAN) and MAST.ACNO =TRAN.ACNO
If DATE > MIN and DATE < MAX Then Call PRINT-2
and Add AMOUNT to TOT-l, TOT-2, TOT-3
If EOP Then Call PRINT-3-A
Read ACC.TRAN file record

End-Repeat

If not EOF (ACC.TRAN) or SW = 0 Then Call PRINT-3-A,;
Call PRINT-3-B; Set SWto 1

Read ACC MAST file record

End-Repeat
Call PRINT-3-C
Stop.

FiG. 7. The generated algorithm.
5. Development Status

The following is a list of modules that are implemented and tested successfully: (1)
Dialogue Module (Natural Language Processor, Menu-Driven Analyzer, Commands
Analyzer), (2) Algorithm Formulation, (3) Some parts of the code generation module.
In this limited space, we will give a brief description about each module.

5.1. Development of Dialogue Module

We will concentrate in this part on the implementation of the natural language
processor as the implementations of Menu-Driven Analyzer and Commands Analyzer
are direct.

The information about the program to be generated is arranged in the form of a tree.
Each node of a tree contains information about a specific topic besides to the informa-
tion needed for tree traversal. The information about a topic in a node includes:
Identification of the topic, indicator to whether information about it has already been

80 M. Hamed and M.A. Ajiz

provided or not, set of key words related to topic, which question to be asked to obtain
missing information. The tree is traversed in a Depth-First form such that when infor-
mation about a topic in specific node is complete, we move to its sibling node (if its
information is not complete), otherwise we move to parent. Linked allocation was
found appropriate for implementing such a tree.

To analyze natural language sentences, we first start by breaking down the sentences
to components. Each component is checked to determine its category (Interrogator,
Verb, Noun, ... etc.). The structure of sentences and semantics are used to guide the
search for the category of the next component. To capture the semantics in the sen-
tence, a dictionary is used. The dictionary is constructed in such a way that each com-
ponent mainly belongs to one category and may be related to other components of dif-
ferent categories. A relationship of several components (of different categories) pro-
vides the system with some specific information.

To generate a natural language sentence, we start by a key word around which the
sentence will be built. We use the relationships of this key word with other words of
different categories as guide and select the words surrounding the keyword according to
the structure of sentence and the required meaning.

5.2. Development of Algorithm Formulation Model

The algorithm description unit has been prepared in such a way to include proce-
dures written in metalanguage. The procedures are selected to cover various situations
of file handling, screen operations, printer operations, ... etc. For each procedure, there
is a natural language description that describes to the user the functions included in the
procedure. Keywords of the program specifications (given in a consize form) are used
to decide: (1) The main body of the output program, (2) What are the additional proce-
dures and where to plug them in the main body. The main effort with this module was
the selection of procedures for different situations and the coding of these procedures in
metalanguage.

5.3. Development of Code Generation Modules

The development of this module can be easily broken down to several parts, each
one is concerned with a specific target language. For the target language PASCAL, it is
not difficult to translate from metalanguage 1o it, since there is mainly one-to-one corre-
spondence between statements in the two languages. The only difficulty we found was
when there was no one-to-one correspondence between the two languages (e.g., using
strings in the metalanguages and its counter part is an array of characters in PASCAL).
Also, it should be noted that features which are not common to most languages are
avoided (e.g., variant records, pointers, complex data structures).

6. Conclusion

The design of a program generator with natural language interface was presented.
The natural language processor was limited to a specific domain which is needed to
feed the program specifications. Sentences are analyzed syntactically and semantically.
Inference rules are used to decide the appropriate actions when an input sentence is

Design and Development of a Program... 81

entered. Other modes of conversation are also made available. A specific metalanguage
was used for formulating the program. Several target languages for the program are
made available to users.

The given design is realistic, and is characterized by the modularity of the necessary
software (divided to parts and subparts). In practice, many modules are developed on
VAX-8550 machine and are tested successfully on sample cases. Expansion to the
completed software is being carried out in order to cover all features given in the pro-
posed design. This includes the module of translating to target language.

References

[1] Luker, P.A. and Burns, A., Program generators and generation software, Computer J., 29(4): 315-321
(1986).
[2] Rich, C. and Waters, R.C. (ed.), Readings in Artificial Intelligence and Software Engineering, Morgan
Kaufmann, USA (1986).
[3] Horowitz, A., Kemper, A. and Narasimhan, B., A survey of application generators, /[EEE Software, 11
(January) : 40-54 (1985).
[4] Cheng, T.T., Lock, E.D. and Prewes, N.S., Use of very high level languages and program generation
by management professionals, /EEE Trans. on Softw. Eng., SE-10(5) (September): 552-563 (1984).
[S] DBASE-IV: Setting the Data Management Standard, Reference Manual, Ashton Tate, Los Angeles
(1988).
[6] Toledo, S.W., The value of natural language capability in the computer, Behavioral Science Journal,
37(4): 294-309 (1992).
(7] Brunner, H., Whittemore, G., Ferrara, K. and Hsu, J., An assessment of written the interactive dia-
logue for information retrieval applications, Human-Computer Interactions, 7(2): 197-249 (1992).
(8] Hamed, M., Implementing a Program Generator for Business Applications, Tech. Report-CS21, Math.
Department, University of Bahrain, pp. 26-48 (1989).
[9] Kelsey, R. and Hudak, P., Realistic compilation by program transformation, Proc. of the Sixteenth
Annual ACM Conference on Principles of Programming Languages, Austin, TX, USA, 11-13 Jan.,
pp. 281-292 (1989).
[10] Cavazza, M. and Zweigenbaum, P., Extracting implicit information from free text technical reports’,
Information Processing & Management Journal. 28(5): 609-618 (1992).
[11] Kuttner, E., Havens, W. and Cercone, N., Processing natural language with schema constraint net-
works, Computers & Mathematics with Applications Journal, 24(11); 3-10 (1992).
(12] James, P., Knowledge Graphs, Proceedings of the Conf. on Linguistic Instruments in Knowledge
Engineering, Tilburg, Netherlands, pp.97-117 (1991).
[13] Sowa, J.F. and Way, E.C., Implementing a semantic interpreter using conceptual graphs, /BM J. Res.
Develop., 30(1): 57-69 (1986).
(14] Bonnet, A., Artificial Intelligence: Promise and Performance, Prentice-Hall, USA, pp. 72-96 (1985).
[15] Kong, P.H., Show, G.Y. and Lin, W.K., Evaluation of parsing techniques for natural language process-
ing, Proceedings of the Intern. Conf. on Information Engineering, ICIE ‘91, 2-5 December (1991),
Singapore, pp. 422-431.
{16] Inui, K., Tokunaga, T. and Tanaka, H., Text revision: A model and its implementation, 6th Intern. Conf.
on ‘Aspects of Automated Natural Language Generation, 5-7 April (1992) Trento, ltaly, pp. 215-230.
[17] Burton, A. and Steward, A.P., A natural language interface to management information, Intern. Conf.
on Practical Applications of Prolog, 1-3 April (1992) London, UK, pp. 1-23.
(18] Akmajian, A. and Heny, F., An Introduction to the Principles of Transformational Syntax, MIT Press,
USA, pp. 154-182 (1978).
[19] Gaines, B.R., The technology of interaction dialogue programming rules, /ntern. J. of Man-Machine
Studies, 14(1): 133-150 (1981).
[20] Kaplan, J.S., Cooperative response from a portable natural language query system, Artificial
Intelligence, 19(2): 165-188 (1982).

82 M. Humed and M.A. Ajiz

Appendix A: Syntax of Proposed Languages
A.l. Syntax of Program Specification Language

< progr spec > :: = < func inf > < ffles inf > < report > < scr inf >

< variables > < calc > < int modules > < ext. modules > <seq>
< func inf > :: = < main func > : < aux >

< main func > :: = < key func >

<key func> :: = PRINT | UPDATE | SORT |

< aux > :: = < awc func >| < aux func >, < aux >

< aux func > :: = <key func >

< files inf > :: = < info >; < relation >

<info> ::= <file> | <file> <info>

< file > :: = < file name >: < type >: < descr name >: < access inf>: < file oper >|< nil
>

<type > : =PRIMARY | AUXILIARY

< file name > :: = < word >

< descr name > :: = < word >

< access inf > :: = < access word > [$ < method > $ < hash >]
<accessword> ::= DIRECT | RANDOM | SEQUENTLAL

< method > :: = KEY | RECORD NUMBER

< hash > :: = <calc >| < word >

< file oper > : : = <oper > | <oper >, < file oper >

<oper> ;= <op>$<sel>

<op> ::=READ | WRITE | DELETE | REWRITE
<sel> ;= <cond> | <ml>

<relation > :: = <rel >; < match fld >

<rel> ::= ONE-ONE | ONE-MANY

< match fld > : : = <name >, < name >

<scrinf>::=<scrno > : <scrtype > < scr cond >;; < scr lines >
<scrtype> =1 | O

<scr lines > :: = <line > | < line > < scr lines >

<line> ;= L <lineno>: <varinf>

<scrcond> ;= B | C <file no>

<scrno> :; = S <integer>

<report > :: = <report inf > < total inf >

<report inf> ;: = <line inf > | <line inf> < report inf >
<lineinf>::=<line no > : <varinf>: <rep >: [<new page >]
<varinf> . =<field inf> | <field inf>, < var inf>

< field inf > :: = <literal > $ < col no > | <field no>$<col no>
< field no > :: = <file no > . <integer > | <integer>

< col no > :: = <integer >

< literal > :: ="' <string >"'

Design and Development of u Program.. 83

< line no > :: = < integer >

<rep> ::= <integer> | M

< variables > : : = <var field > | <var field >, < variables >
<varfield> ::= <serial>$<varname>$<type>$<size>$<dp>

< serial > :: = < integer >

< var name > :: = < word >

<type>: :=c¢c|N|M

<size > :: = <integer >

<dp > :: =<integer >

<total inf>:: =T: < field no >: < levels >

<levels > :: = <level > | < level >, <levels >

<level> ::= C <fileno> | EOP | EOJ

< new page > :: = ¢ < file no >

<calc > :: = < assign > | < assign > < calc >

< assign > :: = < identifier > : = < expression >

<int modules > ::'=<name > | <name > : <int mcdules >
< ext modules > : : = <module > | <module > < ext modules >
< module > :: = < module name > § < statements >

< statements > ;: = < statement > | < statement > $ < statements >
< statement > :: = <if stat > | < assign >

<ifstat > = [F <cond > THEN < calc >

<seq>: =<name >|<name>: <seq>

< name > . = < word>

<word > :; = < letter > { < char > }

< char > :: = <letter > | < digit > | < spec >

<letter>::=A | B | .. | Z
<digit> :=0| 1|~ | 9
<spec>=+ | = [()] .

< string > :: = <caar > | < char > <string >

< cond > :: = <simple cond > | <simple cond > < log oper > < cond >
< simple cond > :: = < expr > <rel oper > < expr >

<reloper:=<|> | = | ~=|>=| <>

<logoper> ::= AND | OR | NOT

<integer > :: = < digit > | < digit > < integer >

A.2. Syntax of Algorithm Description Language

< program > :: = < statement > | < statement > < program >

< statement > :: = < simple-stat > | <simple-stat > < statement >
< simple-stat > :: = [<label > :] { <com-stat >

< com-stat > :: = * <string >

<string > :: = < character > | < character > < string >

<ex-stat > :: = < set-atat > | <read-stat> | <repeat-stat >

84 M. Hamed and M.A. Ajiz

<call-stat > | <write-stat > | < if-stat > | < goto-stat >

< set-stat > :: = SEI <identi~ler > { TO } < expression >
<identifier> ::= [<name>.] <name> [(<sub-list>)]

<sub-list > :: = <sub >| <sub >, < sub-list >

<sub > :: = < expression >

<name > :: = < letter > | <letter > { <let-dig > }

<let-dig > :: = <letter > | <digit>

< expression > :: = <exp > | < log-exp >

<log-exp > :: = <exp > < rel-oper > < exp > | < log-var > | [NOT] < log-exp >
<log-exp > < log-oper > < log-exp >

< log-var > :: = <identifier > | <log-func >

<log-func > :: = EOF [(< file-name >)] | EOP

<exp>: =<arithm-exp > | <char-exp>

< char-exp > :: = < prime > | < prime > + < prime >

<arithm-exp > :: = < sgn-term > | <sgn-tenn > { < add-op > <term >}
<sgn-term > =[+|-] <term >

<term> ::= <factor> | <factor> {<mult-op> <factor>}

< factor > :: =<prime > | <prime > { < exp-op> < prime > }

< prime > :: = < constant > | <identifier > | (< expression >)

< read-stat > :: = READ < variables > | READ < file-par >

< variables > :: = (<id-list >)

<id-list > - = < identifier > | <identifier >, <id-list >

< file-par > :: = < file-name > [RECORD]

< file-name > :: = < name >

<write-stat> ;= WRITE <variables> | WRITE <file-par> |

WRITE L < line-no >

< line-no > - =<int >

< repeat-stat > ;; = < repeat-until > | < repeat-while >

< repeat-until>;;= REPEAT UNTIL < log-exp > statement > END-REPEAT
< repeat-while > - = REPEAT WHILE < log-exp > < statement > END-REPEAT
<if-stat > .. = IF <log-exp > THEN < statement > [ELSE < statement >]
ENDIF

< goto-stat > :: = GOTO < label >

< label > :: = < name >

< call-stat > :: = CALL < name > [<arg >]

<arg> ::= <par> | <par>, <arg>

< par > :: = < constant > | < identifier >

< character > :: = < letter > | < digit > | < spec >

< constant > :: = <num > [< char > <log >

<npum>: =<sgn-int>[.<int>]

<sgn-int>:=[+|-]<int>

<int > :: = <digit > | < digit > <int >

<char>:="<string >"

<log>:=.TRUE. | .FALSE.

Design and Development of a Program...

<letter>::=A|B|...|2Z

<digit> ::=0[1 |... |9
<spec>::=+|-|*|/|&|$ | -
<add-op> ::=+] -

<mult-op> ;= * |/

<exp-op>: "

<log-oper>::= ANR | OR
<rel-oper>;:=<|>|=|<=|>=|<>

85

86

M. Hamed and M.A. Ajiz

‘L"Ma—@?‘ﬁ@-“ﬂ'ﬂj—‘ﬁ)—ksjw
Aol Ul

j—?lﬁglﬁ)_,li;n 3 Ml kg deow
Bl o I LS« JYI sl o gl od
U"J———"'JI = eef e

65 Jlomt S el oY1 o sl I Sl o 205l
igrly g5 ol p A ool ot lim oy Sloalonl) 1 30 LS
Jorins slha] g Lol it J daalldl iy . bl U do T Jans
LaS . Lo &y ol ol Sl sl S1ae] e 4SE gl oL
HlaYi s .LQ!G.\J,S\QL&.;\JA&Q;V:J_L};NM@QW@
e Al SO g e 55 GLAV M p e AN DS e 5)

Ll

