Fabrication and electrical characterization of CdO/p-Si photosensors

By: Al Orainy, RH [Al Orainy, R. H.][1]; Hendi, AA [Hendi, A. A.][1]

MICROELECTRONIC ENGINEERING
Volume: 127 Pages: 14-20
DOI: 10.1016/j.mee.2014.02.014
Published: SEP 5 2014
View Journal Impact

Abstract
CdO nanorods were grown by sal-gel technique and the structural properties were analyzed by X-ray diffraction and AFM measurements. CdO films were grown onto p-type silicon substrates. Optical band gap was determined by optical absorption. The optical band gap of the CdO film was changed by Al dopant. Heterojunction diodes based on undoped and aluminum doped CdO/p-Si were fabricated using sol-gel spin-coating technique. The effect of light intensity on junction properties of the diodes was studied. The ideality factor of the diodes were obtained to be 2.30, 2.95, and 2.80, for undoped, 0.1%, and 1.0% for Al doped CdO diodes, respectively. The transient photocurrent results indicate that photocurrent under illumination is higher than the dark current. The on/off ratio values of the diodes were observed to be 5.84, 7.50, and 3.96 for undoped, 0.1%, and 1.0% Al doped CdO respectively. The observed decrease in the capacitance and increase in the conductance with increase in frequency was explained on the basis of interface states. The obtained results indicate that the photosresponse properties of the CdO/p-Si are controlled by Al doping. (C) 2014 Elsevier B.V. All rights reserved.

Keywords
Author Keywords: Electronic materials; Sol-gel growth; Electrical properties
KeyWords Plus: CONDUCTANCE-VOLTAGE CHARACTERISTICS; THIN-FILMS; SERIES RESISTANCE; INTERFACE STATES; SCHOTTKY DIODES; OPTOELECTRONIC APPLICATIONS; HIGHLY TRANSPARENT; OPTICAL-PROPERTIES; BARRIER DEVICES; SPRAY-PYROLYSIS

Author Information
Reprint Address: Al Orainy, RH (reprint author)
King Abdulaziz Univ, Sci Fac Girls, Dept Phys, Jeddah 21413, Saudi Arabia.
E-mail Addresses: r-aloraini@hotmail.com; dr_asmahendi@hotmail.com

Publisher
ELSEVIER SCIENCE BV, PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS

Categories / Classification
Research Areas: Engineering; Science & Technology - Other Topics; Optics; Physics
Web of Science Categories: Engineering, Electrical & Electronic; Nanoscience & Nanotechnology; Optics; Physics, Applied

Document Information
Document Type: Article
Language: English
Accession Number: WOS:000339221000003
ISSN: 0167-9317
eISSN: 1873-5568

Citation Network
5 Times Cited
34 Cited References
View Related Records
Create Citation Alert
(data from Web of Science Core Collection)

Usage Count
Last 180 Days: 2
Since 2013: 24
Learn more

Most Recent Citation
View All

This record is from:
Web of Science Core Collection - Science Citation Index Expanded

Suggest a correction
If you would like to improve the quality of the data in this record, please suggest a correction.
Journal Information
Table of Contents: Current Contents Connect
Impact Factor: Journal Citation Reports

Other Information
IDS Number: ALSCX
Cited References in Web of Science Core Collection: 34
Times Cited in Web of Science Core Collection: 5