Record 1 of 1

Title: Compound Eye Adaptations for Diurnal and Nocturnal Lifestyle in the Intertidal Ant, Polyrhachis sokolova

Author(s): Narendra, A (Narendra, Ajay); Alkaladi, A (Alkaladi, Ali); Raderschall, CA (Raderschall, Chloë A.); Robson, SKA (Robson, Simon K. A.); Ribi, WA (Ribi, Willi A.)

Source: PLOS ONE Volume: 8 Issue: 10 Article Number: e76015 DOI: 10.1371/journal.pone.0076015 Published: OCT 14 2013

Times Cited in Web of Science Core Collection: 9

Usage Count (Last 180 days): 0

Usage Count (Since 2013): 31

Cited Reference Count: 53

Abstract: The Australian intertidal ant, Polyrhachis sokolova lives in mudflat habitats and nests at the base of mangroves. They are solitary foraging ants that rely on visual cues. The ants are active during low tides at both day and night and thus experience a wide range of light intensities. We here ask the extent to which the compound eyes of P. sokolova reflect the fact that they operate during both day and night. The ants have typical apposition compound eyes with 596 ommatidia per eye and an interommatidial angle of 6.0 degrees. We find the ants have developed large lenses (33 μm in diameter) and wide rhabdoms (5 μm in diameter) to make their eyes highly sensitive to low light conditions. To be active at bright light conditions, the ants have developed an extreme pupillary mechanism during which the primary pigment cells constrict the crystalline cone to form a narrow tract of 0.5 μm wide and 16 μm long. This pupillary mechanism protects the photoreceptors from bright light, making the eyes less sensitive during the day. The dorsal rim area of their compound eye has specialised photoreceptors that could aid in detecting the orientation of the pattern of polarised skylight, which would assist the animals to determine compass directions required while navigating between nest and food sources.

Accession Number: WOS:000325887300017

PubMed ID: 24155883

Language: English

Document Type: Article

Keywords Plus: INSECT PUPIL MECHANISMS; BEE MEGALOPTA-GENALIS; POLARIZED SKYLIGHT; RETINULA CELLS; SPECTRAL SENSITIVITY; FLY PHOTORECEPTORS; VISUAL ADAPTATIONS; MELOPHORUS-BAGOTI; PIGMENT MIGRATION; DESERT ANTS


Reprint Address: Narendra, A (reprint author), Australian Natl Univ, Res Sch Biol, ARC Ctr Excellence Vis Sci, Canberra, ACT, Australia.

E-mail Addresses: ajay.narendra@anu.edu.au

Author Identifiers:

<table>
<thead>
<tr>
<th>Author</th>
<th>ResearcherID Number</th>
<th>ORCID Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Narendra, Ajay</td>
<td>A-4960-2008</td>
<td>Research ID, CTBCC</td>
</tr>
<tr>
<td>Research ID, CTBCC</td>
<td>D-3664-2014</td>
<td>L-4228-2013</td>
</tr>
<tr>
<td>Faculty of, Sciences, KAU</td>
<td>E-7905-2017</td>
<td>B-8870-2013</td>
</tr>
<tr>
<td>Robson, Simon</td>
<td>0000-0001-8870-1933</td>
<td>O-3564-2014</td>
</tr>
</tbody>
</table>

Publisher: PUBLIC LIBRARY SCIENCE

Publisher Address: 1160 BATTERY STREET, STE 100, SAN FRANCISCO, CA 94111 USA

Web of Science Categories: Multidisciplinary Sciences

Research Areas: Science & Technology - Other Topics

IDS Number: 23787D

ISSN: 1932-6203

29-char Source Abbrev.: PLOS ONE

ISO Source Abbrev.: PLoS One

Source Item Page Count: 6

Funding:

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australian Research Council's (ARC) Centres of Excellence Scheme</td>
<td>CEO561903</td>
</tr>
<tr>
<td>ARC Discovery Early Career Award</td>
<td>DE120100019</td>
</tr>
<tr>
<td>ARC Discovery grant</td>
<td>DP1093553</td>
</tr>
<tr>
<td>King Abdulaziz University</td>
<td></td>
</tr>
</tbody>
</table>

This work was funded by Australian Research Council’s (ARC) Centres of Excellence Scheme (CEO561903); ARC Discovery Early Career Award (DE120100019); ARC Discovery grant (DP1093553); King Abdulaziz University travel grant. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Open Access: gold

Output Date: 2017-07-25