Title: Bayesian Analysis of Biogeography when the Number of Areas is Large

Author(s): Landis, MJ (Landis, Michael J.); Matzke, NJ (Matzke, Nicholas J.); Moore, BR (Moore, Brian R.); Huelsenbeck, JP (Huelsenbeck, John P.)


Abstract: Historical biogeography is increasingly studied from an explicitly statistical perspective, using stochastic models to describe the evolution of species range as a continuous-time Markov process of dispersal between and extinction within a set of discrete geographic areas. The main constraint of these methods is the computational limit on the number of areas that can be specified. We propose a Bayesian approach for inferring biogeographic history that extends the application of biogeographic models to the analysis of more realistic problems that involve a large number of areas. Our solution is based on a "data-augmentation" approach, in which we first populate the tree with a history of biogeographic events that is consistent with the observed species ranges at the tips of the tree. We then calculate the likelihood of a given history by adopting a mechanistic interpretation of the instantaneous-rate matrix, which specifies both the exponential waiting times between biogeographic events and the relative probabilities of each biogeographic change. We develop this approach in a Bayesian framework, marginalizing over all possible biogeographic histories using Markov chain Monte Carlo (MCMC). Besides dramatically increasing the number of areas that can be accommodated in a biogeographic analysis, our method allows the parameters of a given biogeographic model to be estimated and different biogeographic models to be objectively compared. Our approach is implemented in the program, BayArea. [ancestral area analysis; Bayesian biogeographic inference; data augmentation; historical biogeography; Markov chain Monte Carlo.]

Funding:
National Science Foundation (NSF) DEB 0445453 DEB 0842181 DEB 0919529
National Institutes Health (NIH) GM-069801

This research was supported by the National Science Foundation (NSF) [DEB 0445453 to J.P.H.; DEB 0842181, DEB 0919529 to B. R. M.] and the National Institutes Health (NIH) [GM-069801 to J.P.H.].

Open Access: No
Output Date: 2017-07-25